
Web Service Scalability and Performance with Optimizing Intermediaries

W3C Workshop on Web Services

W3C Workshop on Web Services

Mark Nottingham
mnot@akamai.com

Scaling Web ServicesScaling Web Services

Web Service Scalability and Performance with Optimizing Intermediaries

W3C Workshop on Web Services

Motivation

Web Services need:
– Scalability: handling increased load, while

managing investment in providing service
– Reliability: high availability
– Performance: end-user perceived latency

• Problems (and solutions) similar to those in
scaling the Web infrastructure in general.

Web Service Scalability and Performance with Optimizing Intermediaries

W3C Workshop on Web Services

Intermediary Solutions
• Intermediaries can address

these needs by making a
service available from a
number of devices.

• They can be deployed on
behalf of the client (proxy)
or server (surrogate/CDN).

• We classify intermediaries
into two broad categories:
functional and optimizing.

Service Origin

Web Service Scalability and Performance with Optimizing Intermediaries

W3C Workshop on Web Services

Functional Intermediaries

• Make services available by taking responsibility
for (parts of) them.

• Typically, functional solutions execute service-
specific code (and need to distribute and
manage it).

• If removed, service cannot be provided,
because it performs meaningful processing on
messages.

Web Service Scalability and Performance with Optimizing Intermediaries

W3C Workshop on Web Services

Optimizing Intermediaries

• Enhance service by exploiting certain aspects of
services’ semantics, to:
– Eliminate or delay connections to the origin server
– Reduce the number of bytes sent to or from the

origin server
• Removing from the message path has no effect,

except to reduce scalability, performance and
reliability.

Web Service Scalability and Performance with Optimizing Intermediaries

W3C Workshop on Web Services

Why Optimizing Intermediaries?

• Generally, it is easier to retrofit optimization
onto existing services.

• Potential to support a wide range of
applications, while avoiding code deployment
and management issues.

• Optimizing isn’t for every service!
• Functional intermediaries are useful when

optimization isn’t powerful or flexible enough.

Web Service Scalability and Performance with Optimizing Intermediaries

W3C Workshop on Web Services

Use Case: getStockQuote()

• Information services (stock quotes, RSS, etc.)
can exploit request locality and reuse response
components

• Different components have different triggers:
– Delayed stock price – cache for 5 minute delta
– Last close – invalidate at 5am daily
– Company information – update upon notification

Web Service Scalability and Performance with Optimizing Intermediaries

W3C Workshop on Web Services

Use Case: Authentication Service

• Optimized by caching state in distributed
intermediaries

• Request locality should keep cached state near
users

• Updates can be triggered by other messages
(new password), notifications, and/or incorrect
passwords

• Accounting takes place through traditional
logging, or aggregated store-and-forward.

Web Service Scalability and Performance with Optimizing Intermediaries

W3C Workshop on Web Services

Use Case: Distributed File Store

• Users interact with a
local intermediary,
writing to and reading
from the cache. Events
such as ‘logout’
synchronize the cache
to a master server.

logoutlogin

Web Service Scalability and Performance with Optimizing Intermediaries

W3C Workshop on Web Services

Proposed Optimization Model

1. Optimization hints about a service are made
available to an intermediary.

2. Intermediaries process messages and apply
optimization techniques based on the hints.

3. Techniques may be applied to XML elements
at a fine granularity, and are triggered by a
variety of events.

Web Service Scalability and Performance with Optimizing Intermediaries

W3C Workshop on Web Services

Applying Optimization Techniques
• XML offers much finer granularity of application (per-

element) than traditional HTTP optimization (per-
message).

• To associate a technique with an element, different
mechanisms might be used:
– External XML

• Markup in XML Schema
• Markup in WSDL
• Message Header (using Xpath, etc.)

– Inline XML
• Attributes <foo m:cache=“30”>
• Namespaces <m:cache value=“30”><foo/></m:cache>

Web Service Scalability and Performance with Optimizing Intermediaries

W3C Workshop on Web Services

Triggering Optimization Techniques

• Time (delta, absolute, schedule)
– 30 seconds
– Tuesday at 5pm
– Jan 1 12:00 2002

• Message to the intermediary directly
– XMLP service exposed on the intermediary

• Message passing through the intermediary
– Presence or value of another message’s element

(Query?)

Web Service Scalability and Performance with Optimizing Intermediaries

W3C Workshop on Web Services

Technique: Caching

• Exploits request/response message
exchange patterns with locality in
requests and similarity in responses.

• Cache can be indexed by some
combination of
– Service (URL)
– Element location (Xpath)
– Element identity
– Artificial index (URI)

• Cache is kept coherent through
invalidation with various triggers.

Web Service Scalability and Performance with Optimizing Intermediaries

W3C Workshop on Web Services

Technique: Store-and-Forward

• Exploits large or frequent client to
server transfers that do not require
immediate processing (but may
require acknowledgement)

• Forwarding is triggered.
• Acknowledgement message might

be standardized, or constructed
from cache.

Web Service Scalability and Performance with Optimizing Intermediaries

W3C Workshop on Web Services

Technique: Partial Messaging

• Specify that only part of a
message should be sent

• Can be used to send only the
changed parts of a message (e.g.,
to update a cache)

• Can be used to send parts of
messages at different times (e.g.,
store-and-forward)

Web Service Scalability and Performance with Optimizing Intermediaries

W3C Workshop on Web Services

Technique: Aggregation

• Exploits locality in messages to
combine multiple messages,
where possible, into a single
message.

• Messages should have at least one
common endpoint.

Web Service Scalability and Performance with Optimizing Intermediaries

W3C Workshop on Web Services

Next Steps

• Validate techniques’ applicability to real-world
Web Services

• Design a language for Web Service
optimization

• Implement
• Interested? mailto:mnot@akamai.com

