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Motivation

Web Services need:
– Scalability: handling increased load, while 

managing investment in providing service
– Reliability: high availability
– Performance:  end-user perceived latency

• Problems (and solutions) similar to those in 
scaling the Web infrastructure in general. 
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Intermediary Solutions
• Intermediaries can address 

these needs by making a 
service available from a 
number of devices.

• They can be deployed on 
behalf of the client (proxy) 
or server (surrogate/CDN).

• We classify intermediaries 
into two broad categories: 
functional and optimizing. 

Service Origin
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Functional Intermediaries

• Make services available by taking responsibility 
for (parts of) them. 

• Typically, functional solutions execute service-
specific code (and need to distribute and 
manage it).

• If removed, service cannot be provided, 
because it performs meaningful processing on 
messages.
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Optimizing Intermediaries

• Enhance service by exploiting certain aspects of 
services’ semantics, to:
– Eliminate or delay connections to the origin server
– Reduce the number of bytes sent to or from the 

origin server
• Removing from the message path has no effect, 

except to reduce scalability, performance and 
reliability.
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Why Optimizing Intermediaries?

• Generally, it is easier to retrofit optimization 
onto existing services.

• Potential to support a wide range of 
applications, while avoiding code deployment 
and management issues.

• Optimizing isn’t for every service!
• Functional intermediaries are useful when 

optimization isn’t powerful or flexible enough.
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Use Case: getStockQuote()

• Information services (stock quotes, RSS, etc.) 
can exploit request locality and reuse response 
components

• Different components have different triggers:
– Delayed stock price – cache for 5 minute delta
– Last close – invalidate at 5am daily
– Company information – update upon notification
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Use Case: Authentication Service

• Optimized by caching state in distributed 
intermediaries

• Request locality should keep cached state near 
users

• Updates can be triggered by other messages 
(new password), notifications, and/or incorrect 
passwords

• Accounting takes place through traditional 
logging, or aggregated store-and-forward.
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Use Case: Distributed File Store

• Users interact with a 
local intermediary, 
writing to and reading 
from the cache. Events 
such as ‘logout’ 
synchronize the cache 
to a master server.

logoutlogin
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Proposed Optimization Model

1. Optimization hints about a service are made 
available to an intermediary.

2. Intermediaries process messages and apply 
optimization techniques based on the hints.

3. Techniques may be applied to XML elements 
at a fine granularity, and are triggered by a 
variety of events.
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Applying Optimization Techniques
• XML offers much finer granularity of application (per-

element) than traditional HTTP optimization (per-
message).

• To associate a technique with an element, different 
mechanisms might be used:
– External XML

• Markup in XML Schema
• Markup in WSDL
• Message Header  (using Xpath, etc.)

– Inline XML
• Attributes    <foo m:cache=“30”>
• Namespaces     <m:cache value=“30”><foo/></m:cache>
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Triggering Optimization Techniques 

• Time (delta, absolute, schedule)
– 30 seconds   
– Tuesday at 5pm      
– Jan 1 12:00 2002

• Message to the intermediary directly
– XMLP service exposed on the intermediary

• Message passing through the intermediary
– Presence or value of another message’s element 

(Query?)
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Technique: Caching

• Exploits request/response message 
exchange patterns with locality in 
requests and similarity in responses.

• Cache can be indexed by some 
combination of 
– Service (URL)
– Element location (Xpath)
– Element identity
– Artificial index (URI)

• Cache is kept coherent through 
invalidation with various triggers.
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Technique: Store-and-Forward

• Exploits large or frequent client to 
server transfers that do not require 
immediate processing (but may 
require acknowledgement)

• Forwarding is triggered.
• Acknowledgement message might 

be standardized, or constructed 
from cache.
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Technique: Partial Messaging

• Specify that only part of a 
message should be sent

• Can be used to send only the 
changed parts of a message (e.g., 
to update a cache)

• Can be used to send parts of 
messages at different times (e.g., 
store-and-forward)
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Technique: Aggregation

• Exploits locality in messages to 
combine multiple messages, 
where possible, into a single 
message.

• Messages should have at least one 
common endpoint.
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Next Steps

• Validate techniques’ applicability to real-world 
Web Services

• Design a language for Web Service 
optimization

• Implement 
• Interested? mailto:mnot@akamai.com


