
CubeWerx Position Paper for Binary
Interchange of XML

Dr. Craig S. Bruce, Sr. Software Developer
CubeWerx Inc., Gatineau, QC, Canada

csbruce@cubewerx.com

Introduction
CubeWerx Inc. [CW] has been been involved with the OpenGIS® Consortium
(OGC) [OGC] in developing various specifications for interoperability among
Geographic Information Systems.  These specifications have focused on using XML
encoding for the interchange format, but the realizations of some of these formats have
been bulky and slow to process.  One particular format is GML (Geography Markup
Language), which is primarily used for interchanging geographic-feature data, including
geometries that may have many thousands of coordinate values each.  Processing
hundreds of megabytes of textual feature information that is dominated by floating-point
numbers is very time consuming.  Dense numeric data is very poorly suited to be
processed efficiently when represented by text.

As a result of these problems, CubeWerx has participated in the development of a
specification for efficiently encoding general XML documents and dense-numeric
scientific-data formats such as GML which is called “BXML”  for “Binary XML”.  This
specification has the status of a Discussion Paper within OGC and is publicly available
for comments [BXML].

Discussion of Issues and Objectives
Binary formats tend to be unduly discounted for interoperability, especially in this
context.  When one selects “view source”  in a web browser, one does not actually look at
the raw text of a web page; one usually looks at formatting and syntax coloring applied
by the browser.  The same thing can be done with a binary representation of XML:
viewer/editor tools can hide whether textual or binary XML is being used and the user
may not even know or care.

Also, textual XML can easily be regenerated from an equivalent binary encoding if a
person wants to read the content as a text document.  But most people do not edit XML or
even HTML documents by hand.  If a binary encoding is adopted by W3C, the major
XML-editing tools will be modified to support it.  Consider GZIP [GZIP] compression.
Does GZIPping a text-XML document make it unusable to web browsers, tools, and
people?  No, they simply unGZIP the binary file and use the recovered content.

Domain-specific compression can be a dangerous idea.  Implementations of such schemes
are likely dependent on the schema language for the document and when the “flavour of
the year”  changes for validation languages, existing implementations suffer.  These may
also make non-validating simple implementations impossible.  Generic compression is
resilient, orthogonal, and eternal.  Some experimentation has shown that the
BZIP2 [BZIP2] compression format is very good at compressing XML content.  Unless



domain-specific compression formats are enormously better than any generic
compression format, they should be avoided for official endorsement.

Also, producing the smallest possible document, while important, should not be an
objective held to the exclusion of making the binary format well suited for being
processed as a local file.  A smaller file is faster to send across a network, but as XML-
based formats continue to become more popular, they will start replacing file formats that
are normally processed locally on a machine, such as word-processor or spreadsheet
documents.  Performance in this environment should not be sacrificed for compression,
and often compression should not be applied at all to such documents.  It may also be
beneficial to send uncompressed documents across local-area networks to avoid
compression/decompression costs.

Additionally to the issue of changing validation languages, the binary encoding should be
as stand-alone from the validation language as textual XML is, in the sense that a non-
validating parser can use any textual-XML document without any problems regardless of
what validation language is used.  The simplicity of the XML format is one of the major
reasons for its success.  The entry barriers for simple processing systems are very low.

The general notion of “pre parsing,”  if we understand the term correctly, may be
dangerous as well.  Pre-parsing for what language?  For what platform?  For what higher-
level parsing algorithm?  A good binary format should be one that stands on its own, and
for which compactness of the uncompressed form is not sacrificed.  Some pre-parsing
forms may be even slower to parse than textual XML because of increased size.  No
binary encoding should be larger than the text encoding.  The structural simplicity of the
binary encoding is important also.  It need not be any more “complex”  than the text-
XML encoding to be highly useful.

The APIs for accessing the binary format will need to be extensive enough to allow
application programs to directly access binary-encoded numeric values, numeric arrays,
and BLOBs (Binary Large OBjects) in order to be efficient.  Converting numbers or
BLOBs from binary to text and back again is a time-consuming process.  With end-to-end
binary encoding, no conversion is needed at all with modern processors other than
occasionally swapping the byte order of values.  If an API is used which supports only
the text encoding of data, it will significantly reduce the benefits of binary encoding for
numeric and BLOB data types.

BXML Encoding
BXML [BXML] is a straightforward encoding for XML that is designed for efficient
processing in general with an emphasis on dense numeric data, which is one of the
weakest areas for textual XML.  It is open, patent-unencumbered, and about as
straightforward to implement a parser/generator for as for textual XML.  (In fact, in our
own implementation, it is even easier, because the structures are more regular.)  These
properties make it software-developer-friendly, which increases the changes of de-facto
adoption.

The structures of the BXML format is defined to be nearly one-to-one to the structures of
the textual-XML format and are also very close to the structures that are used by various



libraries to represent tree nodes in memory for efficiency.  So, the overall structure will
be familiar and documents can easily be translated on an almost token-by-token basis to
and from textual XML with no loss of information.  This gives BXML the various
advantages that textual XML has and makes a BXML file a drop-in replacement for an
XML file, as it stands alone and performs exactly the same function.  The accessibility of
XML is not compromised by BXML.

Because a BXML document serves exactly the same purpose as an XML document, it is
not tied to any particular schema language in the same way that an XML document is not.
The validity of a BXML file is defined as being the validity of the structures of the
BXML file if they were directly lexically translated into textual XML.  And that’s  that.
XML validators will normally tokenize the input XML stream into some internal binary
representation, so there is usually not even the need to translate BXML into the textual
lexical equivalent to perform validation.  BXML is a step closer than XML to being easy
and efficient to validate.

The primitive data types inside of a BXML file are defined from scratch in a very simple
way and are easy to understand and use.  Only a handful of numeric primitive types are
needed and they are exactly the same raw binary format that all modern computer
architectures use, for efficiency and simplicity.  A derived numeric type called a
“Count”  is defined to have a variable length for space efficiency, with count values less
than 240 occupying only a single byte, which is important since counts are used very
frequently and the values are frequently small.

Strings are defined using a small header, a byte length, and the raw string content.  The
length is given up front so that string content can be handled using raw-block I/O
operations.  The byte content of all strings in the file use the character-encoding
representation that is identified in the BXML header using the same identifiers that XML
uses, so the internationalization of XML is not compromised by BXML since BXML
uses the same logical mechanisms.

Numeric arrays are represented similarly to strings as a small header, an element-type
identifier, a byte length, and a raw block of numbers.  Arrays correspond to the XML-
Schema concept of a “list”  and they can also be handled using raw-block I/O and
memory operations for exceptional efficiency.  Most importantly, lists of numbers do not
need to be converted to and from their textual representation, which is an expensive
operation.

All primitive types that are used in user-supplied textual content are type-identified by a
leading-byte indicator, which is collapsed for numbers small enough to fit into the
Count type.  Identifying the data types in-line removes any reliance on a external
schema to identify the content types and allows for great flexibility.  Since the validation
is defined in terms of lexical equivalence, primitive types may be arbitrarily substituted at
the discretion of the file writer.  For example, if a schema identified a content field as
consisting of a list of double-precision floating-point numbers but the writer is aware that
only integers between 0 and 255 are being written out in one particular instance, it can
write the list as an array of byte values.  Conversely, if a field contains a value that cannot
be represented by the primitive types, such as a 200-digit integer, the writer can simply
write out the number as string content instead, and the document will still validate and be



correct.  Allowing a string representation of numbers is no significant imposition on an
implementation since most conceivable parsers will also implement XML support so they
or the applications that use them need to deal with string representations of anything
anyway.

Some might argue that a binary-primitive language such as ASN.1 should be used for
representing primitive information.  We contend that ASN.1 is a “bloated”  specification
that is not needed here.  Some parts of the ASN.1 standard for string handling have been
described informally as being “complete insanity”.   Given the very limited set of
structures that need to be represented in content in XML (only strings, numbers, and lists
since most structuring is done using the higher-level markups) and given the lexical
equivalence and substitutability of strings for anything that cannot be represented more
primitively, a very simple typing system is very appropriate and, in fact, desirable.  Ask
software developers which typing system they would rather implement and support.

BXML features direct BLOB support.  BLOBs are awkward and inefficient to use in
textual XML because they must be recoded into some intermediate representation such as
BASE-64 because XML is text-only.  To support translation back to text format, an
identifier is given in the BLOB token of what representation to use when regenerating
text, such as using BASE-64 or hexadecimal strings, which is consistent with XML-
Schema type-identification and validation.  A validating translator could also take XML
input and directly materialize a BLOB in BXML output by observing the data type of the
content.  The same is true of numbers and booleans.

For efficiency and compactness, the BXML format uses a central, global string table to
store the names of all elements and attributes.  This is an obvious optimization for a
binary encoding since it is more compact to represent the index number of a name in-line
than the whole string, and it is more efficient to process since a number can be read faster
than a string, and auxiliary information can be associated with an entry in the in-memory
copy of the string table to make processing faster.  Text content can also reference string-
table entries, to optimize content values that are frequently repeated, such as enumerated
code values.

The complete string table is present in the file to allow the file to stand alone without
reliance on external schemas or definitions, and it is organized into fragments that may be
spread throughout the file to allow streaming of the format and to not require a writer to
know in advance all of the symbols it might write out.  Most formats will only use a
limited number of symbols in a document instance, so dumping out a complete list in
advance of everything that could possibly be used may be wasteful.

However, the fragmented structure of the string table does not preclude random access to
the file content.  The BXML format contains a trailer token that can optionally include an
index to all of the string-table fragments that are spread throughout the file.  The writer
will be able to build the index at the end of the file because the byte offsets of all of the
fragments will be known if the writer recorded them.  A random-access reader can
regenerate the symbol table as needed.

The trailer token can also include a simple index for looking up element-token locations
of literal values resolvable for indicated XPath expressions.  For instance an index could



be set up for all literal values that resolve from the XPath expression “//@ID”.   This
would give direct access to all elements that are identified with an ID attribute value.
The writer can build an index for any expressions it wishes, and the index can be
arbitrarily augmented later on since it is located at the end of the file; the trailer token can
simply be overwritten with a new one.  Random access is only possible with BXML files
that are uncompressed.   This is not necessarily a large imposition since random access
will generally only be done on local files and it will be more efficient to access a local file
if it is uncompressed.  BXML files can be compressed and uncompressed as needed.
BXML relies on generic compression methods such as GZIP.  Dynamic update is not
considered.

Performance
CubeWerx is in the process of developing an open-source reference implementation of
BXML called “ cwxml”.   This library supports both plain-text XML and BXML and
features automatic handling of GZIP compression and likely will be extended to include
BZIP2 compression.  The implementation has been tuned for high performance for both
BXML and text-XML formats, where the text performance appears to far exceed other
common libraries for XML processing.  The testing platform is an AMD Athlon™
XP1800+ server running Red Hat Linux 7.3 with the GCC 2.96 C compiler.  The test
files were cached in the OS memory so as to measure the parsing speed of the encodings
rather than the disk I/O speed.

Performance testing of the library has been carried out for the general processing speed of
BXML and the processing speed for numeric data.  The general test is a simple utility that
converts both ways between XML and BXML encodings and the general scanning speed
is tested by running it in a read-only mode on an input file.  This is a useful scanning-
speed test since each token of the input file is read and the content is passed up through
the API to the application program.  A custom API is used that preserves numeric and
blob data through to the application program and which can operate in three different
modes: a raw tokenizer similar to the SAX API but which is “consumer-pull-oriented”
rather than “producer-push,”  an intermediate mode which reads tokens plus the subtree
of the attributes of an element, and a DOM-oriented mode.

Two sample files are tested, one is a “capabilities”  statement for an OGC Web Map
Server [WMS] and the other is a technical-specification document from the
OpenOffice.org word processor [OOO], which uses a native XML format for its files.
The sizes (using SI notation, i.e., base-10) of the XML and BXML versions of these files
with GZIP and BZIP2 compression applied to them are as follows:

File  XML BXML
XML

+GZIP
BXML
+GZIP

XML
+BZIP2

BXML
+BZIP2

 WMS Capabilities 935 KB 521 KB 79.1 KB 76.6 KB 53.6 KB 56.4 KB

OpenOffice.org Doc 702 KB 427 KB 76.6 KB 75.5 KB 52.1 KB 57.6 KB

The uncompressed BXML representation is significantly smaller than the XML
representation.  This is to be expected, as just about every BXML structure is almost
always smaller than the corresponding XML markup.  The capabilities XML document is



further filled out by using an indentation of two spaces per nesting level, which is
common for XML documents.  The OpenOffice.org file has no unnecessary whitespace at
all.  The compressed results are similar in size.  BZIP2 does a good job on XML data for
a generic compression method.

The scanning performance for all three modes of the API with all of the files except the
BZIP2-compressed ones (since that is not supported yet) is as follows, with elapsed time
in seconds and speed in MB/second:

File Encoding
Raw (~SAX) Scan DOM

Time Speed Time Speed Time Speed

WMS
Capabilities

XML 0.044 21.3 0.048 19.5 0.080 11.7

BXML 0.0050 104 0.0081 64.2 0.026 20.2

XML+GZIP 0.058 1.36 0.064 1.23 0.101 0.783

BXML+GZIP 0.012 6.18 0.016 4.94 0.033 2.30

OpenOffice.org
Document

XML 0.055 12.8 0.061 11.6 0.101 6.98

BXML 0.0089 47.9 0.014 30.1 0.047 9.17

XML+GZIP 0.063 1.21 0.069 1.12 0.109 0.70

BXML+GZIP 0.015 5.04 0.021 3.73 0.053 1.41

Clearly, the BXML encoding is greatly faster to process than XML.  Beware that the
scanning speed for the uncompressed XML file is deceptively high, since the input file is
larger though it contains the same information.  The uncompressed BXML Capabilities
file is 9.2 times as fast to read with the SAX-like interface and 4.8 times as fast for
compressed.  The uncompressed BXML OpenOffice.org file is 6.2 times as fast and 4.2
times as fast for compressed.

This test brings up an implementation issue related to character-set handling.  The
implementation presently uses ISO-8859-1 string encoding internally and the Capabilities
file is also encoded in ISO-8859-1 but the OpenOffice.org file is encoded in UTF-8.
BXML encoding works most efficiently when strings do not need to be checked at all,
but character-set translation normally requires strings to be translated character-by-
character thereby slowing down the process.  Since the BXML writer presently writes out
only ISO-8859-1 strings, the scanning of UTF-8 has been simulated for fairer comparison
by scanning each character of each input string and counting the number of non-ASCII
characters.  (The input data is predominately ASCII-only text.)  The SAX-like scanning
speed for the OpenOffice.org file is 13.6 MB/sec for XML and 55.0 MB/sec for BXML if
the files are scanned as being ISO-8859-1.

Note that the text-XML implementation in the cwxml library is heavily optimized, so the
results between BXML and text XML are narrower than they would be when comparing
BXML to other text-XML implementations.  For comparison purposes, the results of the
SAX interface of the popular libxml2 [LIBXML2] library were measured directly and
performance for other popular libraries were extrapolated as best as possible from a



performance comparison on the libxml2 web site [LIBXML2PERF].  The throughputs of
these various libraries with the plain XML documents are therefore as follows:

Library libxml2 scale WMS Capabilities OpenOffice.org Doc

cwxml 3.31× 21.3 MB/sec 12.8 MB/sec

expat 1.14× 6.66 MB/sec 4.91 MB/sec

libxml2 1.00× 5.84 MB/sec 4.30 MB/sec

Xerces 0.325× 1.90 MB/sec 1.40 MB/sec

Sun 0.263× 1.54 MB/sec 1.13 MB/sec

Oracle 0.189× 1.10 MB/sec 813 KB/sec

Since we believe that it is much easier to implement a highly efficient scanner for the
BXML format than for the XML format, as has been our experience, the performance
difference between the BXML and XML encodings as measured with the cwxml library
should be appropriately increased in general.

The testing for numeric data was carried out by defining an ad-hoc simple encoding
format for RGB images and writing programs to convert to and from the PPM-raw image
format [PPM].  Representing image data in an XML-based format has been the butt of
many jokes about the enormous inefficiency of textual XML encoding for some types of
data, but if the temptation to over-structure the pixel representation is resisted and BXML
encoding is used, the result is an XML-equivalent format that could be accessed by the
various XML tools and which is just as efficient at encoding imagery as PNG [PNG]
format, both in terms of file size and processing speed.

The ad-hoc image format is called XDI for “XML Demo Image”  and is outlined very
abstractly as follows:

<XmlDemoImage version="1.1.0">
  <Header>
    <Width>x</Width>
    <Height>y</Height>
    <SampleType>byte</SampleType> <!­­ or "double" ­­>
  </Header>
  <Scanline row="i">
    <RgbSamples>r g b r g b ...</RgbSamples>
  </Scanline>
  ...
</XmlDemoImage>

The imagery could be represented even more simply by using one really large list of
numbers to represent the entire matrix, in which case it would be almost identical to PPM
format (small amount of text, big raw matrix), but the above is probably more
representative of a good compromise between using XML mechanisms to structure the
higher-level information but using raw arrays to represent the low-level, performance-
critical information.



The writing and compression speed and result-file size are tested using a program that
reads a PPM image and writes the corresponding XDI file in XML and BXML encodings
with optional compression.  The source test file is a 2000×1000-pixel 24-bit RGB image
of color-coded global land and sea elevation/depth data.  Testing is also carried out for
the XDI file encoding samples using floating-point doubles (with image-sample values
between 0.0 and 1.0), to gauge performance for more-mathematical applications.

File-size and write-speed results for the base-image and PNG formats were acquired for
comparison purposes using the common cat, pnmtopng, gzip, and bzip2 programs.
These formats do not support double samples, so only byte samples are tested.  The
results are:

File File Size Write Speed

Source PPM 6.00 MB 158 MB/sec

PPM+GZIP 2.56 MB 2.81 MB/sec

PPM+BZIP2 1.38 MB 0.370 MB/sec

PNG 2.55 MB 0.181 MB/sec

The file-size and write-speed results for the XDI-based formats are as follows:

File
Byte Samples Double Samples

File Size Write Speed File Size Write Speed

XML 21.0 MB 5.19 MB/sec 107 MB 7.32 MB/sec

BXML 6.02 MB 109 MB/sec 48.0 MB 140 MB/sec

XML+GZIP 3.43 MB 0.398 MB/sec 6.80 MB 0.287 MB/sec

BXML+GZIP 2.57 MB 2.27 MB/sec 4.88 MB 0.805 MB/sec

XML+BZIP2 1.58 MB 0.0667 MB/sec 2.10 MB 0.0107 MB/sec

BXML+BZIP2 1.39 MB 0.387 MB/sec 1.87 MB 0.0492 MB/sec

The uncompressed-BXML file is obviously much smaller than the XML file because the
BXML encoding uses only one byte per color-channel-sample value whereas the text
encoding normally uses four characters.  The GZIP-compressed file is significantly
smaller as well because apparently the GZIP algorithm is not necessarily all that good at
compressing long strings of ASCII digits and also because any compression algorithm
will be imperfect at removing all redundancy from the source data, and raw BXML
samples have significantly less redundancy to begin with.

It is interesting that the BXML/PPM+BZIP2 files are actually much smaller than the
PNG file because BZIP2 compression is so much better than the GZIP compression used
by PNG format in this test.  In other testing, by adding an optional filter attribute to
each scanline, GZIPped XDI files are usually about the same size as PNG files for
various test images, since the two formats are then structurally very similar.  It is difficult
to tell whether BZIP2 compression is usually better than GZIP for imagery.



The uncompressed-BXML writing speed is obviously enormously faster than XML.  This
is because the source data is written out using raw block writes of the input PPM sample
data, and because the costly conversion from binary integers to their textual lexical
representation is not performed.  Note that the plain-XML writing-speed figure is
deceptively high because the file is so much larger.  The adjusted XML writing speed
would be 1.49 MB/sec for the 8-bit samples if the produced file were the same size as the
BXML file; the BXML writing is 73 times as fast.

The GZIP- and BZIP2-compression speed of BXML is also much faster.  This is because
the algorithms are relatively slow at compressing data, so the much smaller size of the
uncompressed BXML inputted to the algorithms means much less expensive processing.
However, this does not explain all of the compression-speed difference, so the algorithms
also must be especially slow at compressing long strings of mostly ASCII digits (which
have a narrow range of character of values).

The scanning speed is measured by using the read-only mode of a program for converting
from the XDI format back to PPM.  This mode causes all of the file data to be brought up
through the API but not be actually used by the application.  Source-data performance is
included for comparison.  The performance results are as follows:

File
Byte Samples Double Samples

Read Time Read Speed Read Time Read Speed

Source PPM 0.0128 sec 470 MB/sec - -

PPM+GZIP 0.144 sec 17.7 MB/sec - -

PPM+BZIP2 1.27 sec 1.09 MB/sec - -

PNG (GZIP) 0.770 sec 3.31 MB/sec - -

XML 1.05 sec 19.9 MB/sec 6.28 sec 17.0 MB/sec

BXML 0.0320 sec 188 MB/sec 0.109 sec 443 MB/sec

XML+GZIP 1.37 sec 2.51 MB/sec 7.62 sec 0.893 MB/sec

BXML+GZIP 0.17 sec 15.1 MB/sec 0.764 sec 6.39 MB/sec

Again, the plain BXML processing is enormously faster, approaching the raw file speed
of the OS, because the image samples which dominate the file are read using raw-block
operations.  The XML processing lags far behind because the input data must be scanned
character-by-character and because all of the sample values must be converted back to the
binary representation for use by the application.  This conversion is well optimized, but
the BXML reading is still 33 times as fast for byte samples and 58 times as fast for
double samples.  The GZIP-compressed-BXML processing is also eight to ten times as
fast since less data must pass through the GZIP decompression algorithm and no text-
numeric decoding is needed.  The PPM+BZIP2 and PNG reading times are tested using
the common bzcat and pngtopnm programs.



Conclusion
The binary encoding used in BXML is greatly faster than XML encoding for processing
general data and is enormously faster for dense numeric data.  The uncompressed files are
also significantly smaller, especially for numeric data, and are more efficient to compress
and uncompress.  A BXML file is also a direct stand-alone drop-in replacement for an
XML file, which we believe is crucial for the success of this endeavour. 

We recommend that W3C adopt BXML or some format that shares most or all of the
properties of BXML as a standard alternative to and supplement to the textual XML
encoding that is becoming more popular and acquiring new uses every day.  OGC, which
controls the BXML specification, has informally expressed an interest in this course of
action as well.

References
[BXML] OGC 03-002r8 (May 2003), Binary-XML Encoding Specification, Version 0.0.8,
Craig Bruce (ed.).  <http://www.opengis.org/techno/discussions/03-002r8.pdf>.

[BZIP2] BZIP2 compression library, Julian Seward, <http://sources.redhat.com/bzip2/>.

[CW] CubeWerx Inc.  Independent geo-spatial software vendor.  Main web site:
<http://www.cubewerx.com/>.

[GZIP] IETF RFC 1952 (May 1996), GZIP File Format Specification Version 4.3, L. Peter
Deutsch, <http://www.ietf.org/rfc/rfc1952.txt>.

[LIBXML2] LIBXML2 XML-parser library.  Main web site: <http://www.xmlsoft.org/>.

[LIBXML2PERF] LIBXML2 performance comparison to other common libraries on site web
page: <http://www.xmlsoft.org/>.

[OGC] OpenGIS® Consortium.  Geo-spatial interoperability organization.  Main web site:
<http://www.opengis.org/>.

[OOO] OpenOffice.org office-productivity suite.  Main web site: <http://openoffice.org/>.

[PNG] PNG (2003), PNG: Portable Network Graphics: A Turbo-Studly Image Format with
Lossless Compression, Greg Roelofs, et al., <http://www.libpng.org/pub/png/>.

[PPM] Portable Pixmap file format.  Described at: <http://www.cis.ohio-
state.edu/~parent/classes/681/ppm/ppm-man.html>.

[WMS] OGC 01-068r3 (January 2001), Web Map Service Implementation Specification, Version
1.1.1, Jeff de La Beaujardière (ed.)<http://www.opengis.org/techno/specs/01-068r3.pdf>.


