
The Use of Binary Representations of XML Information
Sets in Digital Broadcasting Systems

Nigel Dallard (ndallard@ndsuk.com)
Advanced Technologies Group, NDS Ltd.

Introduction
Alongside the compressed audio and video components of digital TV channels, a wide
variety of other digital data and metadata is conveyed, in various compact binary formats to
minimise bandwidth requirements:

• Data necessary for the correct basic operation of the receiver – for example, basic tuning
information. This is usually a few hundred kbps.

• Data to populate the electronic programme guide with details of all the available
channels and their schedules. With systems offering access to several hundred
channels, and providing details of all programmes for several days, this is a massive
amount of data – today, broadcasters often dedicate between 5Mbps and 15Mbps to this
data.

• Data to drive interactive TV applications. Interactive versions of TV programmes (for
example play-along versions of quiz-show “Mastermind” and comedy show “Banzai”) rely
on downloaded applications, running on the receiver whilst the viewer is watching TV,
being supplied with timely data and triggers. Stand-alone interactive applications can
also be deployed (for example shopping catalogues such as the “QVC Directory” and
information services such as “Teletext”). These interactive TV applications can consume
anything from a few hundred kbps up to 5Mbps – at least as much bandwidth as, if not
more than, a standard-definition TV channel would consume on average.

Further examples of the kind of applications available on TV systems around the world today
are available at:
http://www.nds.com/applications_showcase/applications_showcase.html.

NDS provides interactive TV infrastructure – head-end servers and receiver software – to
digital broadcasters and content providers around the world. In this paper, I will provide
some background information about the environment in which we deploy our interactive TV
solutions, and some of the technical challenges that we have overcome. I will explain our
solutions to these challenges, which are based on the use of XML and the subsequent
translation of this data to a compact binary form. Finally I will present some figures which
show the reduction in the broadcast bandwidth required that can be obtained by the
appropriate use of binary information sets.

The Digital Broadcast Environment
The diagram below illustrates a typical interactive TV system.

The application authoring and back-office functions are standard computing platforms. NDS
uses XML as a means for storing and conveying information between servers and
applications at this point, enabling us to benefit from the wide industry support for this
technology.

At the publishing stage, the various files and data-sets that make up the application are
pulled-together and “packaged” for broadcast. It is at this point that NDS translates between
textual XML and a binary representation of the data.

The playout function inserts the data into the digital multiplex for transmission. Depending on
the actual application, the data may be streamed or carouselled (repeatedly cycled) into the
multiplexer, and may be synchronised with the audio-visual content.

http://www.nds.com/applications_showcase/applications_showcase.html

Satellite, terrestrial and some cable broadcasting networks do not have any sort of “always
on” bi-directional interaction channel available to them. The applications therefore rely on the
“head-end” servers pushing data into the transmission in a timely fashion, using
combinations of streams of time-sensitive data and carousels of repeating data as
appropriate. Applications contact the broadcaster via dial-up PSTN only when absolutely
necessary, either to send data to the broadcaster, or to receive data that it is either not
appropriate to broadcast (e.g. online banking), or simply not cost efficient to do so (e.g.
personalised pages of information).

Some cable networks do have the luxury of an “always-on” interaction channel. Even here
though, it is often more bandwidth-efficient to broadcast the majority of the downstream data
rather than supply it separately on request from each receiver. If each receiver requests the
data separately, the interaction channel and the data server can become overwhelmed with
requests for the data at certain times. There is, however, obviously more flexibility available
to the application designer as to when to switch from the broadcast delivery of data to the
unicast, on-demand delivery method.

Typical receiver/decoders have restricted processing power and limited memory. This
means that the transmitted application data needs to be small in size and easily-parsed with
minimal processing. Often the complete data set is larger than can be held in the
receiver/decoder’s memory. The data must be structured in such a way that the application
can work with only certain fragments of the data in memory at any one time. As there is no
ability to cache data at the receiver, it has to be transmitted on a carousel, with delays
occurring whenever the receiver has to await the next transmission of the data it requires.
The data must also be able to be incrementally updated – simply marking the whole data set
as out-of-date each time a minor change is made to one part of the data, requiring the
applications to re-acquire and parse the whole data set again is not acceptable.

Evaluation of XML-derived Transmission Formats
NDS has investigated the current “state-of-the-art” in binary representations of XML
information sets. This investigation highlighted a number of potential formats for our
application data, and technical papers describing comparisons of their performance. Using

Content/
Back-Office

Application
Authoring

Application
Publishing

Application
Playout

Multiplexing/
Transmission

Receiver/
Decoder

Return
Channel

Management

Audio/Video
Components

Synchronisation
Triggers

the available information, we eliminated a number of the possible contenders as not being
appropriate for our particular scenario, before proceeding with some comparative tests of our
own.

The potential application data formats include:

• Compressed XML – The use of a generic data compression algorithm such as Lempel-
Ziv, Huffman or Burrows-Wheeler, as used in utilities like WinZip, gzip and bzip2. This
technique was rejected as being unsuitable for our purposes. It removes our ability to
split the document up into smaller fragments, and it is not very efficient at compressing
small fragments individually. It also requires that the binary document be converted to its
original textual form before use, requiring both additional processing power and memory.

• Millau[1],[2] – An extension of the WAP Forum’s WBXML to generic XML documents with
the addition of content compression. Millau allows the binary document to be processed
via both the standard DOM and SAX APIs without having to expand it back into its
original textual format, however the reported compression ratio (XML source to binary
format) was 4:1 or less for small documents. This format was therefore rejected.

• XMill[3] – This tool uses a generalisation of the column-wise compression used in
relational databases. Content-specific encoders are applied per content-grouping, with
gzip applied as a secondary and default compression algorithm. Various papers showed
that XMill was not particularly efficient on small documents, so it was rejected.

• MPEG-7 BiM[4],[5] –As the technology specified by the standards body responsible for the
MPEG-2 standard used by digital TV broadcasting systems, this was the “obvious”
format for us to utilise. It is aimed directly at our application, it is very efficient at coding,
and the client is able to directly parse the binary document.

• ASN.1 PER[6],[7],[8] – The XML Schema is converted to ASN.1 according to the draft ITU-T
Rec. X.694. The data is subsequently encoded according to ITU-T Rec. 691. ASN.1 has
been around for many years, and it is used in interactive TV middleware based on the
MHEG-5 (ISO/IEC 13522-5) standard. The current work on a standardised mapping from
XML schema to ASN.1, together with the very efficient Packed Encoding Rules make
this a viable technique for our application.

Evaluation Results
In this section a summary of the results of our investigations are presented. The size of the
data in XML format was compared with the size of the same data transformed into MPEG-7
BiM and ASN.1 PER.

Data Set #1: Programme Schedule Information
This data set consists of small fragments of programme schedule information (information
about 1, 4 and 8 programmes) such as would be used to populate an electronic programme
guide. Typical EPG data transmission formats split the multi-channel, multi-day listings data
into segments containing the programme listings for a three-hour period on a single channel,
hence the representative numbers of programmes coded. For the purposes of comparison,
the data was also encoded into a DVB-SI (ETSI EN 300 468) Event Information Table
segment, as used by many digital TV broadcasting systems today.

8 Programmes 4 Programmes 1 Programme
Source XML 9317 bytes 4868 bytes 1350 bytes
DVB SI EIT 1050 bytes 531 bytes 154 bytes

MPEG-7 BiM 991 bytes 497 bytes 148 bytes
ASN.1 PER 1049 bytes 525 bytes 153 bytes

Data Set #2: Stock-Price Data
This data set consists of stock-price information from a “stock-ticker” application. The
application uses three different sets of data which are transmitted concurrently – real-time
stock price changes, intra-day data for each stock and 60-week historical data for each
stock. For comparison, the data was also manually encoded into a compact binary form.

Real-Time Intra-Day 60 Week
Source XML 640 bytes 16518 bytes 10421 bytes

Manual Encoding 33 bytes 1620 bytes 1441 bytes
MPEG-7 BiM 34 bytes 1622 bytes 1443 bytes

ASN.1 PER 32 bytes 1620 bytes 1441 bytes

Conclusion
The results above show that a compact binary representation of interactive TV application
data can be produced that is between 5% and 15% of the size of the same data presented
as textual XML. Without this saving in bandwidth, it would be uneconomical to broadcast
many of the interactive applications that are deployed today, and future developments in this
area would be severely constrained. In addition, the compact binary representation allows
the deployment of these applications to low-end receiver/decoders which are constrained in
both memory and processor power.

References
1. Marc Girardot, Neel Sundaresan. “Millau: an encoding format for efficient representation

and exchange of XML over the Web”, http://www9.org/w9cdrom/154/154.html
2. Neel Sundaresan, Reshad Moussa. “Algorithms and Programming Models for Efficient

Representation of XML for Internet Applications”, http://www10.org/cdrom/papers/542
3. “XMill – An Efficient Compressor for XML”, http://www.research.att.com/sw/tools/xmill
4. ISO/IEC 15938-1:2002 “Information Technology – Multimedia Content Description

Interface – Part 1: Systems”
5. ISO/IEC JTC 1/SC29 WG11 Moving Picture Experts Group. “MPEG-7 Overview” Section

3.5, http://www.mpeg-industry.com/mp7a/w4980_mp7_Overview1.html
6. ITU-T Rec. 681 (2002) | ISO/IEC 8824-2:2002 “Information Technology – Abstract

Syntax Notation One (ASN.1): Specification of Basic Notation”,
http://www.itu.int/ITU-T/studygroups/com17/languages/X.680-0207.pdf

7. ITU-T Rec. 691 (2002) | ISO/IEC 8825-2:2002 “Information Technology – ASN.1
encoding rules: Specification of Packed Encoding Rules (PER)”,
http://www.itu.int/ITU-T/studygroups/com17/languages/X.691-0207.pdf

8. Draft ITU-T Rec. X.694 | ISO/IEC 8825-5 “Encoding XML-Defined Data Using ASN.1”,
http://asn1.elibel.tm.fr/xml/#schema-mapping

http://www9.org/w9cdrom/154/154.html
http://www10.org/cdrom/papers/542
http://www.research.att.com/sw/tools/xmill
http://www.mpeg-industry.com/mp7a/w4980_mp7_Overview1.html
http://www.itu.int/ITU-T/studygroups/com17/languages/X.680-0207.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.691-0207.pdf
http://asn1.elibel.tm.fr/xml/#schema-mapping

