
August 11, 2003
Binary XML Transfer using
Direct Compilation Techniques

Christian Horn

Experience Report and Position Paper
W3C Workshop on Binary Interchange of
XML Information Item Sets
Santa Clara, California, September 24-26, 2003
Abstract

This paper describes a technique for compiling XML documents into a Virtual
Machine code that constructs at execution time an optimised tree representation for
the original XML document. The technique reduces the amount of data to be trans-
ferred, eliminates parsing time on the client side completely, and creates an opti-
mised tree representation.

The technique is currently used in two publishing scenarios:

• precompilation of medium sized documents (ca. 1 MByte XML) for use in multi-
ple clients (one-to-many-transmission) and

• the on-the-fly processing of small size documents (ca. 100 KByte) in one-to-one
transmission

The elimination in parsing time reduces the client side document loading time by a
factor between 2 and 10 (depending of the platform) and the bandwidth require-
ments by a factor of 6, while the client side memory requirements are reduced by a
factor of 3 to 4.

This paper describes the technique as it has been in commercial usage for the last
two years as well a proposal for a generalized and improved technique based on the
experience gathered so far.

Authors Contact Address:

Lionet Ltd., 1-2 Eden Quay, Dublin 1, Ireland http://www.lio.net ch@lionet.ie
1 of 20

Binary XML Transfer using Direct Compilation Techniques
1.0 Introduction

The Extensible Mark-up Language (XML) is a wonderfully structured language,
except that the lengthiness of expression makes it often a performance burden for
transmission, general I/O, and parsing overhead.

Lionet Ltd. is using XML at the core of it's software since 1997. In balancing beauty
and simplicity of the overall architecture with performance, memory requirements,
and general practicality, we have developed (like everyone else active in the field)
some technologies that stretch beyond the remits of the current XML standards.
None of these “special considerations” in isolation is a silver bullet, but together
they proved very powerful and enabled the binary compilation technique.

The rest of this chapter describes these special aspects that have to be taken into
account to come up with an all round solution. Chapter 2 describes the binary com-
pilation technique as it is used for the last two years. Recognising that the summary
description of “how we have done it” is only of interest to a small minority Chapter
3 gives a description, of how we would do it better in the second round. We didn’t
go yet the next step, because the current solution serves as reasonably well, and it
became obvious that something similar was going to come from the direction of the
W3C anyway. It is with pleasure that I share the views we have developed, so that
they may become part of what is going to come.

1.1 Immutable Data Structures

While application software is traditionally conceived as single threaded, one has to
consider that any service oriented architecture is multi threaded. This implies that
traditional approaches of object-oriented software design with get/set methods cre-
ate a liability, in that the (potentially) uncontrolled use of setter methods create
interference between parallel threads and henceforth requires unnecessary duplica-
tion of data items.

We found that the pattern of immutable data structures is far more appropriate in the
multi threaded environment. In this design pattern, the computational processes are
encapsulated in what is traditionally called factory methods. Once objects have been
created and are shared with the environment, they won’t change any more. As a side
effect it reduces the need for synchronisation and enables the widespread use of
structure-sharing, i.e. the continued use of sub trees.

Pro:

• Reduced memory requirement through re-use of sub structures.

• Streamlined processing of XML data structures in a shared memory environ-
ment, for example implementing an event driven architecture, without unneces-
sary formatting and parsing processes.

• Simplified implementation of Undo/Redo architecture.

Contra:

• The most obvious implication of the use of immutable data structures is that the
set/add/remove methods defined by DOM have to be disabled.

• The use of structure sharing implies additional that the getParent() methods are
not available, when several (isomorphic) sub trees are mapped onto the same tree
structure. When parent references are required, they have to be traced algorithmi-
cally.
2 of 20 © Lionet Technologies, 2003

Binary XML Transfer using Direct Compilation Techniques
The introduction of immutable data structures supports the shift to functional pro-
gramming style and is highly productive within a closed production environment.
When opening up to a wider audience, the restricted use of DOM appears currently
not acceptable. However, a binary interchange technique should support the poten-
tial advantages of immutable data structure and it should be at the discretion of the
client to built either a restricted or full DOM representation based on the data
stream.

1.2 Minor Tags and Minor Stacks.

Since we were interested in structured text documents, we found it useful to distin-
guish between normal XML tags and minor tags. Minor tags are tags, that are com-
monly used to provide additional attributes to elements of otherwise continued text,
like ... and <i>...</i> in XHTML. This distinction has proven
very useful, since it allows to keep the integrity of continued text, while still han-
dling the additional information.

Minor Tags may be stacked, like in ...<i>...</i>.... Accordingly there is the
concept of a Minor Stack. A minor stack is a list implementation of a stack of Minor
tags and their attributes.

1.3 Text Blocks

The DOM model assumes that blocks of text are considered as entities, that may be
split temporarily, but would revert to the maximal block size after parsing. This
technique is very useful for the handling of leaf nodes of structured data where there
is often the choice of representing the data either as attribute value or as text entity.

When handling unstructured (natural) text within an XML document, it seems how-
ever more appropriate to compromise on another level of granularity. We did a
series of experiments to find an optimal break down for our purposes (delivery of e-
Learning material) and found that a separation in words and punctuation signs with
an independent spacing information, is the most effective one, since this gives the
highest level of re-use, while reducing at the same time the text parsing require-
ments for the rendering of text blocks.

1.4 Nesting Blocks

Nesting Blocks are the equivalent of elements in DOM. We found it however more
useful, to abstract from the attribute and sub node chaining and provide abstract
access methods, thus hiding the actual implementation decision. It seems that DOM
is revealing far to much implementation detail, thereby creating a jungle of different
application styles. We found that a dramatic reduction in interface complexity has
improved software quality and allowed additionally the fine tuning of the imple-
mentation for highest performance within the limited functionality. As a result we

achieved simultaneous improvements in commonly contradicting areas:1

• Improved overall software quality,

• Reduced binary code size (measured are Java byte code), and

• Reduced run time memory requirements.

1. A DOM-lite model may be the way forward on this side.
© Lionet Technologies, 2003 3 of 20

Binary XML Transfer using Direct Compilation Techniques
1.5 Normalised Formatting

Initially we were using XML editing techniques that preserved the textual layout of
the original XML data. This had the advantage that the differences in XML struc-
tures after a processing step were quite easily identifiable, for example using the dif-
ference tools of the operating system or the configuration management system.

Keeping the formatting information within the parsed XML files represented how-
ever an overhead that was for processing in general not required. What we required
was actually only the information whether there was some spacing in front of an
element or not.

For newly synthesized XML structures there was however the problem of generat-
ing an initial layout. This lead to the definition of a canonical textual representation
of XML data. Once this was in place, it took about half a year, until all XML data
were actually (voluntarily) converted to the normalised text format.

The practical advantages of using a unified format were as compelling as the use of
strict coding guidelines within any company:

• The data files looked the same, independent which employees or tools were used
to format them.

• The unified formatting allowed the unified tracking of all changes through the
configuration management system.

• Once the format was synthesized automatically it was possible to use binary
XML interchange without carrying the ballast of textual layout.

2.0 The Document Compilation Technique

In general we found zip compression and parsing quite adequate for transmission of
small XML data files (of 40KB to 100KB). For larger documents the loading times
became however unacceptable. The parsing of a 1 MB XML file within Netscape
4.7 on Solaris took however more than 40 seconds, thus generating a serious prob-
lem. When the data file was transferred simultaneously over the Internet that was
just tolerable (the end user blamed the Internet and not us ;-), but when the resource
file was cached locally, it was simply inacceptable.This problem triggered serious
investigations into alternative transfer formats.

Since our software was pure Java anyway the idea of compiling the XML document
into a Java class was actually straight forward, except the implementation took a
while to reach maturity.

Table 1 gives some measurement results taken from a sample document [2]

The compiled classes provide a getDocument() method that constructs at run time
on the client the parse tree that would normally be constructed from within the
parser.

An interesting side effect of the binary transfer mechanism is, that there is actually
no need to build the complete parse tree on the client side. The construction of the
parse tree could be delayed until the respective nodes are being accessed, thereby
reducing the run time memory requirements dramatically. When we only require the
third sub tree of an XML node, we would need only to expand the top level nodes
and than the third sub tree and not even expand the other sub trees. Such a tech-
nique, known as lazy evaluation, is widely accepted within the functional program-
ming community, could benefit the usage of XML on small devices.
4 of 20 © Lionet Technologies, 2003

Binary XML Transfer using Direct Compilation Techniques
While for our purposes (and being a Java company) the use of standard Java byte
code was pragmatically and politically the right way to go, it has some obvious dis-
advantages:

• It is not very appealing to non-Java folks.

• It carries a non relevant overhead, due to Java byte code requirements.

• There are inherent barriers in the Java VM specification that require work-a-
rounds:

• The byte code size for a single method is limited to 64 KByte, this requires additional
levels of structuring

• The number of local variables in a method is limited to 256.

• Some Java implementations perform extensive loading time optimization which
are completely wasted on the linear initialisation code required.

• Java doesn’t provide for direct array data initialisation, it requires instead lengthy
linear code

TABLE 1. Measurements

Parameter Value

XML document size 1,284,952 Bytesa

a. Uses canonical formatting (with 2 spaces indentation)

zipped document size 137, 027 Bytes

compression ratio (XML : zipped document) 9.3 : 1

binary document size 571,294 Bytesb

b. Using standard Java class format

jared binary document size 207,306 Bytesc

c. By using an optimised virtual machine design, it is likely that the compressed
 VM code file is smaller than the zipped document file

compression ratio (XML : jared binary) 6.2 : 1

Run time memory requirement (DOM / JDK1.4.1) 7,953,232 Bytes

Run time memory requirement (Lionet / JDK1.4.1) 2,051,968 Bytes

memory requirement comparison (DOM : Lionet) 3.8 : 1

Parsing Time (SAX / JDK1.4.1) 1,552 msd

d. Time measurements refer to an 800MHz PIII under Win2K

Loading Time (Lionet / JDK1.2.2) 630 mse

e. This includes the class loading and decompression time

Loading Time (Lionet / JDK1.4.1) 801 msf

f. Including class loading time, the degradation is due to JVM improvements

run time comparison (SAX parsing : Lionet loading) 1.9 : 1

Document compilation time (Lionet / JDK1.4.1) 3,986 msg

g. The current compiler implementation is not tuned towards performance.

Compile Time memory requirement (Lionet / JDK1.4.1) 3,149,104 Bytes
© Lionet Technologies, 2003 5 of 20

Binary XML Transfer using Direct Compilation Techniques
3.0 A Generalised Technique

While the technique described in Chapter 2 is tailored for the use in connection with
Java, it’s shortcomings are directly related to shortcomings of the Java VM specifi-
cation and particular implementations. This section attempts to distil from the expe-
rience gathered so far a platform independent encoding scheme that would allow for
improved processing speed on the client and server side as well as improved com-
pression rates to reduce bandwidth even further. The virtual machine instructions
proposed below are actually derived from the code generation scheme currently
used, where we are using method calls, constructors and assignments.

3.1 The XML Builder VM (XBVM)

Instead of compiling the XML structure into code for an independently specified
Virtual Machine it seems better to compile into a specifically designed VM.

The arguments in favour of a specific VM are:

• The generated code has a specific structure. There is only a single entry point
into a linear program. When using the lazy tree construction technique, there
would be a number of entry points into a number of linear programs.

• The code is executed only once. There is no need for any form of Just-in-time
compilers.

• There is only limited interference with the general execution environment. There
is no need for extended byte code verification steps.

The XBVM supports 28 instructions, which are described below in detail. While the
instruction sequence can be encoded using a bit-stream model, it may be more
effective to use a byte-oriented structure, since the thereby resulting regular byte-
level structure may be better suited to take advantages of compression techniques
on the transport layer level. [1]

3.2 The XBVM Instructions

The XBVM supports 28 instructions:

• 8 instructions controlling the allocation of different tables during the construction
process, namely allocation instruction for the Name Space Table (ANST), the
Attribute Name Table (AANT), the Attribute Value Table (AAVT), the Attribute
Table (AAT), the Tag Table (ATT), the Minor Stack Table (AMST), the Primitive
Text Table (APTT) and the Substructure Table (ASST)

• 7 instructions controlling the allocation of individual objects and the entries in
the appropriate table, namely for Name Space Objects (ANS), Attribute Name
Objects (AAN), Attribute Value Objects (AAV), Attribute Objects (AA), Tag
Objects (AT), Minor Stack Objects (AMS) and Primitive Text Objects (APT).

• 9 stack operations that control the tree construction process itself, of which three
operations form the actual core (PSB, IPB, PINBA), while the other six are fre-
quently used special cases or combinations of instructions. The introduction of
these additional six introduction, allows for a further compression of the code
length by about 15%.

• 2 instructions for the recording and re-use of shared substructures (RSS, ISS).

• 2 management operations (START, STOP)
6 of 20 © Lionet Technologies, 2003

Binary XML Transfer using Direct Compilation Techniques
3.2.1 Allocate Name Space Table (ANST)

Allocates the initial size for the Name Space table. Different tags and attributes
within a document refer to different Name Spaces. The number of different name

spaces used referred within a document is commonly very small.1

Parameter:

• Expected number of Name Space entries (Integer)

Not required. On the fly compilers that generate and publish code sequentially while
still processing XML data, cannot provide this size in advance. Optimizing compil-
ers that have knowledge of the complete XML data before generating the output can
provide this information to support more effective memory management on the cli-
ent machines. The Name Space Table supports dynamic extensions. When the
actual Name Space Table size is set in advance it improves client side behaviour.

3.2.2 Allocate Name Space (ANS)

Allocates a unique object for a Name Space and sets a reference at the entry in the
Name Space Table to that Name Space Object.

Parameter:

• Index of Name Space entry required (Integer). This index is in sequential code
execution always the latest and would therefore not be needed. But when the lazy
construction approach is used, a complete block of name spaces may have not yet
been allocated (because the corresponding sub tree wasn’t yet expanded). There-
fore the index is always given explicitly.

• Name Space URI (String). This is the string encoding of the URI as given in the
xmlns attribute.

3.2.3 Allocate Attribute Name Table (AANT)

Allocates the initial size for the Attribute Name table.2

Parameter:

• Expected number of Attribute Name entries (Integer)

Not required. On the fly compilers that generate and publish code sequentially while
still processing XML data, cannot provide this size in advance. Optimizing compil-
ers that have knowledge of the complete XML data before generating the output can
provide this information to support more effective memory management on the cli-
ent machines.

3.2.4 Allocate Attribute Name (AAN)

Allocates a unique object for the Attribute Name

Parameter:

• Index of Attribute Name entry required (Integer). This index is in sequential code
execution always the latest and would therefore not be needed. But when the lazy
construction approach is used, a complete block of attribute names may have not

1. The typical number of different name spaces we have encountered in complex documents
is about 10.

2. The typical number of different attribute names we have encountered in complex docu-
ments is about 50.
© Lionet Technologies, 2003 7 of 20

Binary XML Transfer using Direct Compilation Techniques
yet been allocated (because the corresponding sub tree wasn’t yet expanded).
Therefore the index is always given explicitly.

• Index of Name Space Reference (Integer)

• Name of the Attribute (String)

3.2.5 Allocate Attribute Value Table (AAVT)

Allocates the initial size for the Attribute Value table.1

Parameter:

• Expected number of Attribute Value entries (Integer)

Not required. On the fly compilers that generate and publish code sequentially while
still processing XML data, cannot provide this size in advance. Optimizing compil-
ers that have knowledge of the complete XML data before generating the output can
provide this information to support more effective memory management on the cli-
ent machines.

3.2.6 Allocate Attribute Value (AAV)

Allocates a unique object for the Attribute Value

Parameter:

• Index of Attribute Value entry required (Integer). This index is in sequential code
execution always the latest and would therefore not be needed. But when the lazy
construction approach is used, a complete block of attribute names may have not
yet been allocated (because the corresponding sub tree wasn’t yet expanded).
Therefore the index is always given explicitly.

• Index of Name Space Reference (Integer)

• Value of the Attribute (String)

3.2.7 Allocate Attribute Table (AAT)

Attributes are commonly implemented as lists of Attribute Nodes, each referring to
an Attribute Name and an Attribute Value. The Attribute Names and Attribute Val-
ues are handled via entries into the respective tables, hence allowing the reuse of the
corresponding Strings. The Attribute Table allows the allocation of unique Name
Value pairs. The Attribute list is then represented as a list of integers referring to the

entries in the attribute table. 2

An optimizing compiler would place the most frequently used name-value pairs in
the smaller indexes. When the list of integers is encoded as UTF-8 String, this gives
the advantage, that the 128 most frequently used name-value pairs are represented
by a single byte.

Parameter:

• Expected number of Attribute Value entries (Integer)

Not required. On the fly compilers that generate and publish code sequentially while
still processing XML data, cannot provide this size in advance. Optimizing compil-

1. The typical number of different attribute values we encountered in documents is about
200 (obviously depending on coding style).

2. The typical number of different attribute name-value-pairs we encountered in complex
documents is about 1000.
8 of 20 © Lionet Technologies, 2003

Binary XML Transfer using Direct Compilation Techniques
ers that have knowledge of the complete XML data before generating the output can
provide this information to support more effective memory management on the cli-
ent machines.

3.2.8 Allocate Attribute (AA)

Allocates a unique object for the Attribute Name Value Pair

Parameter:

• Index of Attribute entry required (Integer). This index is in sequential code exe-
cution always the latest and would therefore not be needed. But when the lazy
construction approach is used, a complete block of attribute names may have not
yet been allocated (because the corresponding sub tree wasn’t yet expanded).
Therefore the index is always given explicitly.

• Index of attribute name (Integer)

• Index of attribute value (Integer)

3.2.9 Allocate Tag Table (ATT)

Tags are core structuring elements within an XML document. A tag always belongs
to a name space and has a unique name within that name space. For the purpose of
this document, attributes are not considered part of a tag. The tag table contains ref-
erences to unique objects.

Tag objects can be shared between different documents. The tag table contains only
the references to the tags referred to in the current document. The consistency
between different documents loaded at the same time is guaranteed by the host VM.
1

An optimizing compiler would place the most frequently used tags pairs in the
smaller indexes. When the list of integers is encoded as UTF-8 String, this gives the
advantage, that the 128 most frequently used name-value pairs are represented by a
single byte. Another possible compilation strategy is the batch compilation of the
XML schemata and the bulk allocation of tags.

Parameter:

• Expected number of Tag entries (Integer)

Not required. On the fly compilers that generate and publish code sequentially while
still processing XML data, cannot provide this size in advance. Optimizing compil-
ers that have knowledge of the complete XML data before generating the output can
provide this information to support more effective memory management on the cli-
ent machines.

3.2.10 Allocate Tag (AT)

Allocates a unique object for a Tag.

Parameter:

• Index of Tag entry required (Integer). This index is in sequential code execution
always the latest and would therefore not be needed. But when the lazy construc-
tion approach is used, a complete block of attribute names may have not yet been

1. The typical number of different tags we encountered in complex documents is about 100.
This is to be distinguished from the number of tags provided in a different XML schemata
invoked.
© Lionet Technologies, 2003 9 of 20

Binary XML Transfer using Direct Compilation Techniques
allocated (because the corresponding sub tree wasn’t yet expanded). Therefore
the index is always given explicitly.

• Index of name space (Integer)

• Tag name (String)

3.2.11 Allocate Minor Stack Table (AMST)

Formatting and other interpreting attributes that apply to text blocks within a contin-
uous text run, are handled with Minor Stacks (see Section 1.2). Minor stacks are
build recursively from a Minor Tag, the attributes required and a reference to a pre-

viously allocated minor stack.1

Parameter:

• Expected number of Minor Stack entries (Integer)

Not required. On the fly compilers that generate and publish code sequentially while
still processing XML data, cannot provide this size in advance. Optimizing compil-
ers that have knowledge of the complete XML data before generating the output can
provide this information to support more effective memory management on the cli-
ent machines.

3.2.12 Allocate Minor Stack (AMS)

Allocates a minor stack element.

Parameter:

• Index of minor stack entry required (Integer).

• Index of tag (Integer)

• Attributes (List of Integers)

• Index of Lower stack element (Integer)

3.2.13 Allocate Primitive Text Table (APTT)

Text is separated in primitive text blocks. The exact definition of a primitive text
entity is irrelevant, for the moment think about words. Words are allocated in a table
in such a way, that the most frequently used words get smaller indices, where as the
seldom used words get larger indexes. Text blocks are then encoded as Strings in
UTF-8 format with the character codes representing the entries of the respective

words. 2,3

An optimizing compiler would place the most frequently used name-value pairs in
the smaller indexes. When the list of integers is encoded as UTF-8 String, this gives
the advantage, that the 128 most frequently used name-value pairs are represented
by a single byte.

1. The typical number of Minor Stack nodes we encountered in complex documents is about
100 (ca. 10 for different formatting and the rest for different hyper links).

2. We found a definition useful, that uses maximum substrings of letters and digits or single
punctuation characters. An implementation that supports hyphenation may decide for a
breakdown in syllables. Primitive text blocks carry then an additional bit indicating the
spacing information (space in front or not) as well as a bit indicating additional formatting
information. When the latter bit is set, the primitive block refers to a Minor Stack Entry
with the cumulative formatting information.

3. The typical number of different primitive text blocks in a large text document is about
5000.
10 of 20 © Lionet Technologies, 2003

Binary XML Transfer using Direct Compilation Techniques
Parameter:

• Expected number of Attribute Value entries (Integer)

Not required. On the fly compilers that generate and publish code sequentially while
still processing XML data, cannot provide this size in advance. Optimizing compil-
ers that have knowledge of the complete XML data before generating the output can
provide this information to support more effective memory management on the cli-
ent machines.

3.2.14 Allocate Primitive Text (APT)

Primitive text blocks are allocated in bulk. This may be done either as one large
block for the whole document, or a block with all the frequently used words and the
rarely used words one by one.

Parameter:

• Start entry in primitive text table (Integer)

• Number of primitive text entries allocated in this block (Integer)

• The String representation for each of the primitive blocks.

3.2.15 Allocate Shared Structure Table (ASST)

The purpose of the Shared Structure Table is the re-use of complete sub trees. While
it is in general quite expensive to identify all common substructures within an XML
tree, domain specific compilers may be in a position to identify common substruc-
tures very efficiently.

Parameter:

• Expected number of Shared Structure entries (Integer)

Not required. On the fly compilers that generate and publish code sequentially while
still processing XML data, cannot provide this size in advance. Optimizing compil-
ers that have knowledge of the complete XML data before generating the output can
provide this information to support more effective memory management on the cli-
ent machines.

3.2.16 Push Sub Blocks (PSB)

The tree building process utilises a stack of building blocks. This operation allocates
an array of block references, either being a primitive text block reference (see sec-
tion 1.3) or a reference to a nesting block (see section 1.4), and pushes on the top of
the stack of building blocks. Insert operations fill this block incrementally and a Pop
operation takes off this array of block references, constructs a new nesting block
from a tag, attributes, and these block references, and inserts the resulting block one
level lower.

Parameter:

• Size of the block to be allocated (Integer)

3.2.17 Insert Primitive Text Blocks (IPB)

Fills the top of the stack of building blocks with a number of primitive text blocks.

Parameter:

• Number of primitive text blocks to be added (Integer)
© Lionet Technologies, 2003 11 of 20

Binary XML Transfer using Direct Compilation Techniques
• List of integers representing entries into the primitive block table (List of Inte-
gers)

3.2.18 Pop and Insert Nesting Block with Attributes (PINBA)

This operation constructs a new nesting block from the tag and attribute information
given as parameters and the (array of) block references in the top of the stack of
building blocks, removes the top of the stack of building blocks, and inserts the
newly constructed nesting block at the end of the new top of the stack of building
blocks.

Parameter:

• Reference to the Tag (Integer)

• Number of Attributes of this nodes (Integer)

• List of integers representing entries into the Attribute Table (List of Integers)

3.2.19 Pop and Insert Nesting Block (PINB)

This operation is a simplified version of the PINBA instruction when there are no
attributes to be encoded. It constructs a new nesting block from the tag information
given as parameters and the (array of) block references in the top of the stack of
building blocks, removes the top of the stack of building blocks, and inserts the
newly constructed nesting block at the end of the new top of the stack of building
blocks.

Parameter:

• Reference to the Tag (Integer)

3.2.20 Insert Nesting Block with Attributes (INBA)

Insert nesting block operations are used to create nodes that have no further sub-
blocks. In effect, an INBA operation is equivalent to a sequence of PSB 0, PINBA.
It constructs a new nesting block from the tag and attribute information given as
parameters and inserts the newly constructed nesting block at the end of the top of
the stack of building blocks.

Parameter:

• Reference to the Tag (Integer)

• Number of Attributes of this nodes (Integer)

• List of integers representing entries into the Attribute Table (List of Integers)

3.2.21 Insert Nesting Block (INB)

The INB operation is a special case of the INBA operation when there are no
attributes to be handled. In effect, an INB operation is equivalent to a sequence of
PSB 0, PINB. It constructs a new nesting block from the tag information given as
parameters and inserts the newly constructed nesting block at the end of the top of
the stack of building blocks.

Parameter:

• Reference to the Tag (Integer)

• Number of Attributes of this nodes (Integer)

• List of integers representing entries into the Attribute Table (List of Integers)
12 of 20 © Lionet Technologies, 2003

Binary XML Transfer using Direct Compilation Techniques
3.2.22 Insert Primitive Text Block with Attributes (IPTBA)

The Insert primitive text block operations are the most frequently used operations as
they relate to the lowest level blocks that contain only text. They are in fact equiva-
lent to a sequence of PSB n, IPB n, PINBA. The IPTBA operation creates a new
nesting block with the given tag and attributes and the sequence of primitive text
objects as sub nodes and inserts the newly constructed nesting block at the end of
the top of the stack of building blocks.

Parameter:

• Reference to the Tag (Integer)

• Number of Attributes of this nodes (Integer)

• List of integers representing entries into the Attribute Table (List of Integers)

• Number of primitive text blocks to be added (Integer)

• List of integers representing entries into the primitive block table (List of Inte-
gers)

3.2.23 Insert Primitive Text Block (IPTB)

The IPBT operation is a short form of the IPBTA operation for the case without
attributes. They are in fact equivalent to a sequence of PSB n, IPB n, PINB. The
IPTB operation creates a new nesting block with the given tag and the sequence of
primitive text objects as sub nodes and inserts the newly constructed nesting block
at the end of the top of the stack of building blocks.

Parameter:

• Reference to the Tag (Integer)

• Number of primitive text blocks to be added (Integer)

• List of integers representing entries into the primitive block table (List of Inte-
gers)

3.2.24 Record Shared Structure (RSS)

Records a reference to the last inserted nesting block in the shared structure table.

Parameter:

• Index of the Shared Structure entries (Integer)

3.2.25 Insert Shared Structure (RSS)

Inserts a reference to shared structure that was previously recorded in the shared
structure table. When the client doesn’t support structure sharing or only partial
structure sharing, it should create a clone of the shared structure to the depth that is
actually required.

Parameter:

• Index of the Shared Structure entries (Integer)

3.2.26 Insert Lazy Build Instruction (ILB)

Instead of generating a single long linear initialisation sequence, an optimizing
compiler may decide to break that initialisation sequence into several smaller ones

by creating sub sequences for certain sub trees.1
© Lionet Technologies, 2003 13 of 20

Binary XML Transfer using Direct Compilation Techniques
The ILB instruction places in an XML tree node a reference to the entry point for
the XBVM that would create that node at the first access to that node, thereby delay-
ing the allocation of objects until they are really needed.

Parameter:

• Entry point into the XBVM code (Integer)

3.2.27 Start

The start instruction initialises the environment and connects the XBVM to the host
environment and allocates an array of the length 1 at the bottom of the stack of
building blocks.

3.2.28 Stop

Requires that the stack of building blocks is reduced to a single element and that this
element has been filled. The operation returns the reference to the block stored in
this single element.

1. The strategies for break up vary from domain to domain, we found it useful to cut at the
blocks with the largest number of non trivial sub trees (for example the pages in a book) or
with the largest number of similar typed objects (for example subsubchapters in a thesis).
14 of 20 © Lionet Technologies, 2003

Binary XML Transfer using Direct Compilation Techniques
3.3 An Example

This chapter demonstrates the code generation for a simple XML structure of 1.6
KByte [3]. The code required for the binary transfer consist of table initialisation
data and the actual tree building code. We leave out speculation on how the table
initialisation data might be transferred best, only describing in 3.3.2 the required
table initialisation and concentrate then in 3.3.3. on the actual tree building code.
Under assumption that

3.3.1 The XML Source Code

FIGURE 1. XML File Material.xml

<?xml version="1.0" encoding="UTF-8"?>
<material
 xmlns="http://www.pra.org.uk/material"
 xmlns:mp="http://www.pra.org.uk/material-property"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.pra.org.uk/xsd/material.xsd"
 material-id="S051">
 <general-properties>
 <trade-name>Isopar H</trade-name>
 <additional-information>Low aromatic hydrocarbon</additional-information>
 <manufacturer company-id="{68B19288-3E97-11D7-A7B5-0090276215BE}"/>
 <supplier company-id="{68B19288-3E97-11D7-A7B5-0090276215BE}"/>
 <data-sheet-uri>http://www.imperialoil.com/pdf/isoparh.pdf</data-sheet-uri>
 <cost currency="euro">35</cost>
 </general-properties>
 <physical-properties>
 <mp:material-property property-name="non-volatile">
 <mp:value>0</mp:value>
 <mp:units xlink:type="simple" xlink:href="../units/units.xml#percentByVolume"/>
 </mp:material-property>
 <mp:material-property property-name="specific-gravity">
 <mp:value>0.76</mp:value>
 <mp:units xlink:type="simple" xlink:href="../units/units.xml#specificGravity"/>
 </mp:material-property>
 <mp:material-property property-name="relative-density-of-non-volatile">
 <mp:value>0</mp:value>
 <mp:units xlink:type="simple" xlink:href="../units/units.xml#specificGravity"/>
 </mp:material-property>
 <mp:material-property property-name="solvent">
 <mp:value>100</mp:value>
 <mp:units xlink:type="simple" xlink:href="../units/units.xml#percentByVolume"/>
 </mp:material-property>
 </physical-properties>

</material>
© Lionet Technologies, 2003 15 of 20

Binary XML Transfer using Direct Compilation Techniques
3.3.2 Initialization of Tables

For this example the XBVM requires the initialisation of the following tables:

TABLE 2. Name Space Table

Index Name Space

1 http://www.pra.org.uk/material

2 http://www.pra.org.uk/material-property

3 http://www.w3.org/1999/xlink

4 http://www.w3.org/2001/XMLSchema-instance

5 http://www.pra.org.uk/xsd/material.xsd

TABLE 3. Attribute Name Table

Index Attribute Name Name Space

1 "material-id" 1

2 "company-id" 1

3 "href" 3

4 "currency" 1

5 "property-name" 2

6 "type" 3

TABLE 4. Attribute Value Table

Index Attribute Name

1 "S051"

2 "{68B19288-3E97-11D7-A7B5-0090276215BE}"

3 "http://www.imperialoil.com/pdf/isoparh.pdf"

4 "euro"

5 "non-volatile"

6 "simple"

7 "../units/units.xml#percentByVolume"

8 "specific-gravity"

9 "../units/units.xml#specificGravity"

10 "relative-density-of-non-volatile"

11 "solvent"
16 of 20 © Lionet Technologies, 2003

Binary XML Transfer using Direct Compilation Techniques
The Attribute Table appears in this example relatively senseless, since there is no
apparent re-use of Attributes as name-value pairs. In other applications we have
seen however very regular structures, with a large part of name-value pairs being
used repeatedly. The color code used in the Attribute Table is the same as in the
XBVM code example below.

TABLE 5. Attribute Table

Index Name
Index

Value
Index

Interpretation

1 1 1 material-id="S051"

2 2 2 company-id="{68B19288-...-0090276215BE}"

3 3 3 href="http://www.imperialoil.com/pdf/isoparh.pdf"

4 4 4 currency="euro"

5 5 5 property-name="non-volatile"

6 6 6 type="simple"

7 3 7 href="../units/units.xml#percentByVolume"

8 5 8 property-name="specific-gravity"

9 3 9 href="../units/units.xml#specificGravity"

10 5 10 property-name="relative-density-of-non-volatile"

11 5 11 property-name="solvent"

TABLE 6. Tag Table

Index Tag Name Space

1 <material> 1

2 <general-properties> 1

3 <trade-name> 1

4 <additional-information> 1

5 <manufacturer> 1

6 <supplier> 1

7 <data-sheet-uri> 1

8 <cost> 1

9 <physical-properties> 1

10 <material-property> 2

11 <value> 2

12 <units> 2
© Lionet Technologies, 2003 17 of 20

Binary XML Transfer using Direct Compilation Techniques
3.3.3 The Tree Building Code

This subsection describes the actual code sequence used for constructing the inter-
nal XML representation. For demonstration purposes, we have assumed that a byte
encoding is used. Whether byte encoding or bit stream encoding is more appropriate
remains to be studied. In the same way it seems likely that a tailor made compres-
sion algorithm can package the resulting code quite effectively [1].

The color coding refers to the colors used for the initialisation tables above.

TABLE 7. Primitive Text Table

Index Text

1 Isopar

2 H

3 Low

4 aromatic

5 hydrocarbon

6 35

7 0

8 0.76

9 100

TABLE 8. The Tree Building Code

Offset Code Interpretation

0 [START]

1 [PSB] [2] <material material-id="S051">...

3 [PSB] [6] <general-properties>...

5 [IPTB] [3] [2] {1, 2} <trade-name>Isopar H
 </trade-name>

10 [IPTB] [4] [3] {3, 4, 5} <additional-information>
 Low aromatic hydrocarbon
</additional-information>

16 [INBA] [5] [1] {2} <manufacturer
 company-id="{68B...BE}" />

20 [INBA] [6] [1] {2} <supplier
 company-id="{68B...BE}" />

24 [INBA] [7] [1] {3} <data-sheet-uri
 href="http://www.imperial..." />

28 [IPTBA] [8] [1] {4} [1] {6} <cost currency="euro"> 35 </cost>

34 [PINB] [2] </general-properties>
18 of 20 © Lionet Technologies, 2003

Binary XML Transfer using Direct Compilation Techniques
TABLE 9. The Tree Building Code (continued)

Offset Code Interpretation

36 [PSB] [4] <physical-properties>

38 [PSB] [2] <material-property
 property-name="non-volatile">

40 [IPTB] [11] [1] {7} <value> 0 </value>

44 [RSS] [1] record the last structure

46 [INBA] [12] [2] {6, 7} <units type="simple"
 href="..percentByVolume" />

51 [RSS] [2] record the last structure

53 [PINBA] [10] [1] {5} </material-property>

57 [PSB] [2] <material-property
 property-name="spec...gravity">...

59 [IPTB] [11] [1] {8} <value> 0.76 </value>

63 [INBA] [12] [2] {6, 9} <units type="simple"
 href="..specificGravity" />

68 [RSS] [3] record the last structure

70 [PINBA] [10] [1] {8} </material-property>

74 [PSB] [2] <material-property
 property-name="rel...non-volatile" >

76 [ISS] [1] recall <value> 0 </value>

78 [ISS] [3] recall <units type="simple"
 href="..specificGravity" />

80 [PINBA] [10] [1] {10} </material-property>

84 [PSB] [2] <material-property
 property-name="solvent" >...

86 [IPTB] [11] [1] {9} <value> 100 </value>

90 [ISS] [2] recall <units type="simple"
 href="..percentByVolume" />

92 [PINBA] [10] [1] {11} </material-property>

96 [PINB] [9] </physical-properties>

98 [PINBA] [1] [1] {1} </material>

102 [STOP]
© Lionet Technologies, 2003 19 of 20

Binary XML Transfer using Direct Compilation Techniques
3.4 Interfacing the XBVM with the Host VM

The XML Builder VM has however to be executed within a host VM and requires
access to certain aspects of the host VM:

It requires a special DOM implementation or should provide for a DOM compliant
XML access for the host VM. For highest performance and utilization of the advan-
tages of immutable data models and the lazy generation principle, it should provide
its own DOM compliant data representation. When the target environment requires
the use of a predefined DOM implementation, the XBVM could directly drive a
SAX builder.

When it provides its own DOM implementation, it requires the allocation and/or
reference to unique objects within the host VM. The XBVM code however guaran-
tees, that it executes only one request per unique object. Multiple uses of the same
object are covered within the XBVM.

We found it useful to generate code for the host VM, that declares symbolic names
for the reference objects, so that in the code itself, the XML processing can compare
tags and attribute names with a simple pointer comparison.

4.0 References

1. Evans, W.S.; Fraser, C.W.: Grammar-Based Compression of Interpreted Code.
Comm.ACM 46(2003)8, 61-68

2. Sun Microsystem: Developing International Java Applications. Online Course.
WZI-3100, 2003

3. KnowCoat Formulator. www.knowcoat.net
20 of 20 © Lionet Technologies, 2003

	Binary XML Transfer using Direct Compilation Techniques
	1.0 Introduction
	1.1 Immutable Data Structures
	1.2 Minor Tags and Minor Stacks.
	1.3 Text Blocks
	1.4 Nesting Blocks
	1.5 Normalised Formatting

	2.0 The Document Compilation Technique
	3.0 A Generalised Technique
	3.1 The XML Builder VM (XBVM)
	3.2 The XBVM Instructions
	3.2.1 Allocate Name Space Table (ANST)
	3.2.2 Allocate Name Space (ANS)
	3.2.3 Allocate Attribute Name Table (AANT)
	3.2.4 Allocate Attribute Name (AAN)
	3.2.5 Allocate Attribute Value Table (AAVT)
	3.2.6 Allocate Attribute Value (AAV)
	3.2.7 Allocate Attribute Table (AAT)
	3.2.8 Allocate Attribute (AA)
	3.2.9 Allocate Tag Table (ATT)
	3.2.10 Allocate Tag (AT)
	3.2.11 Allocate Minor Stack Table (AMST)
	3.2.12 Allocate Minor Stack (AMS)
	3.2.13 Allocate Primitive Text Table (APTT)
	3.2.14 Allocate Primitive Text (APT)
	3.2.15 Allocate Shared Structure Table (ASST)
	3.2.16 Push Sub Blocks (PSB)
	3.2.17 Insert Primitive Text Blocks (IPB)
	3.2.18 Pop and Insert Nesting Block with Attributes (PINBA)
	3.2.19 Pop and Insert Nesting Block (PINB)
	3.2.20 Insert Nesting Block with Attributes (INBA)
	3.2.21 Insert Nesting Block (INB)
	3.2.22 Insert Primitive Text Block with Attributes (IPTBA)
	3.2.23 Insert Primitive Text Block (IPTB)
	3.2.24 Record Shared Structure (RSS)
	3.2.25 Insert Shared Structure (RSS)
	3.2.26 Insert Lazy Build Instruction (ILB)
	3.2.27 Start
	3.2.28 Stop

	3.3 An Example
	3.3.1 The XML Source Code
	FIGURE 1. XML File Material.xml
	3.3.2 Initialization of Tables
	3.3.3 The Tree Building Code

	3.4 Interfacing the XBVM with the Host VM

	4.0 References

