
1

For 5 years, the XML 1.0 specification has had a great influence on modern document exchange.
Designed as a subset of SGML, the design goals for XML 1.0 were focused on ease-of-use and human
readability. But nowadays, XML documents are often used for data exchange without human
interaction (on the XML 1.0 document itself). For such applications, the XML 1.0 serialization of the
XML Infoset creates overhead on the wire and for processing, that might be avoidable by using a
different and better suited serialization of the exchanged data.

To illustrate SAP’s requirements for a more compact and faster processable serialization format of the
XML Infoset we take the Point-Of-Sale Interface application (POS Interface), part of SAP’s mySAP
Retail solution. The goal of POS Interface is to make all items on all sale-slips of all stores of a given
retail company available for central analysis and further processing.

For large retailers with some 1000 stores, there will be an average of 33 million sale-slips per day at an
average of 3 items. In the current implementation, a local POS server aggregates all sales items of a
store. The aggregated data is then sent in batch mode during closing hours to the central POS Server.
The aggregation reduces the 100 million sales items to about 10-20 million, which results in about 2
GB raw data. The central POS server then forwards the collected data of all stores to the Business
Warehouse and ERP system. In the current implementation, which is based on SAP standard interfaces
and protocol (SAP IDoc), the upload and processing of the data will take about 2-3 hours. If the
alternatively available standard protocol is used, which includes XML 1.0 data encoding, the data size
is increased to about 20 GB.

1000x

Branches
(with local

POS Server)

1000x

Branches
(with local

POS Server)

POS
Server
(central)

Business
Warehouse

ERP
20 GB XML

Internet,
Dialup,
WAN

2 GB
(raw)

2 GB
(raw)

Now, if the opening hours are extended or if the company opens stores in different time zones, the time
slot for the batch jobs might shrink below the time that is needed for the actual processing.

A different problem occurs, if customers ask for better real time analyses. Sending more often smaller
aggregations to the central POS server could meet this requirement. In worst case, each sales-slip will
be sent directly to the central POS server. Hence, because no aggregation occurs in this case, the
estimated size of the XML data is about 200GB per day.

Reducing the average message size and speeding up the processing is extremely helpful in this
scenario, because this will allow better real time analyses without increasing the overall system
landscape, for example, by adding additional application servers.

As shown above, decreasing the average message size and speeding up processing allows us to build
applications that are not feasible with respect to the cost of current system landscapes. Several
approaches have been discussed internally:

Compression
Compression of the XML 1.0 documents (gzip or other) only reduces the message size on the wire but
increases the processing time.

Binary encoded XML Infosets
This approach retains the XML Infoset but chooses a binary and hence more compact and faster
processable serialization format. One advantage of this approach is that only the XML parser must be
rewritten but all tools on top of it can remain unchanged. This will also enable the processing of XML
instances without in-advance XML Schema knowledge (XPath, XSLT,…).

Full binary encoding
For a full binary approach, both peers must agree in advance on the binary format of the exchanged
data. This technique is well known from RPC, DCOM, CORBA and RMI and seems to be the fastest
approach. However, since this binary data is not self-describing, generic XML techniques can not be
applied directly. Additionally, to avoid data mismatch a versioning mechanism must be added, that is,
both the sending and the receiving application always have to know the XML Schema that is to be
used..

The decision on which of these approaches to use highly depends on the requirements of the given
business scenario.

In a tightly coupled system where a client directly talks to the server and the overall system is managed
centrally, the full binary encoding seems to be the best suited approach. All extra information to keep
the XML Infoset is unnecessary and will result in slower performance.

If the system is loosely coupled or if generic intermediaries should perform extra processing steps on
the messages, the binary encoded Infoset approach might be better suited.

The POS Interface does not fit well into the two categories above. On the one side, POS is a decentral
system, and XML was chosen for easy integration of point-of-sale terminals of different vendors. On
the other side, POS Integration is often carried out for thousands of stores. As a consequence, the
interfaces do not change that often and the exchanged data should be as compact as possible.

A solution should

• Meet the requirements from real-world scenarios

• Fit into the existing stack of Web services and XML standards such as SOAP and WSDL

• Be easy to implement

���
 What work has your organization done in this area? (We are part icularly interested in

measurements!)
� �

 For many years, SAP has established several internal communication protocols such as Intermediate
Documents (IDoc) and Remote Function Calls (RFC). Additionally, we have made SAP business logic
available via Web services. Our measurements indicated that SOAP-based XML messaging is 2-3
times slower compared to our native communication protocols.

���

 What goals do you believe are most important in this area? (e.g. reducing bandwidth usage;
reducing parse time; simplifying APIs or data structures, or other goals)
� �

 Our goal is to optimize the overall processing time, including both transmission and parsing time
while allowing generic tools to manipulate and transform the exchanged business documents.

���

What sort of documents have you studied the most? (e.g. gigabyte-long relational database table
dumps; 20-MByte telephone exchange repair manuals; 2 KByte web service requests)
� �

 See scenario description. The range is between some KBytes - in case the point-of-sale terminal
sends each sales slip directly to the central POS Server - to several GBytes - in case the sales slips are
accumulated by the local POS Server and sent in bigger chunks to the central POS Server.

���

 What sorts of applications did you have in mind?
� �

 All types of business applications provided by SAP e.g. CRM, HR, SCM, Financials, etc. See the
scenario description for a detailed example.

���

 If you implemented something, how did you ensure that internationalization and accessibility were
not compromised?
� �

 Considered only at business application level.

���

 How does your proposal differ from using gzip on raw XML?
� �

 Since the technology that meets our requirements depends on the actual business scenario, we have
consciously not specified appropriate solutions in more detail. Thus, a simple comparison to a simple
compression technology is not possible. Our experience with SAP-internal communication protocols
showed us that compression helps on low-bandwidth connections, but is counterproductive in high-
speed local networks. Therefore, the wire format of business documents must meet the following
requirements:

o Must be compact (reducing bandwidth and memory)
o Must be faster to parse (in comparison to XML 1.0)
o Must allow generic processing (XSLT, XPATH)
o Must be derivable from XML Schema
o Must be easy to implement (by devices with reduced processing power)

Hence, we believe that neither simple compression nor binary protocols (e.g. protocols like RPC,
DCOM or IIOP) will fit our requirements for all business scenarios even though they may be
applicable for some selected scenarios.

���

 Does your solution work with any XML? How is it affected by choice of Schema languag e? (e.g.
W3C XML Schema, DTD, Relax NG)
� �

 We consistently make use of XML and XML Schema. Other schema languages have not been used.

���

 How important to you are random access within a document, dynamic update and streaming, and
how do you see a binary format as impacting these issues?
� �

 In the area of business application integration, random access and update of XML documents is
mostly needed in intermediary applications, only, for example, for mapping and transformation
between different XML business document standards. Thus, non XML -based encodings can only be
processed with explicit knowledge of the corresponding XML schema which might not be available for
all intermediaries.

