
Alternative binary representations of the XML
Information Set based on ASN.1

OSS Nokalva, Inc.

August 11, 2003

Abstract
Two recent standard initiatives involving the use of ASN.1 in support
of XML and Web Services are being pursued by a joint committee of
ISO/IEC and ITU-T. One of the standards (X.694) specifies a
mapping from XML Schema to ASN.1. Another (X.695) provides
support for fast web services and specifies, among other things, an
ASN.1 Schema for the XML Information Set. Performance tests have
been conducted on binary encoding/decoding of instances whose
schema was translated from XML Schema to ASN.1 using X.694.
Other performance tests have been conducted on the ASN.1 Schema
for the XML Information Set. The results of these tests are presented
in this paper.

CONTENTS

1. Introduction ...2

2. Binary representation of XML documents using X.694 ..2
2.1 X.694...2
2.2 Performance test..3

2.2.1 Compression test.. 3
2.2.2 Speed test ... 3
2.2.3 Results of the tests ... 4

3. Binary representation of XML documents using the ASN.1 Schema for the
XML Information Set ..10

3.1 X.695...10
3.2 ASN.1 Schema for the XML Information Set...11

3.2.1 About ASN.1 ... 11
3.2.2 Description of the ASN.1 Schema for the XML Information Set.. 12

3.3. Description of the test program ..13

3.4 Test results ..15
3.4.1 Discussion of the results ... 15

3.5 Conclusion...20
References..21

Appendix A ASN.1 specification used in the tests of the ASN.1 Schema for the
XML Information Set ..23

1. Introduction
Two recent standard initiatives involving the use of ASN.1 in support of XML and Web Services
are being pursued by a joint committee of ISO/IEC and ITU-T.

One of them has resulted in the specification of a new set of encoding rules for ASN.1, the
"Extended XML Encoding Rules" (X.693 Amendment 1) and in the specification of a mapping
from XML Schema to ASN.1 (X.694). A representation of the infoset based on X.694 is described
in Section 2, together with the results of a performance test.

The other addresses Web Services and the XML Information Set and aims to provide efficient
alternatives to the use of XML 1.0. A representation of the infoset based on the ASN.1 Schema for
the Information Set is described in Section 3, together with the results of a performance test.

2. Binary representation of XML documents
using X.694
2.1 X.694
The joint committee of the ISO/IEC and ITU-T in charge of the ASN.1 standards has produced a
draft standard that specifies a mapping from W3C XML Schema to ASN.1, which is currently under
Final Committee Draft ballot in ISO. This work is expected to produce a new Recommendation |
International Standard named ITU-T Rec. X.694 | ISO/IEC 8825-5 - Mapping W3C XML Schema
Definitions into ASN.1.

The goal of this standard is to enable applications to use the binary encoding rules of ASN.1 (such
as the Basic Encoding Rules - BER - or the Packed Encoding Rules - PER) for efficient transfer of
instances conforming to a schema written in W3C XML Schema. This is achieved by first
converting an XML schema into an ASN.1 schema and then encoding/decoding instances using
PER or BER.

Applications written using X.694 will benefit from a compact serialization format and from high
data encoding/decoding speed when using the Packed Encoding Rules (PER). In addition,

applications will be able to exchange instances serialized in XML 1.0 by using the Extended XML
Encoding Rules of ASN.1 (EXTENDED-XER).

2.2 Performance test
A test was conducted at OSS Nokalva to compare the speed and size of a binary representation of
XML based on X.694 against several other alternatives. For compression testing, PER and zlib
were used. For speed testing, comparisons were done between the OSS XSD/C Tools and Xerces
2.3.0 SAX and DOM APIs.

Several XML instances varying in size were used in the test.

The following tools were used in the test:

OSS XSD/C Tools (1.0 betaA) (www.oss.com)

Zlib 1.1.4 (www.gzip.org/zlib)
The highest compression level (9) was chosen.

Xerces 2.3.0
SAX/DOM APIs

2.2.1 Compression test

This test was performed on several real-life XML instances publicly available on the Web. UDDI1
schemas and instances, UDS2 schemas and instances, UBL3 schemas and instances, and other
schemas and instances were used in the test. Multiple instances were processed for each schema.
Results are shown as averages over all the instances relative to each schema.

2.2.2 Speed test

This test was performed to compare parsing/writing speeds between the OSS XSD tools and the
Xerces 2.3.0 SAX and DOM APIs. One purpose of this test was to measure the speed difference
between parsing binary encodings and parsing XML documents. Another purpose was to measure
the speed difference between creating XML documents and producing binary encodings. Encoding
and decoding times were measured as follows:

OSS XSD tools

1 Universal Description, Discovery and Integration of Web Services (http://www.uddi.org/)
2 Unified Directory Specification (ITU-T Rec. F.515)
3 Universal Business Language (http://oasis-open.org/committees/ubl/)

http://www.oss.com/
http://www.gzip.org/zlib

Encoding time is the time spent converting the data from in-memory data structures to binary
encodings.

Decoding time is the time spent decoding binary encodings and populating in-memory data
structures.

Xerces SAX APIs

Encoding time is the time spent creating an XML document from a list of buffered SAX events
stored in memory and then compressing the XML document using zlib.

Decoding time is the time spent decompressing a compressed XML document using zlib and then
parsing the XML document storing a list of buffered SAX events in memory.

Note: Other measurements for SAX were taken without involving the compression and
decompression steps in between. Other measurements were taken by using empty event handlers for
SAX events (with no program code) to store a list of buffered SAX events in memory.

Xerces DOM APIs

Encoding time is the time spent creating an XML document from a DOM tree and then compressing
the XML document using zlib.

Decoding time is the time spent decompressing a compressed XML document using zlib and then
parsing the decompressed XML document using the DOM parser.

Note: Other measurements for DOM were taken without involving compression and decompression
steps in between.

2.2.3 Results of the tests

Legend:
• Runtime - a compression tool
• UncompSize - average size of the original XML instances for a given test (same for all

compression tools)
• CompSize - average size of the compressed instances
• ExeSize - size of the standalone compression executable file
• CompRatio - compression percentage (lower is better)
• EncodeTime - average time of compression (XML creation for DOM/SAX)
• DecodeTime - average time of decompression (XML parsing for DOM/SAX)
• TotalTime - the sum of EncodeTime and DecodeTime
• eSAX - a SAX parser with empty event handlers.

Sizes are in bytes and times are in microseconds.

a. RANAP, UncompSize = 1546

Runtime CompSize CompRatio EncodeTime DecodeTime TotalTime ExeSize
OSS PER 26 1.70% 15.7 14.6 30.3 684832
OSS PER+Zlib 35 2.30% 367.2 27.3 394.5 721412
Zlib 411 26.60% 475.8 49.4 525.2 435760
Xerces DOM - - 154.4 380.0 534.4 2800224
Xerces SAX - - 90.6 284.4 375.0 2823032
Xerces eSAX - - - 235.8 - 2819896
Xerces DOM+Zlib 398 25.70% 614.4 432.4 1046.8 2838668
Xerces SAX+Zlib 405 26.20% 536.0 337.6 873.6 2861668
Xerces eSAX+Zlib 411 26.60% - 272.4 - 2857028

b. UBL, UncompSize = 36769, averaged on 11 instances

UBL, UncompSize = 36769, averaged on 11 instances
Runtime CompSize CompRatio EncodeTime DecodeTime TotalTime ExeSize
OSS PER 4426 12.00% 944.5 1777.5 2722.0 858500
OSS PER+Zlib 582 1.60% 1555.1 1984.7 3539.8 896168
Zlib 1607 4.40% 2088.5 441.0 2529.5 435856
Xerces DOM - - 3716.8 7635.5 11352.3 2800352
Xerces SAX - - 2125.5 4623.0 6748.5 2823096
Xerces eSAX - - - 3422.0 - 2819992
Xerces DOM+Zlib 1603 4.40% 5857.7 8075.5 13933.2 2842028
Xerces SAX+Zlib 1565 4.30% 4098.2 5324.1 9422.3 2861732

c. UDDI, UncompSize = 2422, averaged on 13 instances

Runtime CompSize CompRatio EncodeTime DecodeTime TotalTime ExeSize
OSS PER 1235 51.00% 25.5 42.1 67.6 805048
OSS PER+Zlib 534 22.10% 512.9 95.5 608.4 845404
Zlib 762 31.50% 561.5 66.8 628.3 439376
Xerces DOM - - 187.2 406.8 593.9 2800352
Xerces SAX - - 113.2 306.5 419.7 2823096
Xerces eSAX - - - 238.7 - 2820024
Xerces DOM+Zlib 755 31.20% 758.5 476.9 1235.4 2842028
Xerces SAX+Zlib 758 31.30% 657.2 386.9 1044.1 2861732
Xerces eSAX+Zlib 762 31.50% - 319.0 - 2857156

d. UDS, UncompSize = 4063, averaged on 12 instances

Runtime CompSize CompRatio EncodeTime DecodeTime TotalTime ExeSize
OSS PER 545 13.40% 86.5 116.2 202.7 801140
OSS PER+Zlib 268 6.60% 497.7 154.5 652.2 839416
Zlib 664 16.30% 643.3 81.6 724.9 435888
Xerces DOM - - 427.2 915.8 1343.0 2800352
Xerces SAX - - 242.2 593.8 836.0 2823096
Xerces eSAX - - - 433.3 - 2820024
Xerces DOM+Zlib 663 16.30% 1095.7 1012.0 2107.7 2838796
Xerces SAX+Zlib 637 15.70% 864.2 676.1 1540.3 2861732
Xerces eSAX+Zlib 664 16.30% - 546.6 - 2857156

2.2.4 Discussion of the results

2.2.4.1 Compression results

26

545
1235

4426

35

268
534 582411

664 762
1607

1

10

100

1000

10000

 R
AN

AP
(A

vg
 1

54
6

by
te

s)

 U
D

S
(A

vg
 4

06
3

by
te

s)

 U
D

D
I

(A
vg

 2
42

2
by

te
s)

 U
BL

(A
vg

 3
67

69
by

te
s)

OSS PER
OSS PER+Zlib
Zlib

The schemas for RANAP and UDS contain types that are heavily constrained (bounded integers,
enumerations of strings and enumerations of integers). Those constrained types allow PER to
achieve a better compression rate than Zlib’s variant of LZ77 algorithm.

The schemas for UDDI and UBL contain types that have very weak constraints (unconstrained
integers, unconstrained character strings). For these schemas, Zlib’s compression algorithm
achieves better compression than PER.

For the schemas that are added “optimum” constraints (RANAP), compressing the PER-encoded
message with Zlib does not reduce its size. For the schemas that contain unconstrained types,
compressing the PER-encoded message with Zlib allows the compression rate to be better than that
obtained using PER alone.

In all the tests performed, PER+Zlib gives better results than Zlib alone. Using PER and Zlib
together allows getting the best from each of the two methods. The constrained types exhibit very
good compression when encoded by PER, and Zlib later performs well on the portions of the PER-
encoded message corresponding to the unconstrained types.

2.2.4.2 Time results

a. Encoding time without compression

10

100

1000

10000

100 1000 10000 100000

OSS PER Xerces DOM Xerces SAX

This graph (in logarithmic scale) shows that using the OSS PER encoder for building a PER
message from in-memory data structures is more efficient than using DOM or SAX for building an
XML message from the same in-memory data structures.

b. Encoding time with compression

10

100

1000

10000

100000

100 1000 10000 100000

OSS PER OSS PER+Zlib Xerces DOM+Zlib Xerces SAX+Zlib

This graph shows that using the OSS PER encoder for building a PER message from in-memory
data structures and then compressing the PER-encoded message with Zlib is faster than building an
XML message from the same in-memory data structures using DOM or SAX and compressing it.

c. Decoding time without compression

10

100

1000

10000

100000

100 1000 10000 100000

OSS PER Xerces DOM Xerces SAX Xerces eSAX

This graph shows that building in-memory data structures from a PER message using the OSS PER
decoder is faster than using DOM or SAX for building the same in-memory structures from an
XML message.

The graph also shows that the time required to parse an XML instance using SAX with empty event
handlers (no data structures built) is longer than the time required for the whole decoding process
(parsing plus building in-memory data structures) using the OSS PER decoder.

d. Decoding time with compression

10

100

1000

10000

100000

100 1000 10000 100000

OSS PER OSS PER+Zlib Xerces DOM+Zlib Xerces SAX+Zlib Xerces eSAX+Zlib

This graph shows that decompressing a compressed PER-encoded message using Zlib and building
in-memory data structures from the PER-encoded message using the OSS PER decoder is faster
than decompressing a compressed XML message and building in-memory data structures (using
DOM or SAX) from the XML message.

3. Binary representation of XML documents
using the ASN.1 Schema for the XML
Information Set
3.1 X.695
A new standard initiative has been started recently by a joint committee of ISO/IEC and ITU-T,
involving the use of ASN.1 in support of Web Services and the XML Information Set. The work is
expected to produce a new Recommendation | International Standard named ITU-T Rec. X.695 |
ISO/IEC 8825-6 - ASN.1 Encoding Rules - Fast Web Services.

The Web Services part of this standard will specify a set of ASN.1 type definitions (an ASN.1

schema) that are semantically equivalent to a SOAP 1.2 envelope, allowing fast binary
communications as an alternative to XML 1.0-based exchanges.

The infoset part of this standard will specify an ASN.1 schema for the XML infoset, which can
represent any infoset (as specified in the W3C XML Information Set Recommendation [1]) as an
ASN.1 message that can be encoded in a standardized binary form.

OSS Nokalva, Inc. has developed a draft ASN.1 Schema for XML Information Set and has
submitted it to the committee for inclusion in the draft standard draft. This ASN.1 schema specifies
a set of type definitions for serializing a generic XML Infoset using ASN.1 binary encoding rules.

This section presents the results of a performance test that has been performed on the ASN.1
schema.

The main goal of the ASN.1 Schema for the XML Information Set is to provide a compact
serialization of any XML Information Set for which no schema definition is available, without
increasing parsing time or writing time. It is particularly suitable to applications for which the
classic compression algorithms are too costly in terms of resources (CPU time and memory).

Internationalization and accessibility are implicitly guaranteed by directly representing information
items and their properties as ASN.1 type definitions.

The prototype implementation described here requires that the schemas are entirely parsed to in-
memory data structures; however other implementation can use different strategies (streaming,
partial serialization, partial decoding, etc.)

The size of the XML documents used for the tests range form ~40 to ~200 Kbytes. This should not
be understood as a limitation in the size of the infosets that can be handled.

Section 3.1 describes the ASN.1 schema that is part of the current draft of the standard. Section 3.2
describes the test program that has been written for performing the tests. Section 3.3 presents the
results of the performance tests.

3.2 ASN.1 Schema for the XML Information Set

3.2.1 About ASN.1

Abstract Syntax Notation One (ASN.1) is a formal language for abstractly describing messages to
be exchanged between distributed computer systems. ASN.1 is used in many national and
international standards, including:

• X.500 Standards - The Directory;
• cellular telephony;
• security;

• videoconferencing;
• air transportation;
• messaging
• biometrics
• RSA Public-Key Cryptography Standards;

For a more complete list of standards in which ASN.1 is used, refer to
http://asn1.elibel.tm.fr/uses/index.html.

ASN.1 tools (both professional tools and free tools) are available for nearly all platforms and for all
of the major programming languages.

The ASN.1 language and its Encoding Rules are themselves defined by a set of international
standards. These are:

• ITU-T Rec. X.680 | ISO/IEC 8824-1 - Abstract Syntax Notation One (ASN.1) -
Specification of basic notation [2];

• ITU-T Rec. X.681 | ISO/IEC 8824-2 - Abstract Syntax Notation One (ASN.1) -
Information Object Specification [3];

• ITU-T Rec. X.682 | ISO/IEC 8824-3 - Abstract Syntax Notation One (ASN.1) - Constraint
Specification [4];

• ITU-T Rec. X.683 | ISO/IEC 8824-4 - Abstract Syntax Notation One (ASN.1) -
Parameterization of ASN.1 Specifications [5];

• ITU-T Rec. X.690 | ISO/IEC 8825-1 ASN.1 Encoding Rules - Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding
Rules (DER) [6];

• ITU-T Rec. X.691 | ISO/IEC 8825-2 ASN.1 Encoding Rules - Specification of Packed
Encoding Rules (PER) [7];

• ITU-T Rec. X.692 | ISO/IEC 8825-3 ASN.1 Encoding Rules - Specification of Encoding
Control Notation (ECN) [8];

• ITU-T Rec. X.693 | ISO/IEC 8825-4 ASN.1 Encoding Rules - XML Encoding Rules[9].

3.2.2 Description of the ASN.1 Schema for the XML Information Set

The ASN.1 schema for the XML Information Set provides a complete and faithful abstract
representation of all the information items in the XML Information Set and all their properties, as
specified in the W3C XML Information Set Recommendation.

The standard ASN.1 binary encoding rules (PER, BER, etc.) provide compact serialization formats
for the types defined in this ASN.1 schema, facilitating the exchange of XML infosets between
systems, with significant performance benefits over the exchange of the corresponding XML
documents. Unlike other existing alternative binary representations of XML 1.0, the ASN.1 schema
is built upon the W3C standard specification of the XML Information Set. This allows the direct use
of in-memory infosets that are never serialized into/from XML 1.0 documents.

http://asn1.elibel.tm.fr/uses/index.html

The ASN.1 schema for the XML infoset differs from other existing alternative binary representation
formats of XML conceptually in several ways:

• The ASN.1 schema is a formal specification that uses a standard data-definition language
with standardized on-the-wire representations of the data. Among the benefits are:
readability; clarity and freedom from ambiguity in the format specification; availability of
tools (including most free ASN.1 tools) that facilitate the development of applications based
on this specification.

• The ASN.1 schema has several features that an application can use to achieve various
degrees of compactness, according to availability of memory, CPU cycles, and other system
resources. Compression is an optional feature and operates on character-string blocks to
maximize efficiency.

• Any application conceptually based on the standard XML Information Set can easily be
adapted to use the ASN.1 schema. There is no loss of information when going from an
application's internal representation of the abstract infoset to the ASN.1 representation and
then back to the infoset, because the individual properties of information items are
completely mapped into the ASN.1 schema.

3.3. Description of the test program
A program has been created in order to perform tests on the ASN.1 schema for the infoset. This
program is a native Win32 DLL which uses:

• the Xerces-C++ SAX2 parser (version 2.2.0) to parse input XML documents;
• OSS Nokalva's ASN.1 tools for C to encode/decode abstract values of the ASN.1 infoset

schema;
• the bzip2 compression library (version 1.0.2) to compress/decompress the component-

strings table (see Annex A).

The program is able to create an in-memory representation of the XML infoset (an "infoset tree")
from any of the following sources:

• an XML document (by processing Xerces' SAX event callbacks);
• a PER encoding of an abstract value of the ASN.1 infoset schema (by processing the data

structures populated by the OSS PER decoder);
• another infoset tree (by traversing the source infoset tree).

Multiple infoset trees can be present in memory at the same time. The program is able to write the
contents of an infoset tree to:

• an XML 1.0 document (directly, without using Xerces);
• a PER encoding of an abstract value of the ASN.1 infoset schema (by invoking the OSS

PER encoder);
• another infoset tree.

The in-memory infoset representation is built around two hash tables:

• a string hash table;
• a "name" hash table.

In the present context, a "name" consists of: a namespace name (optional), a local name, and a
namespace prefix (optional). The string hash table has two main purposes:

• reduce (by avoiding the storage of multiple identical strings) both the amount of virtual
memory needed to host an infoset tree and the number of memory allocations performed
while creating the infoset tree;

• prepare the component-strings table (see Annex A) to be included in the abstract value of the
ASN.1 infoset schema, avoiding the inclusion of multiple identical strings in this table.

The main purpose of the name hash table is to prepare the common-names table (see Annex A) to
be included in the abstract value of the ASN.1 infoset schema, avoiding the inclusion of multiple
identical element or attribute names in this table. In the current version of the test program, there are
separate string hash tables and separate name hash tables for each infoset. If two or more infoset
trees are present in memory at the same time, each one has its own hash tables. (It would be useful
to investigate whether any further significant speed improvements can be achieved by sharing
strings among multiple infoset trees in memory.) The test program exploits many features of the
ASN.1 infoset schema in order to achieve maximum compactness. In particular, it:

• gathers all the existing strings in the infoset into a single component-strings table; this
includes, in particular, the strings that are namespace prefixes, local names, namespace
names, attribute normalized values, and element-content character chunks;

• rearranges these strings according to their frequency in the infoset, so that the 2047 most
frequent strings occupy the first 2047 positions in the component-strings table; this will
result in a more compact PER encoding of the infoset (see the definition of LargeIndex in
Annex A);

• always uses indexes to reference strings and never includes any strings anywhere within the
abstract value except in the component-strings table;

• gathers all the existing element and attribute names in the infoset into the common-names
table;

• rearranges these names according to their frequency in the infoset, so that the 15 most
frequent names occupy the first 15 positions in the common-names table; this will result in a
more compact PER encoding of the infoset (see the definition of SmallIndex in Annex A);

• always uses indexes to reference names and never includes any names anywhere within the
abstract value except in the common-names table;

• uses the element-content-characters alternative for the element children whenever possible
(that is, whenever the only child of an element is a character information item chunk which
does not consist of ignorable whitespace).

The test program does not support all the features of the ASN.1 schema, but only a subset that has
been considered relevant to the test. In particular, the current version of the program ignores all
processing instructions, comments, document type declaration, notations, unparsed entities, base
URI, character encoding scheme, version, attribute type, and (attribute) references.

 For the base-URI, the same-as-parent-element choice alternative is always selected. For the in-
scope-namespaces, the same-as-parent-element choice alternative is always selected. The ASN.1
schema should be improved to allow an optimized representation to be used whenever the infoset
agrees with the "Namespaces in XML" scoping rules. In this case, there is much information (the in-
scope namespaces of each element) that does not need to be present explicitly in the ASN.1
representation, so long as there is a way to indicate that this optimized representation is being used
in a given instance. The test program effectively assumes that there is a mechanism to signal this,
which justifies the general omission of the namespace information items for the in-scope-
namespaces.

The test program uses bzip2 compression as an option. Compression is applied only to the single
component-strings table and the compressed binary block is included in the abstract value as
permitted by the ASN.1 infoset schema. The use of compression results in a significant size
reduction at the expense of speed. Two separate sets of speed and size measurements (with and
without compression) are provided in Table 4. The ASN.1 specification used in this test is slightly
different from the one contained in the current draft of the standard (see Annex A).

3.4 Test results

3.4.1 Discussion of the results

The results shown in Tables 1-4 were obtained by running the test program once on a Dell Latitude
C840 notebook computer with a Mobile Intel(R) Pentium(R) 4 - M 1.80 GHz and Windows 2000
Professional Service Pack 3. The use of Aligned vs. Unaligned PER does not seem to affect speed
in a significant way. Therefore the speed results in Table 4 can be read as applying equally to
Aligned and Unaligned PER. Unaligned PER always produces a more compact encoding than
Aligned PER, though the difference is not very large. Table 3 also shows that if the encodings are

compressed with WinZip, the compressed Aligned PER encoding is instead smaller than the
compressed Unaligned PER encoding, though by a not very large amount. The use of BER results
in encodings that are overly large, usually larger than the XML 1.0 serialization itself. The BER
sizes are included in table1 for information. Five XML documents have been used for the test,
named as follows:

• much_ado.xml
• periodic.xml
• soap2.xml
• xml.xml
• sfs.xml

The first four XML documents are believed to be the same XML documents that were used for the
tests of "XML Stream", published by D. Sosnoski at:
http://www.sosnoski.com/opensrc/xmls/. The last XML document is the XML Schema for
Schemas, with a portion of the document type declaration removed. Since part of the information in
the XML documents is ignored (either because it is not reflected in the infoset or due to the current
limitations of the test program), the XML documents used as reference for size comparisons in
Tables 1-3 are not the original ones, but those created by the test program itself after a read/write
cycle starting from the original documents. It has been verified that further read/write cycles always
produce identical XML documents.

Tables 1-3 contain the size results.
The column headings of table1 have the following meanings:

Table 1
Document XML 1.0 APER UPER APER/C UPER/C

much_ado.xml 202 044 146 811 27% 140 494 30% 73 174 64% 66 857 67%
periodic.xml 113 368 34 630 69% 30 471 73% 23 217 80% 19 058 83%
soap2.xml 133 840 47 048 65% 39 753 70% 40 116 70% 32 631 76%
xml.xml 157 481 127 467 19% 122 286 22% 55 414 65% 50 231 68%
sfs.xml 40 115 17 275 57% 15 430 62% 11 243 72% 9 384 77%

• XML 1.0: size of the XML 1.0 serialization (as created by the test program after reading the
original XML document);

• APER: size of the Aligned PER encoding of the corresponding ASN.1 infoset schema
abstract value;

• UPER: size of the Unaligned PER encoding of the corresponding ASN.1 infoset schema
abstract value;

• APER/C: size of the Aligned PER encoding, applying bzip2 compression to the component-
strings table;

• UPER/C: size of the Unaligned PER encoding, applying bzip2 compression to the
component-strings table;

• BER: size of the BER encoding.

http://www.sosnoski.com/opensrc/xmls/

Table 2

Document XML 1.0 Unique
strings

Unique
strings

compr'd
APER APER/C

APER
minus
strings

much_ado.xml 202 044 111 021 37 380 146 811 73 174 35 790
periodic.xml 113 368 15 951 4 533 34 630 23 217 18 679
soap2.xml 133 840 9 419 1 979 47 048 40 116 37 629
xml.xml 157 481 103 567 31 508 127 467 55 414 23 900
sfs.xml 40 115 8 943 2 883 17 275 11 243 8 332

Document XML 1.0 Unique
strings

Unique
strings

compr'd
UPER UPER/C

UPER
minus
strings

much_ado.xml 202 044 111 021 37 380 140 494 66 857 29 473
periodic.xml 113 368 15 951 4 533 30 471 19 058 14 520
soap2.xml 133 840 9 419 1 979 39 753 32 631 30 334
xml.xml 157 481 103 567 31 508 122 286 50 231 18 719

The column headings of Table 2 have the following meanings:

• XML 1.0: same as in Table 1;
• Unique strings: size of the component-strings table;
• Unique strings compr'd: size of the component-strings table, compressed with bzip2;
• APER, APER/C: same as in Table 1;
• APER minus strings: size of the Aligned PER encoding minus the size of the component-

strings table (this does not depend on whether bzip2 compression is used);
• UPER, UPER/C: same as in Table 1;
• UPER minus strings: size of the Unaligned PER encoding minus the size of the component-

strings table (does not depend on whether bzip2 compression is used).

Table 3
Document XML 1.0 XML 1.0

/WZ APER APER
/WZ APER/C APER/C

/WZ
much_ado.xml 202 044 53 630 73% 146 811 27% 57 334 72% 73 174 64% 47 038 77%
periodic.xml 113 368 8 974 92% 34 630 69% 11 326 90% 23 217 80% 10 125 91%
soap2.xml 133 840 4 896 96% 47 048 65% 7 514 94% 40 116 70% 5 805 96%
xml.xml 157 481 44 419 72% 127 467 19% 47 803 70% 55 414 65% 43 451 72%
sfs.xml 40 115 5 654 86% 17 275 57% 5 698 86% 11 243 72% 5 837 85%

Document XML 1.0 XML 1.0
/WZ UPER UPER

/WZ UPER/C UPER/C
/WZ

much_ado.xml 202 044 53 630 73% 140 494 30% 58 939 71% 66 857 67% 48 289 76%
periodic.xml 113 368 8 974 92% 30 471 73% 13 741 88% 19 058 83% 12 259 89%
soap2.xml 133 840 4 896 96% 39 753 70% 8 294 94% 32 631 76% 6 361 95%
xml.xml 157 481 44 419 72% 122 286 22% 53 871 66% 50 231 68% 46 058 71%
sfs.xml 40 115 5 654 86% 15 430 62% 7 326 82% 9 384 77% 7 242 82%

The column headings of Table 3 have the following meanings:

• XML 1.0: same as in Table 1;
• XML 1.0/WZ: "packed" size as reported by WinZip 8.1 for the XML 1.0 serialization when

included in a WinZip archive;
• APER: same as in Table 1;
• APER/WZ: "packed" size as reported by WinZip 8.1 for the Aligned PER encoding when

included in a WinZip archive;
• UPER: same as in Table 1;
• UPER/WZ: "packed" size as reported by WinZip 8.1 for the Unaligned PER encoding when

included in a WinZip archive;
• APER/C: same as in Table 1;
• APER/C/WZ: "packed" size as reported by WinZip 8.1 for the Aligned PER encoding with a

bzip2-compressed component-strings table when included in a WinZip archive;
• UPER/C: same as in Table 1;
• UPER/C/WZ: "packed" size as reported by WinZip 8.1 for the Unaligned PER encoding

with a bzip2-compressed component-strings table when included in a WinZip archive.

Table 4 contains the speed results. For each document, the table shows multiple measurements of
the duration of the following operations:

Table 4
Without compression of unique strings With compression of unique strings

Document Operation M1 M2 M3 M4 Average

Parsing
or

decoding
(indirect)

M1/C M2/C M3/C M4/C Average/C

much_ado.xml
Copy infoset tree 50 49 50 51 50 51
Read XML into infoset tree 82 78 83 87 83 33 83 80 82 84 82
Read PER into infoset tree 71 67 64 66 67 18 121 116 118 115 118
Write XML from infoset tree 31 29 29 32 30 31 29 29 29 30
Write PER from infoset tree 23 24 24 24 24 176 177 179 180 178

periodic.xml
Copy infoset tree 31 35 33 31 35 33
Read XML into infoset tree 55 60 61 56 58 25 56 60 61 59 59
Read PER into infoset tree 40 46 48 44 45 12 66 72 70 74 71
Write XML from infoset tree 18 19 21 18 19 18 17 19 17 18
Write PER from infoset tree 14 15 15 16 15 77 78 77 76 77

soap2.xml
Copy infoset tree 55 52 54 55 52 54
Read XML into infoset tree 104 99 101 103 102 48 104 99 99 106 102
Read PER into infoset tree 72 66 67 68 68 15 96 91 92 92 93
Write XML from infoset tree 27 27 28 29 28 27 27 30 29 28
Write PER from infoset tree 20 20 20 22 21 76 74 75 75 75

xml.xml
Copy infoset tree 37 40 39 37 41 39
Read XML into infoset tree 65 69 71 66 68 29 66 68 71 68 68
Read PER into infoset tree 52 54 57 57 55 17 99 102 103 100 101
Write XML from infoset tree 22 24 22 22 23 22 22 21 22 22
Write PER from infoset tree 18 18 20 18 19 167 166 169 166 167

• Copy tree: a copy of an infoset tree (previously created from an XML 1.0
document) is created in memory;

• Read XML into infoset tree: an XML 1.0 document is parsed and the
corresponding infoset tree is created in memory;

• Read PER into infoset tree: the (Aligned or Unaligned) PER encoding of an
ASN.1 infoset schema abstract value is decoded and the corresponding infoset
tree is created in memory;

• Write XML from infoset tree: the content of an infoset tree in memory is
serialized into an XML 1.0 document;

• Write PER from infoset tree: the content of an infoset tree in memory is converted
to an ASN.1 infoset schema abstract value which is then encoded in (Aligned or
Unaligned) PER.

The values in Table 4 are durations, expressed in milliseconds, taken from a single
execution of the test program. Multiple executions of the test program have resulted in
values that are subjectively very close to these values. The column headings of table4
have the following meanings:

• Operation: one of: "Copy tree", "Read XML into infoset tree", "Read PER into
infoset tree", "Write XML from infoset tree", "Write PER from infoset tree";

• M1, M2, M3, M4: each of these is an average duration (milliseconds) calculated
over a series of 40 invocations of the corresponding operation. Each of the four
average values reflects slightly different conditions (the order of invocation of the
five operations on the five documents is different in each case). These values are
individually reported because they have been observed consistently when running
the test program many times.

• Average: the average of M1, M2, M3, and M4.
• Parsing or decoding (indirect): for the "Read XML into infoset tree" operation, the

difference between the average time for reading an XML document into an infoset
tree and the average time for duplicating an infoset tree in memory. For the "Read
PER into infoset tree" operation, the difference between the average time for
reading a PER encoding into an infoset tree and the average time for duplicating
an infoset tree in memory. These values provide a hint about the relative speed of
parsing XML vs. decoding PER, based on the assumption that the time spent to
build the infoset tree in memory is approximately the same in both cases.

• M1/C, M2/C, M3/C, M4/C: each of these is an average duration (milliseconds)
calculated over a series of 40 invocations of the corresponding operation, with
bzip2 compression applied to the component-strings table.

• Average/C: the average of M1/C, M2/C, M3/C, and M4/C.

3.5 Conclusion
The results show a general read and write speed improvement over the processing of
XML 1.0 documents when compression is not used.

The read speed improvement is probably limited (in relative terms) by the additional time
needed for building the infoset tree in memory, which takes place both when reading an
XML document and when reading a PER encoding of the infoset. It would be useful to
investigate whether it is possible to implement a SAX interface over the ASN.1
representation avoiding the creation of the infoset tree in memory. In this way, a client
application would interact with the ASN.1 infoset processor across a SAX interface and
would probably experience a higher speed than when using a regular SAX parser reading
an XML 1.0 document.

When the bzip2 compression option is used, the PER read and write speed is lower than
the speed of reading and writing XML 1.0, respectively. Since the size reduction due to
compression is usually significant, there is a trade-off between speed and the use of
compression.

Notice, however, that the ASN.1 infoset schema allows compression to be applied to the
unique strings of the infoset, or to a subset of them, or even to multiple subsets
independently. Although the test program does not currently support selective use of
compression, it would be possible to optimize both size and speed of the ASN.1
representation by applying compression selectively to a subset of the strings. For
example, certain larger XML documents may not need to be processed in all of their parts
by all reader applications in all cases, so a compressed subset could remain compressed
by default and be "lazily" decompressed only when needed. In such cases, there would be
a significant size reduction without a corresponding speed penalty.

References
[1]

XML Information Set, W3C Recommendation - 24 October 2001,
http://www.w3.org/TR/xml-infoset.

[2]
Information Technology - Abstract Syntax Notation One (ASN.1): Specification of
Basic Notation, International standard ITU-T Rec. X.680 (2002) | ISO/IEC 8824-
1:2002,
http://www.itu.int/ITU-T/studygroups/com17/languages/X.680-
0207.pdf.

[3]
Information Technology - Abstract Syntax Notation One (ASN.1): Information
Object Specification, International standard ITU-T Rec. X.681 (2002) | ISO/IEC
8824-2:2002,

http://www.w3.org/TR/xml-infoset
http://www.itu.int/ITU-T/studygroups/com17/languages/X.680-0207.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.680-0207.pdf

http://www.itu.int/ITU-T/studygroups/com17/languages/X.680-
0207.pdf.

[4]
Information Technology - Abstract Syntax Notation One (ASN.1): Constraint
Specification, International standard ITU-T Rec. X.682 (2002) | ISO/IEC 8824-
3:2002,
http://www.itu.int/ITU-T/studygroups/com17/languages/X.682-
0207.pdf.

[5]
Information Technology - Abstract Syntax Notation One (ASN.1) :
Parameterization of ASN.1 Specifications, International standard ITU-T Rec.
X.683 (2002) | ISO/IEC 8824-4:2002,
http://www.itu.int/ITU-T/studygroups/com17/languages/X.683-
0207.pdf.

[6]
Information Technology - Abstract Syntax Notation One (ASN.1) : Encoding
Rules : Basic Encoding Rules (BER), Canonical Encoding Rules (CER), and
Distinguished Encoding Rules (DER), International standard ITU-T Rec. X.690
(2002) | ISO/IEC 8825-1:2002,
http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-
0207.pdf.

[7]
Information Technology - Abstract Syntax Notation One (ASN.1): ASN.1
Encoding Rules: Specification of Packed Encoding Rules (PER), International
standard ITU-T Rec. X.691 (2002) | ISO/IEC 8825-2:2002,
http://www.itu.int/ITU-T/studygroups/com17/languages/X.691-
0207.pdf.

[8]
Information Technology - Abstract Syntax Notation One (ASN.1): ASN.1
Encoding Rules: Specification of Encoding Control Notation (ECN), International
standard ITU-T Rec. X.691 (2002) | ISO/IEC 8825-2:2002,
http://www.itu.int/ITU-T/studygroups/com17/languages/X.692-
0207.pdf.

[9]
Information Technology - Abstract Syntax Notation One (ASN.1): ASN.1 encoding
rules: XML encoding rules (XER), International standard ITU-T Rec. X.693
(2001) | ISO/IEC 8825-4:2002,
http://www.itu.int/ITU-T/studygroups/com17/languages/X.693-
0112.pdf.

http://www.itu.int/ITU-T/studygroups/com17/languages/X.681-0207.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.681-0207.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.682-0207.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.682-0207.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.683-0207.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.683-0207.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.691-0207.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.691-0207.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.692-0207.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.692-0207.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.693-0112.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.693-0112.pdf

Appendix A ASN.1 specification used in
the tests of the ASN.1 Schema for the
XML Information Set
The ASN.1 specification used in this test is slightly different from the one contained in
OSS Nokalva's contribution to the ISO/ITU-T. The reason of this is that the creation of
the test program began before the contribution was submitted and because a few small
changes have been made to the ASN.1 specification but are yet to be reflected in the
ISO/ITU-T document. However, it is believed that the differences in the ASN.1
specifications, when the ISO/ITU-T document is updated, will not result in significant
differences in the speed and size of the PER encoding.

Infoset DEFINITIONS AUTOMATIC TAGS ::= BEGIN

--Referenced by: none--
Document ::= SEQUENCE {
 children SEQUENCE OF CHOICE {
 element Element,
 processing-instruction ProcessingInstruction,
 comment Comment,
 document-type-declaration DocumentTypeDeclaration },

 notations SEQUENCE OF Notation,
 unparsed-entities SEQUENCE OF UnparsedEntity,
 base-URI URIOrIndex OPTIONAL,
 character-encoding-scheme StringOrIndex,
 standalone BOOLEAN OPTIONAL,
 version StringOrIndex OPTIONAL,
 all-declarations-processed BOOLEAN,

 component-strings SEQUENCE OF SEQUENCE {
 compression-algorithm URI,
 component-strings-compressed-block OCTET STRING },

 common-names SEQUENCE OF SEQUENCE {
 namespace-name CHOICE {
 namespace-name URIOrIndex,
 same-as-previous-item NULL } OPTIONAL,

 local-name NCNameOrIndex,

 prefix CHOICE {
 prefix NCNameOrIndex,
 same-as-previous-item NULL } OPTIONAL }
}

--Referenced by: Document, Element--
Element ::= SEQUENCE {
 name CHOICE {
 name SEQUENCE {
 namespace-name CHOICE {

 namespace-name URIOrIndex,
 same-as-parent-element NULL } OPTIONAL,

 local-name NCNameOrIndex,
 prefix NCNameOrIndex OPTIONAL },

 common-name-index SmallIndex },

 children CHOICE {
 element-content-characters StringOrIndex,

 children SEQUENCE (SIZE(0 .. 3, ..., 0 .. MAX)) OF CHOICE {
 element Element,
 processing-instruction ProcessingInstruction,
 unexpanded-entity-reference UnexpandedEntityReference,
 characters Characters,
 comment Comment } },

 attributes SEQUENCE (SIZE(1 .. 4, ..., 1 .. MAX)) OF Attribute
OPTIONAL,
 namespace-attributes SEQUENCE (SIZE(1 .. 4, ..., 1 .. MAX)) OF
Attribute OPTIONAL,

 in-scope-namespaces CHOICE {
 in-scope-namespaces SEQUENCE OF Namespace,
 same-as-parent-element NULL },

 base-URI CHOICE {
 base-URI URIOrIndex,
 same-as-parent-element NULL } OPTIONAL
}

--Referenced by: Element--
Attribute ::= SEQUENCE {
 name CHOICE {
 name SEQUENCE {
 namespace-name CHOICE {
 namespace-name URIOrIndex,
 same-as-owner-element NULL,
 same-as-previous-attribute NULL } OPTIONAL,

 local-name NCNameOrIndex,
 prefix NCNameOrIndex OPTIONAL },

 common-name-index SmallIndex },

 normalized-value StringOrIndex,
 specified BOOLEAN OPTIONAL,

 attribute-type CHOICE {
 attribute-type AttributeType,
 unknown NULL } OPTIONAL,

 references CHOICE {
 element-indexes SEQUENCE OF RELATIVE-OID,
 unparsed-entity-indexes SEQUENCE OF SmallIndex,
 notation-index SmallIndex,

 unknown NULL } OPTIONAL
}

--Referenced by: Document, Element, DocumentTypeDeclaration--
ProcessingInstruction ::= SEQUENCE {
 target NCNameOrIndex,
 content StringOrIndex,

 base-URI CHOICE {
 base-URI URIOrIndex,
 same-as-parent NULL },

 notation CHOICE {
 notation-index SmallIndex,
 unknown NULL } OPTIONAL
}

--Referenced by: Element--
UnexpandedEntityReference ::= SEQUENCE {
 name NCNameOrIndex,

 system-identifier CHOICE {
 system-identifier URIOrIndex,
 unknown NULL } OPTIONAL,

 public-identifier CHOICE {
 public-identifier URIOrIndex,
 unknown NULL } OPTIONAL,

 declaration-base-URI CHOICE {
 declaration-base-URI URIOrIndex,
 unknown NULL } OPTIONAL
}

--Referenced by: Element--
Characters ::= SEQUENCE {
 characters CHOICE {
 characters StringOrIndex,
 binary-block OCTET STRING },

 element-content-whitespace BOOLEAN
}

--Referenced by: Document, Element--
Comment ::= SEQUENCE {
 content StringOrIndex
}

--Referenced by: Document--
DocumentTypeDeclaration ::= SEQUENCE {
 system-identifier URIOrIndex OPTIONAL,
 public-identifier URIOrIndex OPTIONAL,
 children SEQUENCE OF ProcessingInstruction
}

--Referenced by: Document--
UnparsedEntity ::= SEQUENCE {

 name NCNameOrIndex,
 system-identifier URIOrIndex OPTIONAL,
 public-identifier URIOrIndex OPTIONAL,
 declaration-base-URI URIOrIndex OPTIONAL,
 notation-name NCNameOrIndex,

 notation CHOICE {
 notation-index SmallIndex,
 unknown NULL } OPTIONAL
}

--Referenced by: Document--
Notation ::= SEQUENCE {
 name NCNameOrIndex,
 system-identifier URIOrIndex OPTIONAL,
 public-identifier URIOrIndex OPTIONAL,
 declaration-base-URI URIOrIndex OPTIONAL
}

--Referenced by: Element--
Namespace ::= SEQUENCE {
 prefix NCNameOrIndex OPTIONAL,
 namespace-name URIOrIndex
}

StringOrIndex ::= CHOICE {
 string UTF8String,
 component-string-index LargeIndex }

URIOrIndex ::= CHOICE {
 uri URI,
 component-string-index LargeIndex }

NCNameOrIndex ::= CHOICE {
 ncname NCName,
 component-string-index LargeIndex }

NCName ::= UTF8String

URI ::= UTF8String

SmallIndex ::= INTEGER (0 .. 15, ..., 0 .. MAX)

LargeIndex ::= INTEGER (0 .. 2047, ..., 0 .. MAX)

AttributeType ::= ENUMERATED {
 id,
 idref,
 idrefs,
 entity,
 entities,
 nmtoken,
 nmtokens,
 notation,
 cdata,
 enumeration
}

END

	1. Introduction
	2. Binary representation of XML documents using X.694
	2.1 X.694
	2.2 Performance test
	2.2.1 Compression test
	2.2.2 Speed test
	2.2.3 Results of the tests
	a. RANAP, UncompSize = 1546
	�
	b. UBL, UncompSize = 36769, averaged on 11 instances
	�
	c. UDDI, UncompSize = 2422, averaged on 13 instances
	�
	d. UDS, UncompSize = 4063, averaged on 12 instances
	�

	2.2.4 Discussion of the results
	2.2.4.1 Compression results
	�
	The schemas for RANAP and UDS contain types that
	The schemas for UDDI and UBL contain types that h
	For the schemas that are added “optimum” constrai
	In all the tests performed, PER+Zlib gives better results than Zlib alone. Using PER and Zlib together allows getting the best from each of the two methods. The constrained types exhibit very good compression when encoded by PER, and Zlib later perform
	2.2.4.2 Time results
	a. Encoding time without compression
	�
	This graph (in logarithmic scale) shows that using the OSS PER encoder for building a PER message from in-memory data structures is more efficient than using DOM or SAX for building an XML message from the same in-memory data structures.
	b. Encoding time with compression
	�
	This graph shows that using the OSS PER encoder for building a PER message from in-memory data structures and then compressing the PER-encoded message with Zlib is faster than building an XML message from the same in-memory data structures using DOM or S
	c. Decoding time without compression
	�
	This graph shows that building in-memory data structures from a PER message using the OSS PER decoder is faster than using DOM or SAX for building the same in-memory structures from an XML message.
	The graph also shows that the time required to parse an XML instance using SAX with empty event handlers (no data structures built) is longer than the time required for the whole decoding process (parsing plus building in-memory data structures) usin
	d. Decoding time with compression
	�
	This graph shows that decompressing a compressed PER-encoded message using Zlib and building in-memory data structures from the PER-encoded message using the OSS PER decoder is faster than decompressing a compressed XML message and building in-memory dat

	3. Binary representation of XML documents using
	3.1 X.695
	3.2 ASN.1 Schema for the XML Information Set
	3.2.1 About ASN.1
	3.2.2 Description of the ASN.1 Schema for the XM�

	3.3. Description of the test program
	3.4 Test results
	3.4.1 Discussion of the results

	3.5 Conclusion

	References
	Appendix A ASN.1 specification used in the tes�

