
XML Binary Serialization using Cross-Format Schema Protocol (XFSP)
and XML Compression Considerations for Extensible 3D (X3D) Graphics

Don Brutzman and Don McGregor, Naval Postgraduate School, Monterey California USA

Alan Hudson, Yumetech Inc., Seattle Washington USA

28 September 2003

1. What work has your organization done in this area? (We are particularly interested in
measurements!)
The NPS Cross-Format Schema Protocol (XFSP) has been developed as a general approach

to binary serialization of XML documents. Elements and attributes are replaced via a
tokenization scheme which carefully preserves valid XML document structure. XFSP uses
XML schema as the basis for determining key document parameters such as legal elements,
attributes and data types. Originally motivated by the flexible definition of networking
protocols, binary serialization of XML via XFSP appears suitable both for message streams and
document-storage streams.

An open-source XFSP software implementation written in Java demonstrates the viability of
the XFSP approach for XML document serialization and deserialization. Compression
measurements using Virtual Reality Modeling Language (VRML 97) scenes have shown
expected compression results:

• XML encoding of non-XML data (e.g. translation of VRML .wrl scenes into .x3d
documents) typically increases file size

• XML-aware compression of XML encoded data (in this case via XFSP) provides
superior compression to gzip compression of the original data. This occurs because
the regularity of document structure is more exploitable than alphanumeric patterns.

• Deserialization of compressed XML as in-memory data structures provides higher
performance since a second parse of string-based data is not required.

Looking ahead, the Web3D Consortium’s X3D Specification Team has released a Request
for Proposals (RFP) for an Extensible 3D (X3D) Graphics Compressed Binary Encoding. This
effort expects to compose geometric compression techniques with XML-capable binary
serialization. This X3D encoding intends to preserve additional markup such as XML signature,
XML encryption and other metadata. Thus we expect that W3C normalization of XML binary
compression techniques might have significant value, for X3D and other XML-based languages.

The attached white paper and various references provide significant additional detail on both
XFSP and X3D Compressed Binary Encoding. (Please note that XFSP is not guaranteed to
become part of X3D, but it has been offered for consideration as a baseline framework.)

 1

2. What goals do you believe are most important in this area? (e.g. reducing bandwidth
usage; reducing parse time; simplifying APIs or data structures, or other goals)
Binary file size, reduced transmission time and reduced parsing/loading time are all

important priorities for this work. The X3D Binary Encoding Request for Proposals (RFP) lists 10
considerations, all of which appear to be composable. They are excerpted as follows. The
interoperability requirements for X3D (points 1 and 2) establish the context for these requirements.
Nevertheless X3D requirements are not unusual. Thus we expect that all of these points might
suitably apply (in varying degrees) to most other XML-based languages.

1. X3D Compatibility. The compressed binary encoding shall be able to encode all of the abstract functionality

described in X3D Abstract Specification.
2. Interoperability. The compressed binary encoding shall contain identical information to the other X3D encodings

(XML and Classic VRML). It shall support an identical round-trip conversion between the X3D encodings.
3. Multiple, separable data types. The compressed binary encoding shall support multiple, separable media data

types, including all node (element) and field (attribute) types in X3D. In particular, it shall include geometric
compression for the following.

o Geometry - polygons and surfaces, including NURBS
o Interpolation data - spline and animation data, including particularly long sequences such as motion

capture (also see Streaming requirement)
o Textures - PixelTexture, other texture and multitexture formats (also see Bundling requirement)
o Array Datatypes - arrays of generic and geometric data types
o Tokens - tags, element and attribute descriptors, or field and node textual headers

4. Processing Performance. The compressed binary encoding shall be easy and efficient to process in a runtime
environment. Outputs must include directly typed scene-graph data structures, not just strings which might then need
another parsing pass. End-to-end processing performance for construction of a scene-graph as in-memory typed data
structures (i.e. decompression and deserialization) shall be superior to that offered by gzip and string parsing.

5. Ease of Implementation. Binary compression algorithms shall be easy to implement, as demonstrated by the
ongoing Web3D requirement for multiple implementations. Two (or more) implementations are needed for eventual
advancement, including at least one open-source implementation.

6. Streaming. Compressed binary encoding will operate in a variety of network-streaming environments, including http
and sockets, at various (high and low) bandwidths. Local file retrieval of such files shall remain feasible and
practical.

7. Authorability. Compressed binary encoding shall consist of implementable compression and decompression
algorithms that may be used during scene-authoring preparation, network delivery and run-time viewing.

8. Compression. Compressed binary encoding algorithms will together enable effective compression of diverse
datatypes. At a minimum, such algorithms shall support lossless compression. Lossy compression alternatives may
also be supported. When compression results are claimed by proposal submitters, both lossless and lossy
characteristics must be described and quantified.

9. Security. Compressed binary encoding will optionally enable security, content protection, privacy preferences and
metadata such as encryption, conditional access, and watermarking. Default solutions are those defined by the W3C
Recommendations for XML Encryption and XML Signature.

10. Bundling. Mechanisms for bundling multiple files (e.g. X3D scene, Inlined subscenes, image files, audio file, etc.)
into a single archive file will be considered.

11. Intellectual Property Rights (IPR). All technology submissions must follow the predeclaration requirements of the
Web3D Consortium IPR policy in order to be considered for inclusion.

X3D Compressed Binary Encoding Requirements

 2

http://www.w3.org/Encryption
http://www.w3.org/Signature
http://www.web3d.org/aboutus/ipr.html

3. What sort of documents have you studied the most? (e.g. gigabyte-long relational
database table dumps; 20-MByte telephone exchange repair manuals; 2 KByte
web-service requests)
A variety of document sizes and purposes are expected.

• Short messages, such as agent-to-agent invocations, chat or web service requests

• Moderate documents, such as typical 3D scenes (5..100 KB)

• Large static scenes, such as compressed terrain

• Large streams, such as motion-capture data (positions and orientations for joints and
limb segments)

4. What sorts of applications did you have in mind?
We are great fans of text-based XML encodings. Nevertheless a large variety of

applications might benefit from the availability of compatible alternatives that preserve the
XML Infoset capabilities of XML documents within a binary encoding.

• Bandwidth-sensitive applications

• Applications that are slow to execute due to parsing large data documents

• Noisy network links, such as radio or acoustic communications, which can benefit from
imposition of forward error correction (FEC) of compressed binary data

5. If you implemented something, how did you ensure that internationalization and
accessibility were not compromised?

We have not done yet performed specific testing of internationalization (I181N) and Web
Accessibility Initiative (WAI) requirements. Nevertheless, XFSP appears suitable for both due
to the following reasons:

• Compressed form preserves XML document structure and validability.

• Full support provided for element and attribute information, as defined in XML Schema.

• Given multiple schemas of interest, namespace awareness and multiple-namespace
support can be added to the serialization/deserialization algorithms without difficulty.
Namespace-support implementation is planned as upcoming work.

• Datatype-specific compression algorithms for Unicode character data payloads are
available (e.g. gzip). If further optimization is desired, specialty compression algorithms
might conceivably be substituted using similar extensibility mechanisms as defined in
XML Signature and XML Encryption.

 3

6. How does your proposal differ from using gzip on raw XML?
Gzip primarily exploits alphanumeric character patterns to compress/decompress strings.

XFSP takes advantage of XML document structure by tokenizing elements and attributes,
providing greater optimizability. XFSP then takes advantage of datatype-specific compression
possibilities. One simple example of compression advantage is conversion of long floating-
point or double-precision alphanumeric strings into IEEE floats and doubles. Thus a further
XFSP advantage is direct creation of in-memory data structures, eliminating the gzip
requirement for further string-based parsing.

7. Does your solution work with any XML? How is it affected by choice of Schema
language? (e.g. W3C XML Schema, DTD, Relax NG)
The XFSP approach can work with any well-defined XML tagset.

• XFSP utilizes W3C XML Schema definitions directly to determine the compression
scheme.

• Extending XFSP to DTDs is a simple matter. However payload datatypes would all
have to be treated as strings, leaving element/attribute tokenization as the primary
benefit. In practice we expect to produce type-aware schemas corresponding to legacy
DTDs whenever such binary compression is desired.

• We have not yet attempted to apply XFSP to Relax NG.

8. How important to you are random access within a document, dynamic update and
streaming, and how do you see a binary format as impacting these issues?
There are a number of streaming-related issues. In general, it seems best to consider binary
XML compressed documents as streams, best suited for network or file-system streaming.
Seen from this perspective, binary-XML streams are a likely basis for networking protocols.

• Random access within a document remains important, but does not necessarily have to
be performed within the binary format itself. Certainly IDs must be preserved and valid
XPath expressions ought to remain consistent. Anything less than preservation of XML
Infoset information needs to be avoided, except perhaps as an author-selectable option.
Random access can be performed within an XFSP-compressed document. Random
access with modification (deletion, addition or some other dynamic update) can also be
implemented, but might not be worth specifying since such operations are better
performed using in-memory data structures.

• Dynamic update of a document within the confines of a specific binary encoding does
not seem to be of particular importance. Based on long experience with a large number
of VRML/X3D run-time engines, each of which critically depends on system
performance, deserialization to create application-specific in-memory data structures is
much more desirable than creation of “standard” data structures. Thus application
demand for a “Binary Document Object Model (BDOM)” seems unlikely to occur soon.

 4

• Dynamic update of a protocol itself provides interesting new challenges. Two of the
original motivations for NPS research into XFSP were to simplify the creation of
customized network protocols, and to permit run-time optimization of such protocols.
Schema-based protocol generation can be implemented in several ways: run-time
creation of data-binding objects, or autogeneration and autocompilation of
corresponding source code. In either approach, using a componentization approach
permits run-time loading of new protocol objects. Thus such flexibility is possible, even
though it is not of much practical use for stably defined tagsets. We expect such a
run-time replacement capability to be useful when optimizing protocols during extended
real-world testing. Conceivably such flexibility can also be applied in “always on”
virtual worlds where new entities with new behaviors (and corresponding new protocols)
are being created and then joining existing shared worlds.

• Streaming in X3D is considered important for several cases. Streaming audio and video
are both key capabilities in multimedia scenes. X3D connects such streams via url fields
or customized Script nodes. 3D-specific animation is also a streaming goal, for example
the ongoing transport of prerecorded (or live, or autogenerated) motion-capture data.
Certain geometric algorithms such as continuous mesh refinement or continuous level of
detail (CLOD) have also been demonstrated in commercial products and the academic
literature. Synchronization of diverse multimedia streams via Synchronized Multimedia
Integration Language (SMIL). Such capabilities have not yet been decided upon for
X3D, and are candidates for consideration under the X3D Compressed Binary Encoding
RFP process.

9. References.

a. [Serin 2003] Serin, Ekrem, Design and Test of the Cross-Format Schema Protocol
(XFSP) for Networked Virtual Environments, Master’s Thesis, Naval Postgraduate
School, Monterey California USA, March 2003. Thesis available at
http://theses.nps.navy.mil/03Mar_Serin.pdf, abstract at
http://www.web3d.org/WorkingGroups/x3d-contributors/hypermail/2003/0243.html

b. [X3D RFP 2003] X3D Specification Team, X3D Compressed Binary Encoding
Request For Proposals (RFP), Web3D Consortium, July 29 2003. Available at
http://www.web3d.org/TaskGroups/x3d/X3dBinaryRFP.html

c. Call for Participation, W3C Workshop on Binary Interchange of XML Information
Item Sets. http://www.w3.org/2003/07/binary-xml-cfp.html

d. XFSP sample implementation, http://sourceforge.net/projects/npsnetv

 5

http://theses.nps.navy.mil/03Mar_Serin.pdf
http://www.web3d.org/WorkingGroups/x3d-contributors/hypermail/2003/0243.html
http://www.web3d.org/TaskGroups/x3d/X3dBinaryRFP.html
http://www.w3.org/2003/07/binary-xml-cfp.html
http://sourceforge.net/projects/npsnetv

10. Contacts.

Don Brutzman
Code UW/Br
Naval Postgraduate School
Monterey California 93943 USA
work +1.831.656.2149
fax +1.831.656.7599
brutzman@nps.navy.mil
http://web.nps.navy.mil/~brutzman

Don McGregor
Code MV/Mc
Naval Postgraduate School
Monterey California 93943
work +1.831.656.7650
fax +1.831.656.7599
mcgredo@nps.navy.mil

Alan Hudson
President, Yumetech Inc.
999 Third Avenue, Suite 3800
Seattle, WA 98104-4023 USA
work +1.206.340.8900
fax +1.206.328.2246
info@yumetech.com
http://www.yumetech.com

Background whitepaper follows with details, continued implementation is in progress.

 6

mailto:brutzman@nps.navy.mil
http://web.nps.navy.mil/~brutzman
mailto:mcgredo@nps.navy.mil
mailto:info@yumetech.com
http://www.yumetech.com/

Cross-Format Schema Protocol (XFSP) for Binary Serialization of XML
 NPS has been working for several years on a binary encoding of general XML documents
and languages, intended for rapid prototyping of network protocols in support of large-scale virtual
environments (LSVEs). This section summarizes the Cross-Format Schema Protocol (XFSP)
technical approach, which can provide a compatible binary encoding for X3D.

 Originally called Dynamic Behavior Protocol, the original approach was to define a packet-
definition language in XML. Such a language might easily be used to define the packet payloads
used by network protocols, then parsed by a network handler which did the necessary work of
reading and writing protocols conforming to the format. This original version was implemented and
working in October 2002. An important insight was then realized by Andrzej Kapolka, Ekrem
Serin and Don McGregor of NPS. It turns out that XML Schema already supports most of the data-
structure information needed for a packet description language. We mapped out an approach for
doing so, renaming this work the Cross-Format Schema Protocol (XFSP). XFSP was implemented
in November 2002 and demonstrated at the IITSEC conference in December 2002.

A simple description of the XFSP algorithm for binary serialization follows.

XML elements are represented both by open-tag and close-tag tokens. This allows rapid
regeneration of the original tree-like document structure.

•

•

•

•

•

XML attributes represented by single tokens, in same namespace as elements.

Payload data for attributes and element content is type dependent, occupies predictable
lengths between tokens. Array types are preceded by field-length integers.

Payload compression is type specific, e.g. long integers, floats, doubles, etc.

Use of Canonical XML form (in combination with XML validation) can ensure that
documents (i.e. messages) are compressed consistently, independent of arbitrary whitespace
characters, apostrophe/quotation mark attribute delimitations, attribute ordering, etc.
http://www.w3.org/TR/xml-exc-c14n

 A valuable test of the protocol occurred when NPS masters students studying advanced
XML took the IEEE DIS Specification, encoded the Entity State PDU (ESPDU) as an XML
schema, and created an XFSP reader/writer all within one day. Such DIS implementation work
originally took about a year. Since then, the students in the NPS MV4250 Advanced XML course
have implemented approximately 3 dozen distinct PDUs. This process means that rapid generation
of network protocols specifically tuned for special applications can be quickly produced merely
through rigorous data-structure definition via XML schema. Similarly and more generally, any
document format defined by XML schema can have a network protocol defined for it.

 7

http://www.w3.org/TR/xml-exc-c14n

 The basic approach for the XFSP application support proceeds as follows:

XFSP reads an XML schema for an arbitrary tagset •

•

•

•

•

XFSP thereby produces a packet reader/writer which can handle any valid document
corresponding to the XML schema

Packets are in binary form, using tokens for elements/attributes and serialization of payload
data

Unambiguous efficient tokenization/serialization/deserialization/reconstitution

In addition to these already-significant advances, XFSP is also appropriate for production
and reading of binary file formats. In some sense, this capability is obvious: a file stream can be
serialized as a networked stream, and vice versa. In another sense, XFSP provides surprising new
capabilities: legacy binary file formats that are otherwise inaccessible might be quickly exposed
and manipulated, both for use by XML tools and as networking protocols. Such is the case even for
some binary formats where such interoperability was not originally intended.

Further potential benefits for future implementations utilizing XFSP follow.

Since the documents are in XML, they are well structured and suitable for further
compression. The XMill project (online at http://www.research.att.com/sw/tools/xmill) has
some interesting studies on this topic. Arbitrary documents may grow when converted to
XML, but then compress better than the gzipped original.

XML format allows simultaneous use of XML Encryption and XML Signature
(i.e. Authentication), both in W3C Recommendation (i.e. approved) status.
http://www.w3.org/Encryption http://www.w3.org/Signature

•

XML format allows integration of other metadata, such as Resource Description Framework
(RDF). http://www.w3.org/RDF

•

Properly adapted, the binary encoding appears to be suitable both as a file format and also
for network delivery (e.g. scene streaming, progressive rendering, event delivery, etc.)

•

• XFSP-derived network protocols (and corresponding binary file formats) are suitable for
independent implementation in any network- or file-capable programming language.

The current version of XFSP source and final thesis describing this work [Serin 2003] are
online at the open-source support site SourceForge. Detailed finite state machines (FSMs) on
serialization/deserialization and extensive other details are included.

http://sourceforge.net/projects/npsnetv

Ongoing XFSP work continues to produce interesting new insights and capabilities.

 8

http://www.research.att.com/sw/tools/xmill
http://www.w3.org/Encryption
http://www.w3.org/Signature
http://www.w3.org/RDF
http://sourceforge.net/projects/npsnetv

[X3D ISO-19776 2003] X3D Compressed Binary Encoding Opportunities using XFSP
 The Cross-Format Schema Protocol (XFSP) work provides a suitable basis for generation of
a binary protocol (and hence binary file format) for X3D. The details of this approach are explored
in Chapter 6 of the [Serin 2003] thesis. NPS has proposed the X3D schema serialized via XFSP as
the basis for an X3D Compressed Binary Encoding.

The primary goals of the possible approaches to Compressed Binary X3d are as follows:

smaller X3D files •

•

•

•

faster loading at run-time

streaming, for incremental loading, incremental additions and also subgraph replacement

all other points in the X3D Binary Requirements Request for Proposals (RFP) which is
available online at http://www.web3d.org/TaskGroups/x3d/X3dBinaryRFP.html

Interestingly, this approach was previously deferred while other X3D requirements were
met. A composite solution which simultaneously harmonizes all of these sometimes-competing
requirements now appears to be technically feasible.

Additional considerations follow for tuning XFSP to best support an X3D binary encoding.

XML Encryption and XML Signature provide default royalty-free (RF) algorithms but also
allow specification of alternate algorithms. This technique might again be applied in an
X3D binary encoding to allow both open and extensible algorithms for geometry
compression, quantization, encryption etc.

•

•

•

•

•

•

Major performance speedups are expected over gzip during binary scene loading, since the
binary structures are directly ready for immediate insertion into scene-graph data structures
in memory. No further character-based parsing is needed for numeric fields.

Fixing the token set values assigned to X3D nodes and fields permits immediate streamed
deserialization upon commencing loading/receipt.

Example XFSP implementation of Binary X3D is offered using Java. Even better
performance might be achieved through a tuned X3D-binary implementation, rather than an
XFSP implementation capable of general XML.

Tuned X3D-XML implementations might be adapted to handle VRML encoding directly.
Alternatively, 1-1 translation to X3D's XML encoding allows corresponding usage by
VRML encoding also.

XFSP and an X3D binary encoding are offered by NPS under royalty-free terms in
accordance with the Web3D Consortium Intellectual Property Rights (IPR) Policy
http://www.web3d.org/aboutus/ipr.html [Web3D 2001]

Quantization tables (i.e. indexed lookup of common/averaged values) will likely be allowed.
This is particularly practical for high-resolution floating-point types that might actually
consist of few discernibly different values.

•

 9

http://www.web3d.org/TaskGroups/x3d/binary/X3dBinaryRFP.html
http://www.web3d.org/aboutus/ipr.html

Further typing may be applied for special geometry-related types like Color, Normal,
coordinates, indices, pixelTexture definitions, enumerations, unique-identifier UUID values
(e.g. for CAD3D), etc. Thus special typing (or type extensibility) might support specialty
compression components on a geometric-type by geometric-type basis.

•

• Separate namespaces for prototype/field names and DEF/IDs.

Initial Compression Results for X3D Binary Encoding
Initial binary compression capabilities for X3D are demonstrated in the [Serin 2003] XFSP

thesis. Thesis excerpts and experimental results follow.

In order to effectively measure the efficiency of X3D binary serialization, a representative
yet computationally demanding example was needed. Since the teapot has long been a canonical
test example used in the historic development computer graphics, a teapot model was created in
X3D. The following figures respectively show this scene in X3D-Edit and rendered as VRML in
the Cortona browser [Parallel Graphics 2003]. The teapot example scene provides a geometrically
demanding exemplar for binary compression.

 10

Teapot geometry is a large single IndexedFaceSet, rendered in Cortona VRML browser
[Parallel Graphics 2003].

The following uncompressed and compressed file formats are examined in [Serin 2003] to
compare relative effectiveness at the initial XFSP binary-serialization. Corresponding compression
results appear in the following figure.

x3d : X3D File Format •

•

•

•

•

•

wrl : VRML97 File Format

b3d : Binary X3D File Format

zip_x3d : X3D File Compressed by WinZip Program

zip_wrl : VRML97 File Format Compressed by WinZip Program

b3z : X3D File Compressed by Serializer using GZIP Streams

 11

129

111

84

34 33
29

0

20

40

60

80

100

120

140

x3d wrl b3d zip_x3d zip_wrl b3z

File Formats

Si
ze

 in
 K

B
yt

e

File format compression comparison for teapot exemplar [Serin 2003].
 Examining the figure above shows a number of interesting results. First, XML encodings of
.x3d files can often be larger than alternate text encodings such as .wrl VRML format. Second,
binary serialization of node/field tokens and numeric data shows an immediate improvement over
plain-text encodings. Third, the .zip reduction of .x3d and .wrl formats to a consistent size matches
expectations. Zip and gzip compression algorithms look for text patterns and typically produce
similar results, within 1-2%. Finally, a further 10% reduction was demonstrated when gzipping the
.b3d binary serialization. This is excellent progress. Further reductions are expected with the future
addition of geometric compression techniques such as polygon combination, more efficient vertex
representations, quantization of color and normal values, etc.

 Clearly there are significant benefits to XML compression. Further optimizations will make
X3D binary compression further valuable. As an alternate comparison, recomputes the
compression results of in terms of percent size savings.

In summary, many requirements and considerations exist but it appears that a composition
of all declared X3D binary encoding goals might be compatibly achieved. Ongoing work
continues.

 12

14

34

73 74
78

0

10

20

30

40

50

60

70

80

90

wrl b3d zip_x3d zip_wrl b3z

File Formats

Sa
vi

ng
s i

n
%

Percentage compression relative to original file size [Serin 2003].

X3D Streaming Considerations
Yet another interest for X3D Graphics is the ability for a binary compressed file format to

support progressive run-time streaming of already-rendered scene graphs. Live streaming
considerations include:

 13

•

•

•

Need to investigate whether to solely support streaming of XML attribute (i.e. X3D field)
payloads, or to also support streaming of combined XML elements (i.e. X3D nodes).

Multiple update modes may be necessary for uncorrupted updates of field data. Three
approaches are currently foreseen:

o direct replacement

o progressively append arrays (e.g. stream continuously added motion-capture data)

o buffer until update is completely delivered, then swap with original

Event delivery likely contains regular binary segment consisting of node ID, field token and
payload data, along with (optionally honored) event timestamp.

X3D streaming design and implementations remain an active area of work.

	Cross-Format Schema Protocol (XFSP) for Binary Serialization of XML
	[X3D ISO-19776 2003] X3D Compressed Binary Encod
	Initial Compression Results for X3D Binary Encoding
	X3D Streaming Considerations

