Standardize Binary Representation of XML?

Michael Rys
Shankar Pal
Jonathan Marsh
Andrew Layman
Microsoft Corporation, Redmond

"Text" XML vs "Binary" XML

- XML 1.0
 - Text representation, human readable
 - Successful as portable, platform-independent format
 - Uses more bits for encoding than theoretical min
- Ubiquitous format
 - All data can be rendered into textual XML form
 - All XML parsers can process
 - Text-processing tools available for manipulation
- "Binary XML" encoded using fewer bits
 - Save parsing time
 - Saves transmission bandwidth

Problems of "Standard Binary XML"

- Complicates the XML landscape
- Plurality of new forms of XML
- Increases barrier of entry for working with XML
 - Vendors/users have to support text and binary forms
- Can splinter into multiple dialects addressing different requirements:
 - Infoset/XQuery Data Model Preservation
 - Memory Footprint
 - Parsing/Generating Speed
 - Random Access vs Streaming
 - Data-only Compression
 - Other Application-specific Needs
- Is "binary XML" a good candidate for standardization?

Infoset Preservation

- Infoset has weak conformance requirement
- Infoset/XQuery Data Model preservation for portability
 - Binary representation must preserve Infoset/DM
 - Or be isomorphic to Infoset/DM content of XML value
 - Note: Binary DOM format not fully isomorphic to Infoset
- XML Schema or DTD should be optional
 - Use schema for optimizations
 - Encode PSVI in the binary representation
 - Can improve parsing speed
- Infoset or XQuery Data Model may be extended
 - Binary format will change
 - Continual maintenance of the standard

Memory Footprint

- "Binary XML" has smaller mem. footprint than text XML
- Compression techniques Gzip, XMill, ...
 - Very good compression
 - Decompress into text XML by recipient before consumption
 - Two passes of data required for parsing
 - Relatively large parse time
 - Whole XML must be compressed and decompressed
 - Chunking mitigates the issue to large extent
- Suitable when high compression ratio is required
 - Low bandwidth connection
 - Generation and parsing costs are less of concern
 - Storage and retrieval are predominant operations
 - Stored in files/database server, data caching, messaging, ...
- Tradeoff between smaller memory footprint and higher parsing cost

... Memory Footprint

- On server, emphasis shifts to better usage of bandwidth
 - Server can exchange more information with clients
- Streaming useful for scalability of data server
 - If the data size is large single-pass parsing is desired (e.g. display data)
 - Lower memory requirement for parse/generation of XML
- Gain from hardware-based network compression (e.g. MNP-5) can be significant
 - Dilutes need for binary XML representation

Parsing/Generation Speed

- Binary form parsing can be faster than text XML
 - Up to one order of magnitude faster
 - Saves power on small devices
- Binary XML parsers
 - Can as simple as text XML parsers
 - Can be more complex with over-engineering
- Parsing and generation costs strongly correlated
- Low parsing/generation cost needs simple binary form
 - Create map from element and attribute names to numbers
 - Pretty good compression for multiple occurrences of long names
 - Binary values encoded in binary stream (schema is known)
 - No need of entity resolution or white space normalization
- Parsing cost optimization may yield little compaction
 - Conflicts with optimizations for small footprint

Random Access

- Random access during forward-only parsing
 - Significant speedup in some scenarios (e.g. XPath evaluation)
 - Additional structures must be encoded
 - Increases generation time, slows down parsing of whole XML
- True random access (i.e. not forward-only parsing)
 - Increase in size of XML
 - Punishes modifications of larger XML
- How much to speed up random access?
 - Slows down parse/generation
 - Determined largely by workload

Data-only Compression

- Sender, receiver know strict XML schema
 - Only data needs to be encoded
 - Yields very good compression ratios
- Benefits are large for large amounts of data
 - Applications can build in data-only compression
 - WSDL, WAP binary XML protocol
 - Individual vendors can provide such solutions
 - Encoding is no longer self-describing
- Suitable for inter- and inter-process data exchange
 - Can achieve extensibility of component architecture
 - Change schema ⇒ different behavior

Application Needs

- Parsing/generation speed important for server
 - Web server/DB sends data out in chunks
 - Buffering data for large transfers degrades scalability
- Client applications may want
 - Faster parsing speed
 - Visual rendering
 - Low memory footprint
 - Cached data (user looks only at first result of search query)
 - Optimization criterion depends upon application
- Greater compression increases parse time
 - Beyond a certain point, the parsing/generation cost outweighs the benefits

Multiple Binary Formats

- Different optimizations benefit different applications
 - Server wants faster generation speed
 - Mid-tier server emphasizes portability of data
 - Client desires small memory footprint over slow connections
- All together perf. benefits might disappear!
- Standard would have to allow multiple binary representations
 - Standard set of "encodings" allowed in binary representations
 - Each optimizes one or more facets and application classes
 - Format must handle all encodings of XML for I18N
- Each side receives and processes all binary encodings
 - Sender gets to choose format to generate
 - Receiver must decode multiple representations
 - Increased complexity of software development

Conclusions

- Is "binary XML" a good candidate for standardization?NO
- Criteria for "binary XML" are different & conflicting
 - Minimize footprint or minimize parse/generate time
 - No single criterion to optimize all applications
 - Binary standard must allow a suite of representations
 - Goes against grain of portability goals of XML 1.0
 - Depends on machine and OS architectures on each end translating between binary representations negates advantages
- Requires hitting 80/20 point: Not good enough for many uses
- Standard's work can go on for years ...
 - ... stifle innovation (Research first, standardize later)
 - ... ensuing standard can be burdensome on vendors
- Need ideas to build on advantages of XML 1.0
 - Promising interleaved text/binary format preserving Infoset
 - Blobs of data (e.g. pictures) sent as binary attachments
 - Portable, improves parsing speed sufficiently

Questions?

