
Canon

1/22

Component Model for Multimodal 
Web Applications

Dave Raggett, W3C/Canon
MWeb Workshop, Sophia Antipolis, July 2004

How to combine object oriented concepts 
with markup for event driven applications



Canon

2/22

Goals

● Break Web applications out of the browser!
● Freedom to build wider variety of applications
● Reduced costs and increased flexibility
● Easy adaptation to wide range of devices
● Multimodal User Interface
● Author defined controls
● Ability to mix novel and standard markup



Canon

3/22

Theming

● Zinf – one application, three themes

Theses can also be applied across applications, vis Gnome desktop themes



Canon

4/22

Break free out of the Browser

● Non-rectangular windows
● No window chrome
● Treat like regular applications

– Launched from application menus or desktop icons

– Can be bound to media types, e.g. audio/mpeg



Canon

5/22

Application Model

● Describe object model in XML
– Properties

● Preferences
● Play-list
● Current track

– Duration, current position, name, artist, ...

– Methods
● volume, pause, rewind, fast forward, previous/next track, quit

– Events
● Playback error, end of track, end of play-list, ...



Canon

6/22

Themes and Intentions

● Split user interface into
– Abstract UI controls and layout intentions

– Theme = presentation and behavior for controls

● XForms range control as scalar value
– Themed as rotary dial or thermometer

– Role of SVG and XBL for defining such controls

● Layout intentions
– Vertical, horizontal, grid, ...

– Delegate size/position decisions to layout manager

– Detailed appearance determined by current theme



Canon

7/22

File Browser Application



Canon

8/22

Components and Events

Application

File View File ViewFile View File View

File Browser

Mouse events: click, shift click, drag

File select, de-select, drag

Selection of files



Canon

9/22

Declarative Treatment of Behavior

● Simple event binding
– dom:activate on button invokes application pause 

method

– xf:xforms-value-changed on dial sets app  volume

● State transition models
– Event driven transitions between named states

– Represented in XML and XPath

– Transitions invoke methods, update data, raise events

– Nested states and concurrent execution

– Run on device or server, or on both
● Distributed execution model



Canon

10/22

Input Modalities

● Mouse emulation events
– Click, double click, down, up, drag

● Pointer trace data
– InkML as XML format for trace data

– Interpreted by component as gesture, drawing etc.

● Constrained text input
– Provided with keystrokes, speech or handwriting

– Regular expressions, CFGs or data types

● Semantic events
– Platform specific binding to keys, gestures or speech



Canon

11/22

Interpreted Input

● Treat all input uniformly as events
– Audio, speech, keystrokes and stylus

● Use of grammars for recognition and 
extracting application semantics

● EMMA – extensible multi-modal annotations
– XML language for interpreted input

● Application specific + standard annotations
– Time stamps, confidence scores, N-best interpretations, ...

● Role of XPath for dealing with EMMA



Canon

12/22

Output Modalities

● Speech and Audio
– Speech Synthesis Markup Language (SSML)

● Visual
– XHTML

– SVG

– XForms

● Coordinated output with SMIL
● Promise of Natural Language Generation



Canon

13/22

Multimodal Interaction
● Enable user to choose which mode to use

– Constrained text input and semantic events

● Deictic References and Ellipsis
– Behavior is defined by the application component

● In context of file browser application: “Print this”
– Ask file browser for current selection
– If necessary prompt user to make selection

● For map application “Zoom in here” + tap with pen
– Map interprets mouse click event as map location

● Complementary use of output modes
– Combine speech with highlighting of visual objects

● This hotel is conveniently close to the opera house



Canon

14/22

Natural Language Understanding

● Context free grammars in XML
– Speech Recognition Grammar Specification (SRGS)

● Functional approach to semantic interpretation
– W3C Semantic Interpretation specification

● Semantic expressions as annotations on grammar rules
● “Pepsi Cola” is mapped to <beverage>pepsi</beverage>
● “July 20th” is mapped to <date>2004-07-20</date>
● Ripples up parse tree to define semantics of utterance

● No match, or No input events
● Tapered prompts and traffic lights model



Canon

15/22

Natural Language Generation

● VoiceXML uses variables and expressions
– Simple templates are sufficient in many cases

– Dynamic generation of VoiceXML on web server

● Promise of richer NLG
– Improvements in speech synthesis

– More flexible use of natural language

– Dynamic generation in user's preferred language

● Potential for NLG engines    “realizers”
● Driven by XML representation of language independent 

communication acts
● Realizer deals with sentence planning and word selection



Canon

16/22

Adapting to Current Conditions

● How to enable applications to adapt to 
conditions on a moment to moment basis?
– Portrait to Landscape flip

– User mutes audio

– Low battery alert

● System and Environment Framework
– Access to device capabilities, user preferences and 

environmental conditions

– Exposed as XPath expressions or JavaScript

– Shields application from lower level interfaces



Canon

17/22

Mixing Novel and Standard Markup

● Treat XML as instructions for creating a 
composition of objects

● Bind elements to objects
– Implicit binding for standards-based markup

– Objects defined in XML or in code

● Interoperability depends on
– Binding mechanism, and object language

● e.g. XBL and JavaScript

– Libraries and interfaces these objects depend on



Canon

18/22

Markup Components

Top-level Container

Non-standard
Markup component

Standard
Markup component

Platform Implementation Layer

Compound Document

Compound document consists of sequences of nestable markup components.
Non-standard  markup components  are bound to object models  in terms of
primitive objects using a mixture of declarative and imperative definitions. Type
constraints determine which compositions of markup components are valid.

Binding

Primitive Objects

Shadow

Markup



Canon

19/22

XBL example
<?xml version="1.0"?>
<?xml-stylesheet href="notes.css"?>  
<bindings xmlns="http://www.mozilla.org/xbl"
  xmlns:html="http://www.w3.org/1999/xhtml">  
  <binding id="board" styleexplicitcontent="true"> 
    <implementation>
      <property name="dragging"> null </property> 
      <property name="currX"> 0 </property> 
      <property name="currY"> 0 </property> 
    </implementation>
    <handlers>
      <handler event="mousedown">
        if (event.originalTarget.parentNode.className == 'caption') {
          this.dragging = event.originalTarget.parentNode.parentNode;
          this.currX = event.clientX;
          this.currY = event.clientY;
        }
    </handler> 
    <handler event="mouseup"> 
      this.dragging = null;
    </handler> 
    <handler event="mousemove"> 
        this.currY = event.clientY;
        ...
    </handler> 
  </handlers> 
</binding>  



Canon

20/22

XBL Syntax Summary
<?xml version="1.0"?>
<bindings xmlns="http://www.mozilla.org/xbl">
  <binding id="name">
    <implementation>
      <property name="name" inherit="name">
         ... initial value ...
      </property>
      <constructor> ... </constructor>
      <destructor> ... </destructor>
      <method name="name"> ... </method>
      ...
    </implementation>
    <handlers>
      <handler event="name">
        ... script for event handler ...
      </handler>
      ...
    </handlers>
    <content>
      ... anonymous content ...
    </content>
  </binding>
</bindings>



Canon

21/22

Task-based Interaction

● Example of value of novel markup
– Define your own markup for task dependency trees

● Partial ordering of tasks and sub-tasks

– Implement your plan engine in JavaScript

– Bind behavior with XBL

● Enables developers to innovate on richer 
ideas for multimodal web applications



Canon

22/22

Summary

● Use Object Oriented approach
– XML for describing objects and their behaviors

– Separate application from user interface

– Shield from platform specific interfaces

● Treat input in terms of events
– Mouse events, text events, semantic events ...

● Dynamic adaptation to changing conditions
– Avoid locking applications to specific platforms

– Complying with user preferences/impairments

– Applications with multiple devices/people


