Modularization of Multimodal Interaction Specification

Matthias Denecke, Kohji Dohsaka, Mikio Nakano

NTT Communication Science Laboratories Kyoto, Japan denecke@cslab.kecl.ntt.co.jp

1 Introduction

Modularization of dialogue systems

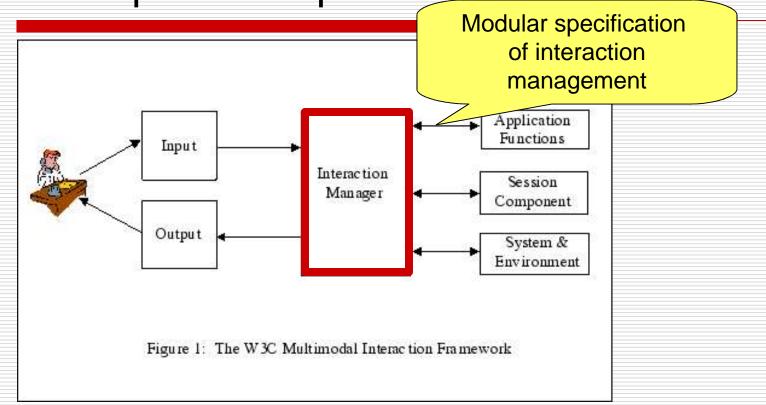
Necessary as complexity increases

Advantages

- Encapsulation of Knowledge
 System resources: Reusability of components
 Human resources: Divide development by discipline
- Structured system development
 Explicit integration points

1 Introduction

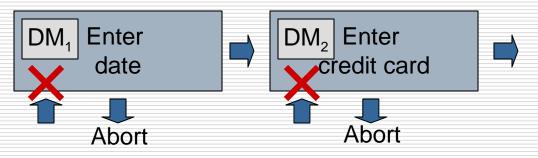
Problems:


- Dialogue Management not well-defined task
- No generally agreed-upon architecture

Consequence:

 An attempt to encapsulate a dialogue manager in an API will be difficult!

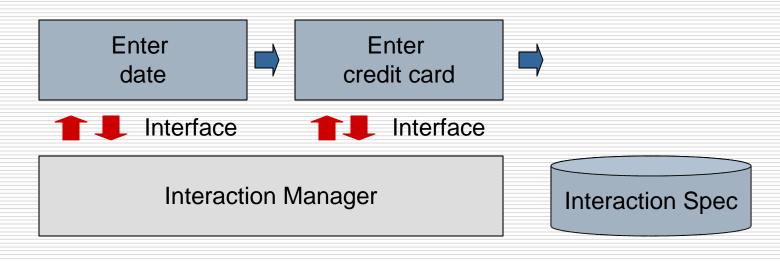
✓ So, let's try something else...


1 Scope of this presentation

2 Modularity in Dialogue Systems

Dialogue Objects

- Prepackaged dialogue subsystems
- Reusability of application components



Disadvantages:

- Black box ∠ does not address crosscutting concerns
- <u>Difficult</u> to express dialogue strategies across several components

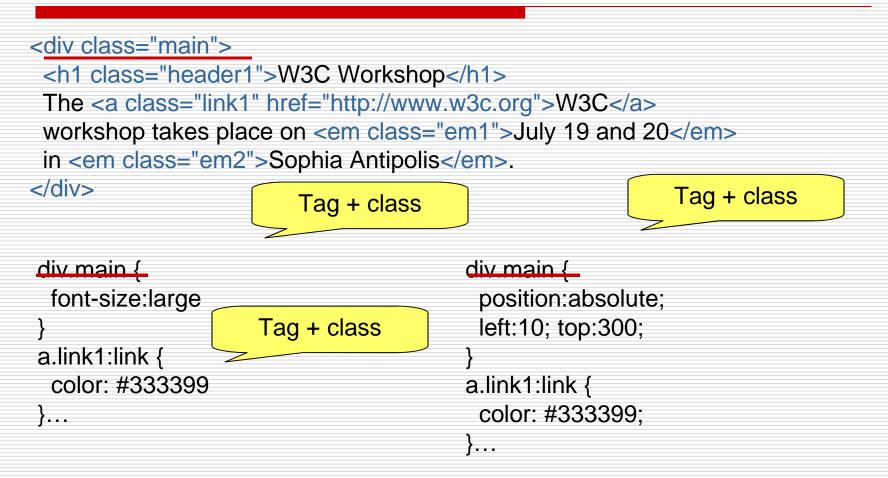
2 Modularity in Dialogue Systems

What we would like to have is...

2 Modularity in Web pages

HTML and Cascading Style Sheets

Separate:


- <u>What</u> is presented (HTML)
- <u>How</u> it is presented (CSS)

Interface:

• Tag names, class labels

Style sheets cut across multiple web pages

2 HTML and CSS Example

2 HTML and CSS Example

🙆 Example - Microsoft Internet Explorer 🛛 🔲 🔀	🗿 Example - Microsoft Internet Explorer 🛛 🔲 🔀
<u>F</u> ile <u>E</u> dit <u>V</u> iew F <u>a</u> vorites <u>T</u> ools <u>H</u> elp	<u>File E</u> dit <u>V</u> iew F <u>a</u> vorites <u>T</u> ools <u>H</u> elp
Search *	🔇 Back 🔹 🕥 - 💽 📓 🏠 🔎 Search 🔭
Address 🔄 D:¥usr¥matthias¥presentations¥rr 💌 🛃 Go 🛛 Links 🎽	Address 🔄 as¥presentations¥mmì¥index.html 🔽 🛃 Go 🛛 Links 🎽
Google▼ Search Web ▼ 💋 토 »	Google▼ 😵 🚱 Search Web 🔹 🐲 🦉
W3C Workshop The W3C workshop takes place on July 19 and 20 in Sophia Antipolis.	Mac Workshop The <u>Wac</u> workshop takes place on July 19 and 20 in Sophia Antipolis
🕘 Done 😏 My Computer	🛃 Done 😏 My Computer

3 How about Dialogue Systems?

In multimodal dialogue systems: Can we separate, similar to HTML and CSS,

5. What we talk about

Credit cardDate,...

from

9. How we talk about it?

What is the date?Please enter the date on the number pad

3 Examples

If one slot has been prompted twice, and remains unfilled or with low confidence, abort the dialogue

If the last two times speech was used a problem occurred, actively suggest to use a different input channel

If the user asks for help more than twice, switch modes

3 Proposal for a Framework

Three things needed:

- Content specification (~ HTML) Assuming: something like RDFS + RDF
- Interface declaration (~ Tags + classes)
 Introduce vocabulary 1. + 3. can use
 Schema-like document
- Interaction specification (~CSS) Specify dialogue management

3 Content Representation (~HTML)

RDFS: modularized vocabulary

- Common upper ontology
- Domain specific concepts

Annotated with facets (Denecke & Yang 2000)

- ~EMMA+abstraction, partial order
- Numeric intervals and symbols

```
act_getinfo, high, once
ARG obj_flight, high, once, sp + gst
DEP date, high, once
DAY 17th, low, twice, sp
MON Oct, low, twice, gst
```

Confidence # times prompted Input channels

3 Interface Declaration (~Class labels)

Introduce shared vocabulary containing

- 1. Facets
- 2. Common Upper Ontology
- 3. Abstract dialogue state (Denecke 2000)

Abstract Dialogue State

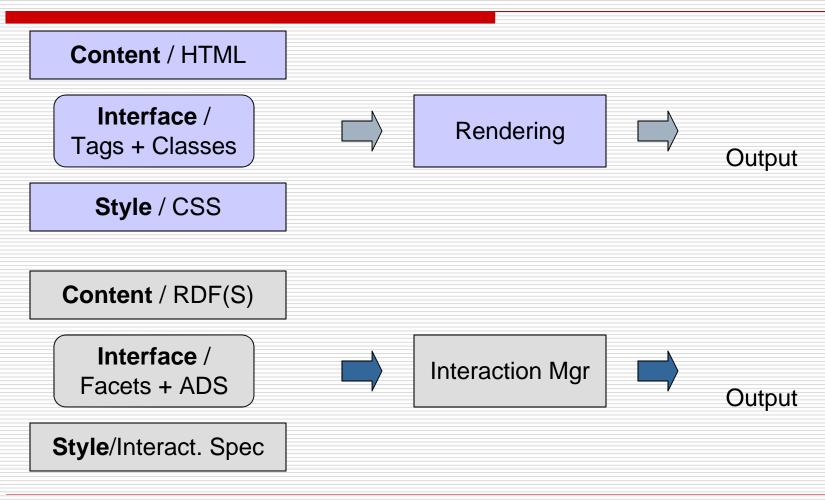
- Collection of features describing dialogue state
- Aggregate information in facets, content
 - 1) Over time
 - 2) Over location in representations

3 Abstract Dialogue State (~Classes)

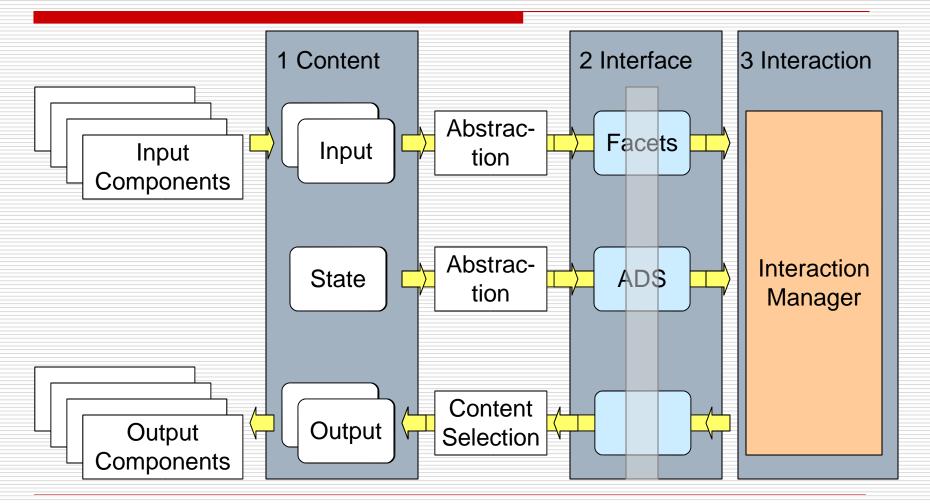
Example:

- # slots w/ low confidence in this turn
- # slots w/ low confidence up until now
- # times speech used
- # times handwriting used
- # corrections in speech channel
- # corrections in handwriting channel

3 Interaction Specification (~CSS)


Concrete representations hidden

- Use ADS, facets, Common Ontology only
- Proprietary implementations encapsulated


Express interaction management

- In terms of vocabulary defined in interface
 - Interface spec encourages <u>reusability</u>, but
 - Designer determines degree of <u>domain</u> <u>dependence</u>
- Overcomes difficulties of API approach

3 Comparison

3 Multimodal Interaction Framework

4 Implementation of Interaction Mgr

IM can be seen as

• f: ADS x Input ∠ Output

Two ways:

- 1. Fix f, specify parameters
 - f_{<Parms>}: ADS x Input ∠ Output
- f becomes parameter to Interpretation Mgr Provide API or scripting language to access facets, ADS, ontology

4 Interaction Implementation Way 1

Generic multimodal algorithm f_{<Parms>}

- Parametrized by domain specific information
- Cf VoiceXML

Features:

- Control over application specification
 Given by parameters
- Closed system
- Tool support easy, but too limited?

4 Interaction Implementation Way 2

No generic algorithm

- Provide access to ADS, facets
- Implement own IM

Features:

- No control over application specification
 Can be anything: rule based, learned,...
- Open system
- More complex

5 Example 1

If one slot has been prompted twice, and remains unfilled or with low confidence, abort the dialogue

```
If (exists path(p) :
    #prompts(p) == 2 &&
    (confidence(p) == low ||
    filler(p) == nil)
```

Then

abort();

Blue : facets

5 Example 2

If the confidence of the last utterance is low, and the used channel is unreliable, suggest another channel

Confidence(\$lastUtterance) == low

ChannelRel(\$lastChannel) → unreliable

red : ADS variables

5 Applications: Channel Management

Observations:

- 1. Initial use establishes suboptimal patterns (Bhavnani 2000)
- 2. Multiple input channels:
 - Compensate for imperfect input
 - Quality of input component hidden

Input Channel Management necessary

- 1. Control interaction (vocabulary size)
- 2. Suggest alternative input channels

5 Applications: Affective Interfaces

Affective Interfaces (Picard 1997)

- React to users' changing emotions
 - Encapsulate appropriate reactions
- Areas:
 - Telemarketing
 - Health care
 - User interfaces...

Empathic avatar (Lisetti et al, 2003)

5 Applications: Virtual Personalities

Specify character in Interaction Manager

Applications:

- Education / Tutoring systems
 Didactic vs socratic teaching (Fiedler 2003)
- Games
- Marketing

www.yellostrom.de

6 What has been done?

Some ideas implemented

- Unimodal systems
- Facets, ADS work together with reinforcement learning (Denecke et al 2004)
- Facets, ADS allow encapsulation of rule-based dialogue strategies (Denecke et al 2003)
- Open source system www.opendialog.org

6 What is missing?

Examples require increasingly complex abstractions

- Can they be found?
- Can they be expressed in the interface declaration?
- Do they capture necessary information?

Abstractions needed for input and output

Summary

- Need for modularization in interaction mgmt
- Existing approaches insufficient
- Proposal motivated by HTML + CSS Allows cross cutting across application Requires appropriate abstractions

denecke@cslab.kecl.ntt.co.jp