
Modularization of Multimodal Interaction Specifications

Matthias Denecke, Kohji Dohsaka, Mikio Nakano

Communication Sciences Laboratories, NTT
NTT Corporation

Morinosato Wakamiya 3-1
Atsugi, Kanagawa 243-0198, Japan
denecke@cslab.kecl.ntt.co.jp

Abstract

In this paper, we discuss potential advantages of, and current
impediments to, modular specifications of multimodal inter-
faces.

1. Introduction

In this paper, we address modularization of interaction man-
agement. Specification of interaction management is intended
to be understood according to section 6 in [1].

The recurring theme of modularity in software engineer-
ing is to ”expose things that remain constant, hide things that
change”. The goal is to manage complexity. We argue that
there is a need to manage complexity in multimodal systems,
due to the many different disciplines required to design, im-
plement and deploy a successful multimodal system.

2. Background

2.1. Examples for Modularity

2.1.1. Component Based System Design

Modularity has long been a concern in software engineer-
ing. In practice, there are many different approaches to en-
capsulate functionality provided by components. We will
not discuss in detail these approaches but just mention two
well-known successful approaches, namely Enterprise Java

Beans, part of the Java platform and the Component Ob-
ject Model (COM), mostly used in Microsoft applications.
A newly emerging paradigm are web services which allow
modularization of an applicaton across a network.

2.1.2. Dialogue Objects

Recently, several vendors of voice controlled systems have
developed modular approaches to dialogue management. Put

simply, what most of the different approaches to dialogue ob-
jects do is to take standard techniques as established in soft-
ware engineering, to the voice application level. Following
this approach, an application is divided into several compo-
nents. For instance, an e commerce travel application might
contain a component responsible to acquire dates, another
one to acquire monetary amounts and so on. Depending on
the application flow, one component is entered, the interac-
tion remains under local control of this component until ei-
ther the goal of that component is reached or the interaction is
aborted, and moves on to the next component. An important
characteristic of this kind of modularity is that the compo-
nents act as black boxes and can only be influenced from the
outside through interfaces specified at compile time. This is
the same as is known from software engineering components.

2.1.3. Cascading Style Sheets

Cascading Style Sheets (CSS for short) provide a kind of
modularity that is different from the one described in the
previous section. More specifically, CSS allow to specify
the visual appearance of XHTML markup separately from the
web page. The CSS provides a set of rules how XHTML el-
ements should appear in the web browser. The interface be-
tween XHTML and CSS is provided by selectors on the CSS

side which specify alternatively to which type (such as H1,
H2,...) or to which class of XHTML node a rule should be
applied. A class can be assigned to an XHTML node by way
of the class attribute in case nodes of the same type are to
appear differently. The interesting aspect of this sort of mod-
ularity is that a style sheet can cut across a whole web page
(pr web site, for that matter) once a set of selectors is agreed
upon.



3. Related Standards

3.1. VoiceXML and SALT

SALT and VoiceXML both allow encapsulation of speech and
TTS engines, thus enabling component based system design
(to a degree) as described in section 2.1.1. This allows de-
velopment of interactive voice response applications to be
independent from the development of voice browsers.

In addition, VoiceXML allows the specification of simple
voice based interactions by supporting so-called form filling
dialogues. To this end, a VoiceXML compliant component
implements a generic dialogue management algorithm. An
application designer wanting to take advantage of this algo-
rithm specifies the domain dependent bits and pieces of the
application, such as which slots to fill and how to prompt
for fillers, and leaves control to the VoiceXML component as
appropriate to acquire the information from the user.

The interesting aspect of this approach is that it cleanly
separates the dialogue logic (the dialogue management algo-
rithm) from its domain dependent presentation (the prompts
and slots to fill). Three questions naturally arise at this point:

1. Is it desirable to have such generic algorithms?

2. Is the provision of generic dialogue algorithms generic
enough to develop any spoken dialogue application?

3. In the context of this workshop, if such an approach is
desirable, can it be extended to multimodal dialogues?

The developers of the VoiceXML standard obviously an-
swered the first question affirmatively, while the developers
of the SALT standard answered that question negatively, em-
phasizing the simplicity of their markup language. Another
interesting aspect of the VoiceXML approach is that the sepa-
ration of generic dialogue management and application spe-
cific content does not relieve an application designer from
understanding the dialogue algorithm. For development pur-
poses, this knowledge is still required.

Second, the VoiceXML dialogue management algorithm
is not the only way to implement dialogues in VoiceXML.
Rather, VoiceXML application designers are free to explic-
itly specify (or dynamically generate on the fly, depending
on the application logic) VoiceXML pages in which dialogue
logic is encoded, for example, in VoiceXML compliant<if>
<else>markup. This can be seen as a statement that generic
algorithms are not sufficient, at least at the moment.

Before addressing multimodal concerns, it might be in-
structional to consider standards for conventional web pages.

The XHTML, CSS and JAVASCRIPT provide a powerful com-
bination of declarative and procedural specifications to graph-
ical user interfaces. Simply put, XHTML and CSS together
provide a representation of the content and the presentation,
respectively. The interface that links the XHTML markup
from the specification of its presentation in CSS is introduced
by the class attribute. It is noteworthy that the XHTML

specifications and the style sheets can be entirely orthogonal.
In other words, once XHTML pages and style sheets agree
on a set of class labels (and their meaning) XHTML pages
and style sheets can be freely exchanged, since the style sheet
specifications cut across the XHTML markup. This allows ei-
ther a uniform user experience for different pages, or an indi-
vidualized presentation of the same content, for instance, to
address special user needs.

4. Challenges for Multimodal Systems

4.1. Examples

4.1.1. Channel Management

One of the most distinctive features of multimodal systems
compared to other systems is their need to manage deficient
input components. Suhm [2] showed that the use of input
channels with different modalities leads to decreased task
completion time and increased task completion rate as the
input channels complement each other. In the same vein, Vo
and Wood [3], among others, showed how the simultaneous
use of multiple input channels leads to synergetic effects that
decrease the (combined) concept error rate.

In human interaction research, Bhavnani and John [4]
showed how users acquire interaction patterns Several stud-
ies show that despite experience, many users with basic com-
mand knowledge do not progress to an efficient use of com-
plex computer applications. These studies suggest that knowl-
edge of tasks and knowledge of tools are insufficient to lead
users to become efficient. Assuming that these findings gen-
eralize to multimodal applications, the efficient use of mul-
timodal applications is hampered by the fact that potential
problem sources for perception based user interfaces are hid-
den from the user. This includes changing environment con-
ditions (changing lighting conditions for camera based appli-
cations, changing noise levels for speech based applications,
etc), but also insufficient working components, for example,
due to lack of grammar coverage.

The corollary from the above is that perception based in-
terfaces, if they are intended to be used efficiently, need to
be actively managed. Based on the sensory input, the sys-
tem state, possibly a environmental model and an estimate



of the users’ intention, multimodal applications need to be
capable of determining efficient user guidance. In particular,
this channel management is necessary as deficiencies in the
perception based input components are invisible to the user.

An example for such an active interaction management
might be expressed in a rule of the following content: If two

subsequent uses of the same input channel result in rejected

or otherwise failed interactions, the system should avtively
suggest a more appropriate input channel to the user, if avail-

able. We do not focus here on how the rules are to be ex-
pressed, we just assume that they can be formalized in one
way or another.

Having determined a set of such interaction rules, it is
desirable to apply them to an entire application, or even sev-
eral applications. At this point, there is a need for a sort
of modularity that allows crosscutting across different mod-
ules in much the same way style sheets can cut across mul-
tiple XHTML pages and modify their appearance. This sort
of modularity is often not provided by component-based ap-
proaches.

4.1.2. Affective Interfaces

Once multimodal interfaces are capabale of determining the
emotional state of their users [5], it is desirable to react to
the users’ state appropriately. While the previous section ad-
dressed the issue of modular management of deficient per-
ception based input components, but a point along the same
lines can be made for emotional and character based inter-
faces. As it is desirable to separate channel management
from the original task, it is desirable all the same to spec-
ify the affective aspects of users interfaces separately from
the original task.

4.1.3. Character based Interfaces and Impersonators

Similar to specifying interactions based on the users’ emo-
tional state, there are applications to specify interactions based
on the users’ knowledge and comprehension. For example,
in interactive tutoring systems, one distiguishes between so-
cratic and didactic interactions with the students. Similarly to
channel manament, it is desirable to express character man-
agement in a form that is orthogonal to the specification of
the content.

It probably did not go unnoticed that the above proposals
of separating the task specification from the interaction spec-
ification has been motivated by the separation of content and
presentation in XHTML and CSS. As in XHTML and CSS, an
implementation of these suggestions, if possible, would lead

to systems that can be composed

4.1.4. Summary

The examples in the previous section illustrate a need to sep-
arate the content of multimodal interaction from the style in
which the interaction is carried out. We argue that this sep-
aration is different from the separation of dialogue manage-
ment algorithms and application specific content as exempli-
fied by VoiceXML (see questions 1 and 2 above). It is also
different from the application logic level modularization as
implemented by the various approaches to dialogue manage-
ment (see section 2). Rather, it is more in line with the sepa-
ration of content and presentation as exemplified by XHTML

and CSS.

4.2. Potential Impediements

In the previous sections, the analogy between XHTML and
CSS and multimodal interface specifications has been stretched
a bit. There are several points in which the analogy breaks
down.

In the previous section, we made the assumption that con-
versational strategies are orthogonal to specification of task
models in the same way as XHTML and CSS are orthogonal.
It needs to be determined to which degree this remains true in
practice. Even if not always totally orthogonal, we are con-
vinced that there is enough orthogonality so that a separate
specification is desirable. Of course, this does not preclude
explicit links where necessary.

Another problem is related to the combination of sepa-
rate specifications into a coherent system behavior. Here, it
is helpful again to look at the example of XHTML and CSS:
conceptually, the style sheet can be considered as a comple-
mentary specification that fills in missing information in the
XHTML page to yield a more fully specified XHTML page.
Similarly, different interaction specifications can increase the
informational content of declarative representations.

The third problem, finally, is related to developer effort.
While the separation of specifications allows the reuse of
tested, well tested components, the effect of combining these
different specifications needs to be such that it either can be
easily understood by developers even if they don’t understand

the specifications, or needs to be able to be evaluted by means
of automated tools.

5. A Proposal for Modularization

Given that the functionality of multimodal dialogue man-
agers varies depending on the task, it is unlikely that an at-



tempt to encapsulate functionality in an API similar to SAPI

will be successful. In this paper, motivated by the discussion
on HTML and CSS, we would therefore propose an alterna-
tive. More specifically, we propose to separate content from
style (as in HTML and CSS) in separate specifications. In ad-
dition, we provide a third document in which the vocabulary
of the interface is specified. In the HTML / CSS example,
this corresponds to a list of the tag types and class labels for
which CSS rules are specified. To summarize, we need three
things:

1. A Content Specification which corresponds to the role
of HTML in the above example,

2. An Interface Declaration which corresponds to the
role of tags and class labels

3. An Interaction Specification which corresponds to
the role of CSS

In the following, we discuss each specification in turn.

5.1. Content Specification

We assume that the content of the interactions be represented
in a representation along the lines of EMMA. Put simply,
EMMA can be considered a semantic representation (such as
RDF) that is enhanced with multimodal annotations, such as
confidence scores from recognition engines or time stamps.
In contrast to EMMA, however, we propose an abstraction
mechanism that assigns symbolic labels to numeric confi-
dence scores. This is done along the lines of facets. See [6]
for examples of how semantic representations can be anno-
tated with temporal, spatial and input channel information
using facets. Facets are symbolic multimodal annotations
that, if chosen carefully, will allow unification and subsump-
tion defined on the original representations to be extended to
the annotated representations. The primary purpose of the
facets is to abstract away information specific to recognition
engines and to allow the vocabulary of the facets to be ex-
pressed in the interface declaration.

5.2. Interface Declaration

The purpose of the interface declaration is to introduce a
common vocabulary by means of which the interaction spec-
ification can be expressed. The vocabulary contains entries
for the facets, for example of the form confidence: low, av-
erage, high with which the abstraction mechanisms annotate
the multimodal representations.

Since the actions of the interaction manager do not only
depend on the input, but also on the internal state, the inter-
face declaration needs to introduce vocabulary to describe the
dialogue state as well. This description is referred to as ab-

stract dialogue state. The abstract dialogue state can be seen
as a collection of features that describe the dialogue state. In
particular, the abstract dialogue state may contain aggrega-
tions of facets over time, for example, the number of times
a part in a representation has been labeled with a confidence
low.

5.3. Interaction Specification

The interaction specification defines how the interaction man-
ager generates the output depending on the abstract dialogue
state and the facets of the incoming representations. The
important aspect is that the interaction specification be ex-
pressed only in terms of the vocabulary defined in the inter-
face declaration. If a rule-based approach is adopted, it is
also possible to have the interaction specification be gener-
ated by some form of statistical learning algorithm.

Given the vocabulary the interface declaration introduced,
one can then define rules such as: if speech has been used

more than once in the past, and the current input contains at
least two confidence = low annotations for information pro-

vided through the speech channel, then suggest not to use the
speech channel for the next turn. The first condition makes
use of the abstract dialogue state, while the second condi-
tions makes use of facets in the current input representation.
As multimodal systems become more complex, this sort of
specification becomes costly to develop; and thus is an inter-
esting candidate for reusability.

In [7], an approach for (unimodal) spoken dialogue man-
agement, similar to the one outlined here, has been described.

6. Discussion

In this paper, we discussed modular specifications for multi-
modal interfaces. We argued for the necessity of modulariza-
tion, due to (1) the complexity of multimodal interface spec-
ification and (2) the need for developer team members with
different background. Modularization of specifications can
alleviate both obstacles to a certain degree. We argued that
existing approaches to modularity, as widely used in soft-
ware engineering and in some voice applications, are not
sufficient, because these approaches do not allow interaction
specifications to cut across workflow specifications. We il-
lustrated with the help of a set of examples how a comple-
mentary specifications along the lines of XHTML and CSS



can be desirable and outlined some potential problems with
such an approach.

In this paper, we leave open the question whether any
multimodal interaction standard should provide generic in-
teraction management algorithms (as in VoiceXML) or not
(as in SALT). Rather, we argue that, no matter which ap-
proach is followed, there is a need for modularization on
the interaction management level, similar to the separation of
content and presentation as exemplified by XHTM and CSS.
Such a standard would allow a modularization in such a way
that the ”how” aspect and the ”what” aspect of a multimodal
application can be exchanged.

7. Acknowledgements

We would like to thank Shoji Makino and all members of
the Dialogue Understanding Research Group for support and
helpful discussions.

8. References

[1] J. A. Larson and T. V. Raman and D. Raggett. 2003. W3C

Multimodal Interaction Framework, W3C Note 06, May 2003.

www://www.w3c.org/TR/mmi-framework

[2] B. Suhm and B. Myers and A.H. Waibel. 1999. Model-Based

and Empirical Evaluation of Multimodal Interactive Error Cor-

rection. In Proceedings of the CHI 99, Pittsburgh, PA, USA..

[3] M. T. Vo and C. Wood. 1996. Building an Application Frame-

work for Speech and Pen Input Integration in Multimodal Learn-

ing Interfaces. In Proceedings of the International Conference

on Acoustics, Signal and Speech Processing.

[4] S. K. Bhavnani and B. E. John. 2000. The Strategic Use

of Complex Computer Systems. Human Computer Interaction.

15:107–137.

[5] R. Picard. 1997. Affective Computing. The MIT Press.

[6] M. Denecke and J .Yang. 2000. Partial Information in

Multimodal Dialogue Systems In Proceedings of the Inter-

national Conference on Multimodal Interfaces. Available at

http://www.is.cs.cmu.edu

[7] M. Denecke. 2003. Policies and Procedures for Spoken Dia-

logue Systems In Proceedings of the EACL 2003 Workshop on

Dialogue Systems, Interaction, Adaptation and Styles of Man-

agement. Available at http://www.is.cs.cmu.edu


