

Generating output in the COMIC multimodal dialogue system

Mary Ellen Foster
School of Informatics
University of Edinburgh

W3C MMI Workshop Sophia Antipolis, 20 July 2004

Overview

- The COMIC project and demonstrator
- Planning and generating output in COMIC
 - Multimodal fission in COMIC
 - Planning text, gestures, and facial expressions
 - Speech synthesis and output coordination
- System evaluation
- Next steps for fission

COMIC: "COnversational Multimodal Interaction with Computers"

- EU FP5 project: March 2002-Feb 2005
- Goal: apply results and models from cognitive psychology to multimodal dialogue
- Demonstrator: adds a multimodal dialogue interface to a CAD-like system for bathroom design
 - 1. Specify shape of bathroom
 - (2. Place furniture)
 - > 3. Browse available tiles

Input processing and dialogue management

- Speech recognition and NLP
- Handwriting and (pen-)gesture recognition
- Multimodal fusion
- Dialogue manager
- Dialogue history manager, ontology manager

Fission and output processing

- Fission module (presentation planner)
- Speech synthesis (Edinburgh)
 - Surface realiser: OpenCCG (White, 2004)
 - Speech synthesiser: Festival, unit selection
- "Talking head" avatar
- Bathroom-design application

Sample interaction (browsing tiles)

- <u>COMIC</u>: [Introduction] ... "Are you ready?"
- User: "Yes."
- <u>COMIC</u>: [Describes tiles on screen] ...
 "Please choose one."
- User: "Show me this one." [Circles second design]
- <u>COMIC</u>: [Chooses and describes tiles] ... "Do you want to see more modern designs?"
- ... etc. ...

Fission inputs and outputs

Pointer commands

Fission tasks

- Content selection and structuring
 - Elaborate the high-level specification from the dialogue manager
- Modality selection
 - Decide on the content to be produced on each channel
- Output coordination
 - Ensure the output is coordinated temporally and spatially

Sample output plan

DAM input: show(tileset21), describe(tileset21)

Creating and executing an output plan

- Create initial high-level structure based on DAM specification
- Elaborate and then output children in order
- Planning and execution are interleaved; later children in preparation while output is being produced from earlier ones
 - Avoid adding to (already non-trivial) latency

Text planning with XSLT (non-canned text)

- Gather information from system ontology;
 filter based on dialogue history; put in order
- Combine adjacent messages when possible
- Create a logical form (with alternatives) for each message and send it to the realiser
- Details:
 - M E Foster and M White. Techniques for text planning with XSLT. NLPXML-4 Workshop, 25 July 2004, Barcelona.

Speech synthesis

- Voice: general-purpose unit selection, with in-domain recording scripts
- Realiser output includes intonation, but current voice can't support it (stay tuned!)

Speech timing

- Speech timing determines presentation timing
- Coordination achieved by adding labelled spans to the input of the speech module

```
<seq id="123">
                               <speech id="123">
                                 <words>
  <speech>
                                    <word id="w0" start="0.018750" end="0.334000" content="Hello">
    Hello
                                      <phoneme id="p0" start="0.018750" end="0.101750" content="h"/>
      <span label="ww">
                                      <phoneme id="p1" start="0.101750" end="0.114000" content="@"/>
         world
                                      <phoneme id="p2" start="0.114000" end="0.194563" content="l"/>
      </span>
                                      <phoneme id="ps start="0.194563" end="0.334000" content="ou"/>
                                   </word>
                                   <word id="w1" start="0.334000" \ind="0.819688" content="world">
  </speech>
                                      <phoneme id="p4" start="0.334\00" end="0.445750" content="w"/>
</seq>
                                      <phoneme id="p5" start="0.44575\" end="0.511813" content="@@r"/>
                                      <phoneme id="p6" start="0.511813" end="0.577188" content="r"/>
                                      <phoneme id="p7" start="0.577188" ind="0.730187" content="l"/>
                                      <phoneme id="p8" start="0.730187" en = "0.819688" content="d"/>
                                   </word>
                                 </words>
                                 <spans>
                                   <span type="labelled" info="ww" start="w1" end="w1"/>
                                 </spans>
                               </speech>
```


Planning pointer "gestures"

- Mark NPs in input with on-screen referents, and choose gestures and offsets for some subset
- Use application screen state to find objects
- Two versions: <u>rule-based</u>, or <u>corpus-based</u>
 - Evaluation (just completed): forced choice between two versions; justify choice where possible
- Details:
 - M E Foster. Corpus-based planning of deictic gestures in COMIC. INLG-04 (Student Session), Brockenhurst, 14-16 July 2004.

Facial expressions, gaze, and emphasis

- Expressions and gaze: only between sentences
- Phonemes: extracted from speechsynthesiser timing
- Emphasis commands: based on pitch accents

Output sequencing and coordination

- Sequences: Traverse subtree in order, waiting for any nodes that are not ready yet
- Immediate commands (expressions, gaze, screen-state changes): send command, wait for "done" report
- Sentences:
 - Send text to synthesiser (canned or via realiser)
 - Send timing to avatar; prepare gestures
 - Send "go at time t" + concrete gesture schedule

System evaluation

- Subjects use system for 15-20 minutes
 - Conditions: full face or "zombie"
- Measures
 - Recall of information presented (task success)
 - Subjective user-satisfaction questionnaire
 - Objective measures from log files
- Just completed (37 subjects); no results yet
- Evaluation of room-drawing phase pending

Next steps for fission

- Incorporate ideas from centering theory into text planning (Kibble & Power, 2000; Karamanis, 2003)
- Refer to a user model throughout the generation process (Moore et al., 2004)
- Holy grail: instance-based multimodal generation
 - Gather good instances by having users rate various combinations (as in current gesture evaluation)
 - Use (upcoming) factored language models in OpenCCG to choose among cross-modal alternatives

W3C standards

- Currently in use
 - XSLT, XPath: for text planning (NLPXML paper), plus many other stylesheets used internally
- Possible additions
 - SMIL: not for serialisation; possibly for internal data structures
 - SSML: if the synthesiser supports it
 - EMMA for output? Find out more
 - (EMMA for input? can't comment)

References

http://www.hcrc.ed.ac.uk/comic/

http://www.iccs.inf.ed.ac.uk/~mef/