
Position Statement for Multimodal Workshop

Stéphane H. Maes
 stephane.maes@oracle.com

Director of Architecture
Mobile, Voice and Wireless and Advanced Technologies

Oracle Corporation

1. Personal Interest

Stéphane has several years of experience and history with multimodal interactions. At IBM< He pioneered
numerous activities, including speech and speaker recognition technology, voice browsing (SpeechML),
embedded speech recognition, multi-channel and device-independent authoring and servers (XForms,
XSLT, …), multimodal computing and conversational computing and their use in mobile or car
environments.

In his current role at Oracle Corporation, Stéphane oversees strategy, research and development of tools
and middleware (declarative and imperative, JSP and JSF, portlets) to support multi-channel applications,
multimodal and multi-device applications as well as applications optimized for specific interaction
channels including: J2ME, MS .NET Compact Framework, SALT, device-specific XHTML / Ecmascript
MP, WML, XForms/XHTML, VoiceXML (browser specific and browser-independent), JSPs, JSFs and
portlets.

During the years, Stéphane has created, chaired, actively participated, often as editor, or monitored related
standard activities including:

• SVAP/SRAPI,
• W3C (XForms, XSLT, XHTML, MMI, Voice, DI, WS),
• OASIS,
• WS-I
• IETF (SPEECHSC, DSR),
• ETSI (DSR),
• 3GPP (SES, multimodal),
• ITU (DSR),
• WAP / OMA (Multimodal and multi-device enabler).

In particular, Stéphane is the champion for the multimodal and multi-device enabler activity at OMA. In
addition, he is editor of the OMA requirement and architecture documents for multimodal and multi-
device.

In the rest of this position statement, we present our view of the work done at OMA. It reflects the position
of Oracle Corporation and it should not be construed as a liaison from OMA. OMA specifications may
ultimately differ and address other objectives or rely on different design points than the considerations
presented below.

2. Multi-modal and Multi-device support by Mobile
Infrastructure

The OMA work focuses on enabling support by the OMA Service Environment (OSE) architecture of
multimodal interactions. It strives to support:

mailto:stephane.maes@oracle.com

• The different authoring approaches currently proposed in the industry including the W3C MMI
work

• The different implementation and deployments models for multimodal browsers including
sequential switches, thin and fat clients with local or distributed conversational engines.

2.1 Multimodal and Multi-device Execution Model
This section describes a basic flow for multimodal and multi-device interactions, believed to support the
different use cases and requirements identified in the OMA multimodal and multi-device Requirement
Document. It supports the fundamental execution mode of multimodal and multi-device applications.

It is envisaged that OMA multimodal and multi-device services satisfy this execution model. It is of key
interest that the industry as a whole endorses such a model.

In this document, the term user agent is used loosely to designate the component that renders the
presentation data into physical effects that can be perceived and interacted with by the user. For a given
modality this may be a separate browser or platform or one or multiple components internal to a browser or
platform.

The fundamental execution model of multimodal and multi-device applications is the following:

• A user interaction in one of the available modalities (user agent) results into interaction events
• These events are passed to a synchronization manager that handles a representation of the

interaction event and determines the impact of the interaction based on the state of the application
and synchronization rules.

• This in turns results into updates of the state of the application and update instructions sent to all
the registered modalities (user agents) available to the user.

This is summarized in Figure 1, where each user agent may represent a different modality (e.g. VoiceXML
browser and XHTML-MP browser or GUI and Voice Java applications) or different devices (e.g. smart
phone and PDA or kiosk).

a
Modality
or Dev A

(User Agent)
a

Modality
or Dev B

(User Agent)
...

aApplication of
Synchronization

rules

User
Interaction

Optional
Immediate

update

1

2

3

Exchange of
interaction

4
Rule Updates

5

6

Update of the
different

modalities or
device

Figure 1 – Fundamental execution model of multimodal or multi-device applications; independent of
programming model or configuration.

The user action may or may not result into an immediate update of the affected modality state prior to the
synchronization (step 2). Immediate updates provide faster response in the modality that the user currently
uses, but may lead to problems or confusing behaviors for example with composite inputs, concurrent or
almost concurrent inputs in different modalities and conversational multi-modal application (i.e. where
inputs are to be understood or disambiguated first).

Other events than user input may also trigger interaction events to transmit through step (3). When the
service uses dialog management, it would typically be responsible for establishing and managing the
multimodal synchronization.

The following basic architecture implements this execution model (Figure 2).

GUI User
Agent

Voice User
Agent

Synchronization
Manager

MM Synchronization

Figure 2 – architecture to support multimodal and multi-device interactions illustrated for voice and
GUI interaction.

Each of these module or portions of these modules may be partitioned or combined on a single device or
distributed across several devices or servers.

2.2 Associated Mobile Deployment Configurations
Figure 3 to Figure 8 present examples of multimodal or multi-device configurations that implement the
multimodal and multi-device execution model and architecture discussed in section 2.1.

Except for the multi-device configuration described in Figure 8, the figures illustrate multimodal
interactions with voice and GUI. Nothing imposes these modality or to limit the synchronization to two
modalities or devices.

Except for the sequential configuration, they can support any synchronization granularity authorized by
application, network or user.

The speech recognition framework (SRF) refers to a framework currently studied by 3GPP (3GPP TR
22.977 – Feasibility Study for Speech Enabled Services (Release 6). The speech recognition framework
(SRF) enables to distribute the audio sub-system and the speech services by sending encoded speech and
meta-information between the client and the server over a packed switched network. The SRF may use
conventional codecs like AMR or Distributed Speech Recognition (DSR) optimized codecs.

The SRF can be deployed over a packet switched (PS) network. Over a generic PS network, SRF will
require:

• Uplink and downlink transport of audio (e.g. RTP)
• Session establishment, signalling and control
• Codec negotiations
• Quality of service negotiation and provisioning

• Service administration.

The distribution of processing for other modality may require extension similar frameworks.

Presentation

Network

GUI User
Agent

Client

Speech
Browser

VoiceXML

XHTML

Audio
Sub-system

Voice

http

Web
Server

Synchronization
Manager

Server

Figure 3 – Example of sequential configuration (no voice and data support simultaneously) for voice and GUI
interaction. This configuration does not require SRF: it can be deployed on 2G or 2.5G networks. Only one
modality is available at a given moment. The user may switch at any time or when allowed or imposed by the
application.

Presentation

Network

Synchronization
Manager

GUI User
Agent

Client

VoiceXML

XHTML

Codec

Speech
Recognition
Framework

MM
Synchronization

Web
Server

MM
Synchronization

Possible
Event
coordination,
...

Speech
Engines

Speech
Browser

Server

Figure 4 – Example of Thin Client Configuration (voice and data support) with server-side speech engines local
to speech browser for voice and GUI interaction.

Presentation

Network

Synchronization
Manager

GUI User
Agent

Client

VoiceXML

XHTML

Codec

Speech
Recognition
Framework

MM
Synchronization

Web
Server

MM
Synchronization

Possible
Event
coordination,
...

Speech
Engines

Speech
Browser

SRCP

Server

Figure 5 – Example of Thin Client Configuration (voice and data support) with server-side speech engines
remote with respect to speech browser for voice and GUI interaction.

Presentation

Network

Synchronization
Manager

GUI User
Agent

Client

VoiceXML

XHTML

Codec

MM
Synchronization

Web
Server

MM
Synchronization

Speech
Engines

Speech
Browser

Figure 6 – Example of Fat client configuration with local speech engines for speech and GUI interaction. This
can be combined within a browser implementation.

Presentation

Network

Synchronization
Manager

GUI User
Agent

Client

Speech
Browser

VoiceXML

XHTML

Codec

Web
Server

Speech
Engines

Speech
Recognition
Framework

SRCP

MM
Synchronization

MM
Synchronization

Figure 7 - Example of Fat client configuration with server-side speech engines for speech and GUI interaction.
The speech engines are remote controlled by SRCP.

WAP Browser XHTML Browser

Synchronization
Manager

WAP Phone Wireless PDA

XHTML Browser

Kiosk

Figure 8 – Example of Multi-device configuration.

Configurations as illustrated in Figure 5 and Figure 7 require remote engine remote control APIs or
protocols, as developed by IETF as part of SPEECHSC. Other modalities may require modality-specific
extensions.

In the multi-device configuration illustrated in Figure 8, the synchronization manager may be located on
the server or on a mobile device.

In all cases, the configuration may change dynamically and it may be of interest for the user to support
seamless transition between these configurations, for example with mechanisms like discovery, negotiation,
replication, etc…

The different configurations and functions is a function of the devices / channels, tasks and environment.
Configurations may require registration and negotiation or dynamic provisioning of the device when
accessing a multimodal or multi-device service. It also depends on having appropriate mechanisms to
query, or examine the device capabilities and configuration modes.

2.3 Multimodal and Multi-device Authoring
Methods for authoring of multimodal and multi-device applications can be divided into several types as
summarized in Figure 9.

Modality A

Modality B

Modality B

Modality B

Modality A Modality B

Modality B

e.g. Page load

Modality A
Modality B

Model

Etc…

Type A Type B Type C

e.g. XHTML+Voice, SALT e.g. XForms with or without DI authoringe.g. co-browser applications

Figure 9 – Different types of multimodal or multi-device authoring methods

Different authoring approaches have been proposed so far:
• Type A multimodal and multi-device authoring where the application is authored as stand alone

presentation for each modality with different data models and synchronization or co-visit tags (e.g. Co-
browser authoring).

• Type B multimodal and multi-device authoring, where the application is authored for one modality
with events and event handlers that specify what to do in the others. Approaches like XHTML + Voice
(http://www.w3.org/TR/xhtml+voice/) and SALT (http://www.saltforum.org/) follow this approach.
The presentation associated to one modality or device may or may not share at authoring a common
data model.

• Type C multimodal and multi-device authoring, where the applications are authored at the level of the
data model (e.g. XForms in XHTML container, JSP, …) and the presentations for each modality or
device are bound to the data model and manually authored or automatically generated from the data
model (CSS). Synchronization results from the binding to the data model.

The execution model and architecture proposed supports the three authoring types, for example by
transforming at runtime type A and type B into type C. Indeed, the module responsible for the application
of the synchronization rules can interprets multimodal applications and executes the synchronization. This
renders the proposed execution model independent of the authoring language and compatible with the
different approaches that have been proposed so far, including XHTML+Voice, SALT and Xforms-based
synchronization, with binding to pre-compiled presentation or to a device-independent representation.

Note also that Figure 2 does not address the steps internal to the user agents. For example, a voice or
handwriting user agent will interface with speech engines to process input and generate outputs.

2.4 Items to specify for Mobile support
• Synchronization mechanisms of user agents by exposing as part of the Browser enhancement work

item:

o Access to interaction events from the GUI browser (e.g. DOM UI events, XML events)

o Mechanisms to update the presentation in the GUI browser (e.g. DOM manipulation,
Xupdate)

http://www.w3.org/TR/xhtml+voice/
http://www.saltforum.org/

• Distribution of these exchanges (.e.g based on SOAP):

o Discovery, registration and deregistration of modalities with synchronization manager:

 Addresses

 Capabilities

o Security

o Privacy

• Fat client browser enhancements part of the Browser enhancement

• Authoring of multimodal applications:

o Evaluation of use of type A, B and C possible with mobile profile selections

o Possible non-declarative specifications

• Possibly additional options like supporting: TBD

o Session management and synchronization to support suspend and resume and switches
between thin and fat configurations etc…

o …

	Personal Interest
	Multi-modal and Multi-device support by Mobile Infrastructure
	Multimodal and Multi-device Execution Model
	Associated Mobile Deployment Configurations
	Multimodal and Multi-device Authoring
	Items to specify for Mobile support

