
Authoring, Deploying And Consuming
Dynamic Web Applications Using
Mixed-Namespace XML Documents
T. V. Raman
IBM

Abstract

This position paper outlines a mechanism by which one can create dynamic Web
applications from documents authored using multiple XML namespaces. We
investigate the syntax, semantics and run-time behavior of such mixed-namespace
XML documents, and describe how the standardized W3C DOM2 eventing model
may be used to create consistent interaction behaviors when working with such
mixed-namespace documents. In doing so, we identify a number of open issues that
need a standardized solution in order to author, deploy and consume Web
applications using XML.

Table of Contents

1. Authoring Mixed-Namespace XML Documents
1.1. Open Issues

2. Loading Mixed Namespace Documents
2.1. Open Issues

3. Component Interfaces
3.1. Open Issues

4. User Interaction --- Dispatching Events In Mixed Namespace Documents
5. Packaging

5.1. Open Issues
Bibliography

1. Authoring Mixed-Namespace XML Documents
The syntactic validation rules for authoring mixed-namespace XML documents can
be defined along the lines of XHTML Modularization. Issues concerning the
definition of XML Schemas for such modularization profiles are presently being
addressed within the HTML-WG in the context of the work on XHTML 2.0. Notice
that when complete, this only defines the syntactic rules whereby different
namespaces may be mixed; the runtime semantics and interaction behavior are not
directly addressed by simply creating a modularized XML schema.

Page 1 of 5Authoring, Deploying And Consuming Dynamic Web Applications Using Mixed-Names...

4/30/2004http://bubbles.almaden.ibm.com/~tvraman/w3c-app-dev-2004/position.html

1.1. Open Issues

Content-Type

What should the content-type of mixed-namespace documents be?

2. Loading Mixed Namespace Documents
Given a mixed-namespace document, what is the behavior at document.load time in
an XML-aware browser? Assuming that we solve the content-type problem
identified in the previous section, how should an XML browser discover, load and
associate appropriate software components needed to consume the different
namespaces being used in the document? The present-day Web has invented a few
solutions to these problems in the absence of a single standardized one --- e.g., using
object elements to associate content-specific plugins. However such solutions
quickly cause XML content to become user-agent specific.

2.1. Open Issues

DOM:HasFeature

How can one bootstrap an XML browser using DOM3 interfaces ---
DOM:HasFeature[1]

Declaring Required Components

How should a mixed-namespace document declare the software components
that are required by a browser to process that document? Notice that depending
on the user task being performed, the software component to be loaded for
processing a given namespace will vary: Thus, given an XHTML+SVG
document, the component that processes the [SVG] component is different
depending on whether one is editting or viewing the document.

Locating Components

How should an XML browser locate the required software components needed
to consume a given namespace, and what should the fall-back behavior be
when one fails to locate an appropriate component?

3. Component Interfaces
Once the browser has identified the software components needed to consume a

application/xml gives too little information.
Creating a content-type for each possible combination of namespaces
causes a combinatorial explosion.

View: Component creates SVG rendering
Edit: Component presents an editable view

Page 2 of 5Authoring, Deploying And Consuming Dynamic Web Applications Using Mixed-Names...

4/30/2004http://bubbles.almaden.ibm.com/~tvraman/w3c-app-dev-2004/position.html

mixed-namespace document, these components need to be loaded and initialized.
What common interfaces should a component that is designed to operate in such a
framework implement?

3.1. Open Issues

Lifecycle

Need to define the component lifecycle interfaces for software components that
wish to participate in this framework.

Resource Allocation

Components that are primarily responsible for output e.g., visual or auditory
presentation, will need access to appropriate resources. Thus, an SVG or
MathML component that is hosted inside an XHTML page needs access to a
portion of the visual canvas; a voice output element will need access to the
audio output device. Such resource access needs to be coordinated by the
container. Similarly, components that handle user input, e.g., [VoiceXML]
dialogs that handle voice input, or event handlers for keyboard/pen input will
need access to the appropriate user input channels.

Issues concerning the orchestration of visual output were identified in the W3C
workshop on Component Extensions [CX].

The DOM2 Events specification defines a consistent eventing model for Web
documents. This eventing model can be exposed to XML authors via a
consistent syntax defined in [XML-Events 1.0]. The above can be used to
advantage when implementing multimodal interaction by Registering for the
appropriate DOM events and relying on the DOM2 Eventing loop to dispatch
events down the hierarchy. This has been shown to solve many of these issues
for user input e.g.,see [XHTML+Voice (X+V)].

4. User Interaction --- Dispatching Events In Mixed
Namespace Documents
In a browser that uses DOM2 Events to dispatch user interaction events down the
hierarchy, components can create rich user experiences by registering appropriate
event handlers during the capture, target or bubble phases of DOM2 Event
propagation. This enables different components on a given page to react to a given
user interaction event in a coordinated manner. As an example, consider a mixed-
namespace document that uses XHTML and SVG for visual output, a set of pen-input
events for capturing pen input, [SMIL] for time syncrhonization ,and VoiceXML for
spoken interaction. In addition, assume that system environment changes, e.g.,
availability of a microphone, are signaled by raising appropriate events. Using XML-
Events, an author can create DOM2 Event bindings that enable a multiplicity of rich
user interaction scenarios enumerated below:

Page 3 of 5Authoring, Deploying And Consuming Dynamic Web Applications Using Mixed-Names...

4/30/2004http://bubbles.almaden.ibm.com/~tvraman/w3c-app-dev-2004/position.html

Turn off microphone when the user starts writing:

The containing document can listen for pen-input events, and dispatch an
appropriate microphone-off event to the voice component. Notice that in this
case the voice and pen components are unaware of one another; yet, DOM2
Event propagation enables the author of the hosting document to coordinate user
interaction with these two separate modalities.

Provide spoken confirmation of keyboard or pen input

Consider an XHTML+XForms document where user input is available through
the [XForms] data instance. Aural confirmation of keyboard or pen-input can be
achieved by binding appropriate event handlers to the user-input event. When the
entered value is finalized to the XForms Model, the event handler for producing
spoken output can access the value from the XForms data-model and render it
appropriately to the user. Notice that coordinating data access through the
XForms model automatically synchronizes the information presented to the user
in the visual and aural interaction modality.

Provide visual confirmation of spoken input.

Given an XHTML+XForms document, one can bind voice-input handlers ---
voice dialogs authored in VoiceXML. Voice dialogs can be bound to individual
user input controls to collect single values; alternatively, richer mixed-initiative
VoiceXML dialogs that permit the user to specify multiple values in a single
utterance can be bound to a group of controls. The VoiceXML handlers upon
interpreting spoken input can bind the results into the XForms model. XForms
processing automatically synchronizes the visual presentation, with the result that
the user sees immediate visual confirmation of spoken input. Using the XForms
data model for synchronizing across multiple views avoids the need to make the
aural and visual views aware of one another; by having each view bind to a
centralized model in the host document, synchronizing multiple views becomes
scalable.

Notice that synchronizing across multiple views is not specific to multimodal
interaction; a rich user interface might choose to display complex data using a
multiplicity of synchronized visual views, e.g. a bar-chart generated via SVG and
a table of numbers generated via XHTML; by accessing the underlying data from
a single centralized XForms model, these multiple views can be automatically
synchronized.

5. Packaging
A complex Web application typically consists of more than a single document --- in
general, an application may be made up of a collection of resources that may be
thought of as multiple content streams. Deploying and archiving such applications
requires an interoperable packaging scheme that allows for unambiguous resolution
of cross-references among the component content streams. To date there is no

Page 4 of 5Authoring, Deploying And Consuming Dynamic Web Applications Using Mixed-Names...

4/30/2004http://bubbles.almaden.ibm.com/~tvraman/w3c-app-dev-2004/position.html

standardized packaging mechanism with an interoperable means of encapsulating
metadata about the resources comprising such applications. In the absence of such a
single universal solution, the industry has adopted defacto archival filetypes along
with Manifest files that hold the metadata; however this leads to platform-dependent
cross-referencing schemes.

5.1. Open Issues

XML Packaging

Viewing the collection of content streams as a forest of XML documents might
lead to a possible solution that creates an XML Package scheme that creates an
umbrella container to holds the individual content streams and enables cross-
references among the components.

XML Fragments

As a dual to the XML Package approach, one might instead view each
component resource as an addressable XML Fragment and solve the problem of
cross-referencing among a collection of such fragments.

Bibliography
[xevents] XML Events. An Event Syntax For XML.

[cx] CX. Component Extensions API Requirements .

[xv] X+V . XHTML+Voice 1.0 .

[xforms] XForms . XML Powered Web Forms.

[vxml] VoiceXML . Voice Extensible Markup Language.

[svg] SVG. Scalable Vector Graphics.

SMIL . Synchronized Multimedia Integration Language.

[1] Issue originally raised by Mark Birbeck at the 2004 Tech Plenary

Page 5 of 5Authoring, Deploying And Consuming Dynamic Web Applications Using Mixed-Names...

4/30/2004http://bubbles.almaden.ibm.com/~tvraman/w3c-app-dev-2004/position.html

