
Position Paper for Origo Services Ltd on Web Applications
and Compound Documents

Origo
Origo Services Ltd is the b-to-b, XML message standards body
for the UK Life Insurance Industry. In 1999 it began to define its
own forms markup language, and the management services
necessary to support the deployment of forms based
applications. Forms are executed either server or client-side.
Experience
Origo has been represented in the XForms WG for the last year,
and is now working on migrating the UK Life Insurance Industry
to XForms based applications. Part of this work involves looking
at how aggregations of forms and other resources can be
combined as applications.
 Applications may consist of many discrete forms, and other
resources, chained together in defined sequences.
Some of the resources in an application might be compound. It is
possible that an entire application might consist of one
compound document.
From our perspective, the intent of a Web application is defined
in one or more XML instance that is interpreted at runtime.
Clearly such an application must be hosted by an application,
that in turn may call a number of components (plug-ins).
Web Application Requirements
From Origo's perspective, these are some of the most important
requirements for Web Applications, in no particular order:

1. Intent based definition
The workshop is intended to focus on web applications that are
executed on the client. However, experience shows that some
classes of application may be executed either client or server-
side, depending on circumstances.
Organisations represented by Origo often have to redevelop
entire applications for multiple deployment platforms. This
should not be necessary.

It is therefore important to be able to define as much of the
logic, or intent of an application as possible in a deployment
agnostic manner.
For the same reasons any ui controls defined should clearly
separate function/intent from representation.

2. Reduced need for procedural code
Organisations represented by Origo have been attempting to
reduce the need to represent application logic as procedural
code for a number of years. Procedural code, in the context of
Web applications, tends to be difficult to debug and maintain,
lengthy, and does not lend itself to reuse.
On the other hand, declarative code often has a more obvious
relationship with the logic they represent, is more concise and
lends itself to reuse.

3. The ability to act upon XML data
Web applications need rule based, read/write access to XML
instances.

4. Accessibility
It must be easy to define Web applications that meet legal
accessibility requirements.
Web Applications and XForms
Origo feels that XForms lays a solid foundation for building a
platform for Web applications. Given that all applications are sets
of rules for event based transformation of data, with, or without
some kind of representation of the current state of data to a
human, the XForms model would appear to be useful outside the
obvious context of traditional forms.
Indeed any application that requires interaction, either with a
human, or not, can be considered as a form, as interaction is
recorded as change to an underlying data model.
It is to be hoped that any W3C activity to define Web applications
more fully will build on the work already done by the HTML and
XForms Working Groups.

Compound Documents
In Origo's view there is not necessarily a difference between Web
applications and compound documents. Below are thoughts on
some of the questions asked in the call for participation.
Should there be a set of predefined compound document
profiles (eg. XHTML Basic + SMIL Basic + SVG Tiny)?
Preferably not. It would be better to develop general methods to
allow authors to make arbitrary combinations of document types
as necessary.
What happens with event processing and style cascading
across the boundaries of mixed content?
Regarding events, these need to be translated into events
meaningful within each boundary. So, either everything
understands one set of generic events, else the host environment
has access to event mappings, which it manages for each
document.
For styles, default behaviour should be that style cascades across
boundaries. However, it should be possible for an author to
block styles from cascading down.
What is needed from schema languages?
Treat differently namespaced parts of a document as separate
documents for validation. It would be nice if XML languages did
not have to be written specifically to allow other vocabularies to
be mixed with them.
Need a compound document definition to set out what should be
validated, in what order, and what to do if there are validation
errors
Need to define multiple states (of validity?), and actions
associated with them, in the way that XForms allows.
Bubble validation errors up through a compound document, until
they handled somewhere.
How can application semantics from different markup
languages be mixed in an interoperable way (e.g. using XBL)?
Something XBL-like sounds like a good approach to us.
Is there a need for a generic extension architecture? What is
needed to allow extensions, such as plug-ins, to handle
content that is not supported directly by the browser/host
environment?
For current browsers, perhaps we need a plug-in plug-in. It
should be enough that the host manage the definition of the

compound document (expressed in something akin to the
XForms model perhaps), and provide mechanisms for
components of the document to be realised, as appropriate using
plug-ins, and to interact with each other appropriately.
Given that vocabularies could be nested within each other an
arbitrary number of times, could one end up with a situation
where, effectively there are compound documents within
compound documents.

Copyright Origo Services Ltd, 2004

