

Author: Mark Birbeck
CEO and CTO
x-port.net Ltd.

Invited Expert on XForms and HTML
Working Group

mailto:Mark.Birbeck@x-port.net
http://www.x-port.net/

http://www.formsPlayer.com/

http://www.x-port.net/
http://www.formsPlayer.com/

A Standards-based Virtual Machine

Page 2 of 6

Introduction
We need to define an open standards virtual machine . The concept of a VM
is of course not new it lies at the heart of both Java and .NET, for
example, as well as CPUs. However, the VM is usually insufficiently
abstract .

The VM we need is more a cross between the current DOM, and elements of
pattern programming. But it needs to be far richer than the current DOM,
expressed using mark-up rather than APIs, and needs to be centrally co-
ordinated.

The VM could run on a user s desktop or a server.

Example Usage
We have an Internet Application that:

takes an XML document from one server

sums two of the nodes

stores the result in a third node

dispatches the resulting document to another server

exits

The application looks as follows:

<?xml version="1.0" encoding="UTF-8"?>
<xh2:html
 xml:lang="en"
 xmlns:xh2="XHTML 2.0"
 xmlns:css3="CSS 3.0"
 xmlns:xf11="XFORMS 1.1"
 xmlns:ev="EVENTS 1.0"
>
 <xh2:head>
 <xh2:title>Modify the data and close</xh2:title>
 <xh2:meta property="dc:creator">Mark Birbeck</xh2:meta>
 <xf11:model id="m1">
 <!--
 Initialise an instance with the source document
 -->
 <xf11:instance id="inst1" src="modify-and-close.instance.xml" />

 <!--

 Set up a submission ready to save the modified
 document
 -->

 <xf11:submission
 id="sub1"
 action="modify-and-close.instance.copy.xml"
 />

 <!--
 When the model is fully initialised:

 * set the value of one of the nodes in the instance data
 * invoke the submission
 * close the form
 -->
 <xf11:action ev:event="xforms-ready">

A Standards-based Virtual Machine

Page 3 of 6

 <xf11:message level="ev:log">Received 'xforms-ready'</xf11:message>
 <xf11:setvalue ref="c" value="a + b" />
 <xf11:send submission="sub1" />
 <xf11:close />
 </xf11:action>
 </xf11:model>
 </xh2:head>

 <!

 Note the empty body

... there is no UI.

 -->
 <xh2:body />
</xh2:html>

Current technologies require that we build a specialist processor to handle
the language used to express this application the when will
IE/Mozilla/Opera support XHTML 2/SVG/XForms? syndrome. However, the
virtual machine approach says that we define how the instructions in our
application above should be performed using a set of more basic
instructions, expressed in one or more intermediate languages.

For example, the higher-level construct:

 <xf11:instance id="inst1" src="modify-and-close.instance.xml" />

could be specified as follows:

 <xf11:instance id="inst1">
 <xf11:action ev:event="load">
 <dom3:document id="dom1" />
 <dom3ls:load dom3:dom="dom1" href="modify-and-close.instance.xml" />
 </xf11:action>
 </xf11:instance>

(Note that this snippet won t quite work since you need to put the retrieved
DOM into the instance element s shadow tree, but it should make the
point.)

Now all we need is a virtual machine that understands how to create a DOM
document:

 <dom3:document id="dom1" />

and how to load an XML document into it:

 <dom3ls:load dom3:dom="dom1" href="modify-and-close.instance.xml" />

This VM could be constructed using any language, such as Java, C++, C#,
JavaScript, etc. But the clear advantage is that we can define higher-level
languages much more quickly and accurately, since they must be expressed
in terms of the more basic languages.

For example, the current XHTML 2 specification for <a> contains a large
amount of information about relative and absolute URIs, behaviour when
activated, and so on. Much of this is information that is also repeated in the
SVG specification. However, we could more succinctly define the behaviour
of an XHTML 2 anchor :

A Standards-based Virtual Machine

Page 4 of 6

 <xh2:a href="home-page.html">Home</xh2:a>

in terms of base features that we have defined must be provided by our VM:

 <xf11:trigger appearance="minimal">
 <xf11:label>Home</xf11:label>
 <xf11:load
 resource="home-page.html"
 ev:event="DOMActivate"
 show="replace"
 />
 </xf11:trigger>

In this case we have assumed that XForms is a base language. However,
since VM definitions would be recursive, we can go further and define
xf11:load in terms of XLink:

 <xf11:load
 xlink:type="simple"
 xlink:href="home-page.html"
 xlink:show="replace"
 xlink:actuate="onRequest"
 ev:event="DOMActivate"
 />

From the standpoint of specification writing we have now moved all
discussion about things like relative and absolute URIs out of the XHTML 2
spec.

But most importantly, we have created the ability for a processor that
understands our virtual machine

constructs in this case the XLink
attributes, xf11:label, and xf11:trigger

to implement xh2:a
without any specific knowledge of XHTML 2.

Key Modules
Some of the key modules of this virtual machine would be:

an object broker module;

a system module;

an object based around the XML infoset;

an infoset item selection module;

an events module;

a decorator

module;

a dynamic infoset module;

a communications module;

a validation module;

a rendering module.

Architecture
Everything would be based around a core object, much like our current
DOM. These objects can be initialised via URIs, and delivered to other

A Standards-based Virtual Machine

Page 5 of 6

locations, via the communications module. The objects can also be
validated.

All communication between modules would take place via events

for

example when a document has just completed loading, or has become
invalid rather than APIs. Events would also allow inter-application
communication, for example if an email arrives, or the user chooses an
option from a system tray application.

All objects would be created by an object broker, which would make it
easier to port the VM to other platforms.

A system module is required to provide features such as closing an
application, timers, and so on.

Perhaps the two most important modules are the decorator module and the
dynamic infoset module. The decorator layer would allow the recursive
definition of features required further up the hierarchy, ensuring that the
VM remains completely dynamic. The dynamic infoset module allows the
value of nodes to be determined on the basis of values and changes to other
nodes.

The nodes being referred to by the decorator module and the dynamic
infoset module would be addressed using the selection module.

Finally, a renderer object can allow interaction (if required) with a user.
The renderer module would use abstract components and a styling module.
Note that the state of any particular property would be maintained by the
dynamic infoset module, and communication with the renderer would be

via events.

We would want to devise some standard renderers, for example an
application s toolbar should be addressable using some well-known URI, so
that it works on all platforms. As a first cut at this, we have implemented in
formsPlayer the ability to load an XForms document into the Windows
system tray, using the following mark-up:

 <xf11:load
 resource="home-page.html"
 ev:event="DOMActivate"
 show="fp:systray"
 />

Current State-of-play
Many of the modules we would need are either already defined or are hinted
at in existing/proposed W3C standards:

DOM 3 Implementation Registry provides a very effective object
broker module, although a few things need to be added;

DOM 2 and DOM 3 provide an XML infoset object for the core;

A Standards-based Virtual Machine

Page 6 of 6

DOM 3 XPath provides a selection module which has the ability to add
functions, although additional work is needed to hook these functions
into the events system;

DOM 2 Events provides much of the events module we need, and XML
Events provides a declarative way to use it, although it is not possible
to create listeners for things without IDs at the moment (such as the
document object);

XForms bind and CSS are very specific dynamic infoset modules
which would not take much to generalise;

DOM 3 Load and Save and XForms submission provide some aspects
of a communications module;

XForms has a validation module;

rendering modules would be wrappers around objects that understand
rendering languages such as HTML and SVG;

XBL provides some aspects of a decorator

module, although much
more is needed.

The system module is the only one that would be completely new, but that
is pretty straightforward.

Summary
We need a virtual machine that is defined using declarative mark-up, rather
than any particular language. The processing model would rely heavily on
events to communicate between the modules, and interpreting the mark-up
would be recursive.

The aim would be to establish a VM that could execute as servers or clients,
and so facilitate web applications as agents.

