
Slide 1

RDF in Oracle Spatial

Nicole Alexander, Xavier Lopez,
Siva Ravada, Susie Stephens &
Jack Wang

Oracle Corporation

October 27 – 28, 2004

RDF in Oracle Spatial

This paper is based on Oracle 10g support for RDF data storage in Oracle
Spatial.

Slide 2

Overview

Oracle Spatial NDM
Metadata and Namespaces
Statements
Subjects and Objects
Properties
Reification
Containers and Collections
RDF Datatypes and Constructors
Querying RDF Data

Overview

This presentation is a high-level overview of RDF data storage in the Oracle
Spatial Network Data Model.
I will first introduce the Oracle Spatial Network Data Model product, and then
describe how it has been extended to store RDF-modeled data.
At the end of this presentation you will have a good idea of how RDF data is
handled in an Oracle database.

Slide 3

Network Data Model (NDM)

Feature of Oracle Spatial 10g
Tool for managing graphs (networks) in the
database
Supports directed and undirected networks

– spatial networks
– logical networks

Consists of a network database schema, and a Java
API for representation and analysis.

Network Data Model (NDM)

Oracle Spatial is an option of the Oracle database, and the Network Data Model
is one of the many features provided with Oracle Spatial 10g.
A network or graph captures relationships between objects using connectivity.
NDM supports both directed and undirected networks, which can be either spatial
or logical.
Spatial networks contain both connectivity information and geometric information.
Logical Networks contain connectivity information but no geometric information.
NDM consists of two components: a network database schema, and a Java API.
The network schema contains network metadata and tables for nodes and links.
The Java API enables network representation and network analysis.

Slide 4

RDF in Oracle Spatial NDM

S1 O1

O2S2 P2

RDF Triples:

• {S1, P1, O1}

• {S1, P2, O2}

• {S2, P2, O2}

P2

P1

RDF data stored in a directed, logical network
Subjects and objects mapped to nodes, and
properties to links that have subject start nodes and
object end nodes
Links represent complete RDF triples.

RDF in Oracle Spatial NDM

NDM stores RDF data using a directed, logical network.
Generally speaking, NDM maps subjects and objects of statements to nodes in a
network and properties to links. In NDM, nodes are stored in a system nodes’
table and links in a system links’ table. Each link must have a start node and and
end node. For RDF storage, the start node of a link is the subject of a statement,
and the end node of a link is the object of a statement.
A link therefore represents a complete RDF triple.
A key feature of RDF storage in NDM is that subject and object nodes are stored
only once, regardless of the number of times they participate in triples.
Subject and object nodes are reused, if they already exist in the database.
A new link, however, is always created whenever a new triple is inserted.
When a triple is deleted from the database, the corresponding link is directly
removed. However, the nodes attached to this link are not removed if there is at
least one other link connected to them.
This is the basic storage model for RDF-modeled data. The rest of the
presentation reviews the enhancements to NDM to fully support the management
of RDF-modeled data.

Slide 5

Metadata and Namespaces

Metadata for RDF Models: RDF_MODEL$

MODEL_NAMEMODEL_ID

Namespaces for RDF Models: RDF_NAMESPACE$

NAMESPACE_NAMENAMESPACE_ID

Metadata and Namespaces

Metadata for RDF Models
RDF_MODEL$ is a system level table created to store information on all the
models defined in the database.
When a new RDF model is created, an entry is made to this table.
The MODEL_ID is automatically generated and can be used instead of the
model’s name to refer to a particular model.

Namespaces for RDF Models
Namespaces are used in RDF/XML documents to make these documents
readable.
In NDM, namespaces are stored directly with their subject, properties, and
objects. However, this table can be optionally used to catalog all the namespaces
used in an RDF universe.

Slide 6

Statements

Represented by triples: subject, property, object
Text values (i.e. URIs or literals) for each part of a
triple are stored uniquely in a single table:
RDF_VALUE$

LITERAL_TYPEVALUE_TYPEVALUE_NAMEVALUE_ID

VALUE_TYPE: UR, BN, PL, or TL
LITERAL_TYPE: NULL, except for typed literals.

Statements

Statements are represented by triples: subject, property, and object.
RDF_VALUE$ stores the text values, i.e. the URIs or literals for each part of a
triple.
Each text value is stored only once, and a unique VALUE_ID is generated for the
text entry.
Possible VALUE_TYPE entries are URIs, blank nodes, plain literals or typed
literals.
Only typed literals will have a LITERAL_TYPE entry.

Slide 7

Subjects and Objects
Map to nodes in a graph
VALUE_IDs for subjects and objects only, stored
in the nodes’ table: RDF_NODE$

ACTIVENODE_ID

Original blank-node names optionally stored in
table: RDF_BLANK_NODE$

MODEL_IDORIG_NAMENODE_VALUENODE_ID

Subjects and Objects

RDF_NODE$ stores only the VALUE_ID for text values that participate in
subjects or objects of statements.
The NODE_ID is the same as the VALUE_ID.
NODE_ID values are stored only once, regardless of the number of subjects or
objects they participate in.
The nodes’ table allows RDF data to be exposed to all the analytical functions
and APIs available in core NDM.

Blank Nodes
Blank nodes are used to represent unknown nodes. They are also used when the
relationship between a subject node and an object node is n-ary (as is the case
with containers).
New blank nodes are automatically generated whenever blank nodes are
encountered in triples.
However, the user has the option to reuse a particular blank node. This is
necessary when inserting containers and collections.
RDF_BLANK_NODE$ stores the original names of blank nodes that are to be
reused when encountered in triples.

Slide 8

Properties
Map to links in a graph
Properties and triple information for entire
database stored in table: RDF_LINK$

END_NODE_IDSTART_NODE_IDP_VALUE_IDLINK_ID

REIF_LINK MODEL_IDCONTEXTACTIVELINK_TYPE

LINK_ID: unique triple ID (RDF_T_ID)
P_VALUE_ID: property text values only
LINK_TYPE: ‘STANDARD’, ‘RDF_*’
REIF_LINK: ‘Y’, for reification statements.

Properties

RDF_LINK$ stores all the triples for all the RDF models in the database.
The MODEL_ID logically partitions the RDF_LINK$ table. Selecting all the links
for a specified MODEL_ID, returns the RDF network for that particular model.

Slide 9

RDF Tables in NDM

…
VALUE_NAME
VALUE_ID

…
NODE_ID

…

LINK_ID
P_VALUE_ID

MODEL_ID

END_NODE_ID
START_NODE_ID

MODEL_NAME
MODEL_ID

...
MODEL_ID

ORIG_NAME
NODE_ID

RDF_VALUE$ RDF_LINK$
RDF_NODE$

RDF_MODEL$
RDF_BLANK_NODE$

RDF Tables in NDM

RDF_VALUE$, RDF_NODE$, RDF_LINK$, and RDF_MODEL$ are the key
tables for RDF storage. RDF_BLANK_NODE$ is used when reusing blank
nodes, and RDF_NAMESPACE$ is used for cataloging purposes only.

Slide 10

Reification
Resource generated from unique LINK_ID to
represent reified statement
Resource can then be used in subject or object

Reification

A reification of a statement in RDF is a description of the statement using an
RDF statement.
To represent a reified statement in NDM a resource is generated using the
triple’s LINK_ID (RDF_T_ID). This resource can then be used as the subject or
object of a statement.
To process a reification statement, a triple is first entered with the reified
statement’s resource as subject, rdf:type as property and rdf:Statement as
object.
A triple is then entered for each assertion about the reified statement.
Each reified statement will have only one rdf:type –> rdf:Statement associated
with it, regardless of the number of assertions made using this resource.

Slide 11

Containers and Collections

 Containers and Collections

Containers and collections are handled similarly in NDM.
Each container or collection will have a rdf:type ->
rdf:container_name/collection_name associated with it.
The LINK_TYPE for container or collection members are RDF_MEMBER.
Collections have an additional constraint: no new entries can be added to the list.

Slide 12

RDF Datatypes in Oracle
SDO_RDF_TRIPLE (

subject VARCHAR2(2000),

property VARCHAR2(2000),

object VARCHAR2(2000));

SDO_RDF_TRIPLE_S (

RDF_T_ID NUMBER,

RDF_M_ID NUMBER,

RDF_S_ID NUMBER,

RDF_P_ID NUMBER,

RDF_O_ID NUMBER, ...

CREATE TABLE jobs (triple SDO_RDF_TRIPLE_S);

SELECT j.triple.GET_RDF_TRIPLE() FROM jobs j;

RDF Datatypes in Oracle

Two new datatypes are defined for RDF-modeled data:
The SDO_RDF_TRIPLE type is defined to serve as the triple representation of
RDF data.
The SDO_RDF_TRIPLE_S type is defined to store persistent data in the
database.
The GET_RDF_TRIPLE() function returns an SDO_RDF_TRIPLE type.

Slide 13

Constructors: Inserting Triples
SDO_RDF_TRIPLE_S(m_name, sub, prop, obj)

SDO_RDF_TRIPLE_S(m_name, sub_bn, prop, obj_bn,
bn_m_id)

SDO_RDF_TRIPLE_S(m_name, rdf_t_id, prop, obj)

INSERT INTO jobs VALUES (SDO_RDF_TRIPLE_S('jobs',
'http://www.nature.com/naturejobs/biologicalsciences.rdf',
'http://www.w3.org/1999/02/22-rdf-syntax-ns#type', 'http://purl.org/rss/1.0/channel'));

INSERT INTO jobs VALUES (SDO_RDF_TRIPLE_S('jobs', '_:BNSEQN10018',
'http://www.w3.org/1999/02/22-rdf-syntax-ns#type', 'http://www.w3.org/1999/02/22-
rdf-syntax-ns#Seq', 1));

INSERT INTO uc_data VALUES (SDO_RDF_TRIPLE_S(‘uc’, 105,
‘http://www.uc.edu/valid’, ’12-31-2004’));

Constructors: Inserting RDF Triples

General constructor for triple insertion: SDO_RDF_TRIPLE_S(model_name,
subject, property, object).
Constructor for reusing blank nodes: SDO_RDF_TRIPLE_S(model_name,
sub_or_bn, property, obj_or_bn, bn_m_id). This constructor is required for
entering containers and collections.
Constructor for reifying statements: SDO_RDF_TRIPLE_S(model_name,
rdf_t_id, property, object).

Slide 14

Querying RDF Data
JAVA API to perform analysis on RDF data

- find a path between two resources
- find a path between two resources with links
of a specific type

SQL-level access to RDF data
- SELECT j.triple.GET_RDF_TRIPLE() FROM jobs j;

SQL-level functions to perform inference-type
operations on RDF data

- currently in development.

Querying RDF Data

Slide 15

Summary
System tables for RDF storage: RDF_MODEL$,
RDF_VALUE$, RDF_NODE$, RDF_LINK$,
RDF_BLANK_NODE$, and
RDF_NAMESPACE$
Datatypes: SDO_RDF_TRIPLE, and
SDO_RDF_TRIPLE_S
Querying RDF data: JAVA API, and SQL-level
functions.

Q & A

Summary

There are six system tables for RDF data storage in NDM. Two of the tables:
RDF_NODE$ and RDF_LINK$ are required tables for NDM, the other 4 tables
have been added to support RDF data storage.
Two new datatypes are defined for RDF-modeled data: one for representing
triples, the other for storing triples.
JAVA API and SQL-level functions for querying RDF data.

Q&A

