

W3C Workshop – Ispra, Italy

A General Certification Framework with Applications to Privacy-Enhancing Certificate Infrastructures

Jan Camenisch Thomas Gross Dieter Sommer

Scenario

Protocols

Attribute Assertion Language

3

Scenario

Protocols

Attribute Assertion Language

Attribute Exchange Methods

Need for attribute exchange

- Attributes are key to many (business) scenarios
- Attribute information allows to distinguish between entities

Web forms

- Non-certified attributes (declared)
- Tedious to use
- Error-prone (low data quality)

FIM (federated identity management)

- Certified attributes (endorsed by Identity Provider IP)
- Weak attacker model
- Too much trust in IP
- Privacy problems

Attribute Exchange in Traditional FIM Environment

6

Scenario

Protocols

Attribute Assertion Language

Private Certificate Framework – Protocols

Private Certificate Framework – Protocols (cont'd)

Building Blocks for FIM

- Security policy language
- Specification language
- Proof and issuance system
- Federation protocols (flows)
- Ontologies
- Software/hardware components implementing everything

Proof Protocol – Summary

Proof specification

- Statement over one or multiple certificates
- "Assertion"

Cryptographic proof

- Cryptographic proof for the correctness of the proof specification
- Verifies with respect to the issuers' public keys
- Extension to framework of Bangerter et al. 2004

This separation holds for all deployed approaches

Scenario

Protocols

Attribute Assertion Language

Proof Specification

Based on propositional logic

Variables

- Attributes of certificates: E.g. SwissPassport[Birthdate]
- Commitments: Comm4[3]
- Encryptions: Enc6[1]

Predicates

- Predicates over variables
- Connectives: AND, OR
 - Connects the predicates
 - E.g. Passport[Bdate] < 1988/05/21 OR Driverslicense

No negation

12

- Negation of specific predicates cannot be proved
 - E.g., to NOT have a driver's license; no cryptographic proof tool available

Applicable to both interactive and non-interactive proofs

Predicates

Value domain of variables

- Subset of the integers [-2^a;2^a]
- Strings of arbitrary length

Arithmetic comparison operators

 $->,\geq,<,\leq,=,\neq$

- Predicates on n variables
- Arithmetic operators

- +, *, ^

Examples

- Bankstmt[Balance] > Comm1
- Bankstmt1[Balance] + Bankstmt2[Balance] > 4000
- Bankstmt[Subject] = Enc1[1]

Annotated Predicates

- Required for formulas containing OR connectors
- Prover uses ()-annotation to specify the predicates the prover actually fulfills
 - (Passport[Bdate] < 1988/05/21) OR Driverslicense</p>
 - Enc1[1] = Passport[Sno] OR (Enc1[1] = Driverslicense[Sno])
 - Only applied to prover's specification
 - \rightarrow OR proofs conceal this information
- For each ()-annotated predicate, the prover must be able to fulfill the predicate
- There must exist one DNF clause where all predicates are annotated with ()

Uninstantiated Variables

Instantiated variables

- Attributes of certificates, commitments, encryptions
- Are instantiated through the attribute values of certificates, commitment openings, and plaintexts to encryptions

Uninstantiated variables

- Attributes of certificates, encryptions, commitments

Instantiation semantics

- Instantiation is specified by predicates
- OR connective leads to interesting instantiation semantics
 - Variables are instantiated through the predicates that are ()-annotated
 - Variables that appear only in non-()-annotated predicates are instantiated with a random value
- E.g.: Enc1[1] = Passport[Sno] OR (Enc2[1] = Driverslicense[Sno])

Comprehensive Example

Private certificates

- USPP: United States passport
- EUPP: European Union passport

Proof specification

- \langle Enc1[1] = USPP[Sno] AND Enc1[2] = 1 AND Enc2[2] = 0 \rangle

OR

16

Enc2[1] = EUPP[Sno] AND Enc2[2] = 1 AND Enc1[2] = 0

Encryptions

- Enc1 = (USPP[Sno],1), encrypted with PK_U
- Enc2 = (rand, 0), encrypted with PK_E

Conclusion

- Defined new building blocks for identity federation
 - Natural model for attribute exchange
 - → Better privacy in attribute exchange
 - Weaker trust assumptions
- Further work
 - Ontologies
 - Security policy language