Privacy enhanced authorizations and data handling

Ernesto Damiani, Sabrina De Capitani di Vimercati, Pierangela Samarati

Dipartimento di Tecnologie dell'Informazione Università degli Studi di Milano samarati@dti.unimi.it

Categories of policies

- Access control policies govern access to service and release to data stored at some service
- Release policies govern release of personal private information (properties/credentials)
- Data handling policies define restrictions on secondary use of PII
- Sanitization policies regulate the dialog between parties to protect sensitive policy information

Existing standards

Access control

- eXtensible Markup Access Control Language (XACML)
- Enterprise Privacy Authorization Language (EPAL)
- WS-Policy
- XrML

Secondary use

Platform for Privacy Preference (P3P)

Convergence between AC and PP models and languages

- AC departs from traditional authenticate/authorize approach
- Provisions for coordinated evaluation of different policies (client, server, data respondent,)
- Support for preferences->conditions mappings
 - PP declaratively expresses privacy preferences in a human-understandable way
 - AC states access conditions on user data in a consistent way w.r.t. privacy preferences
 - May be done explicitly via language mappings (e.g. XACML privacy profile) or implicitly (e.g. as part of an operational semantics of PP)
 - Both techniques have pros and cons
- Support for client-side and server-side access restrictions
- Support for authorizations depending on partial identities
- Support for new categories of conditions
 - Location-based, trust, purpose, obligations, data handling etc.
 - Raise privacy concerns in the evaluation of AC conditions
 - Raise policy disclosure concerns

Language extensions

- Integration with encryption
 - Evaluation of conditions based on ciphertext or signed assertions over ciphertext
- Support for context representation and reasoning
- New context-related predicates (e.g. LBS)
- Delegation

Encryption-aware language: issues

- An encryption-aware language needs
 - Support for conditions/predicates requesting encrypted data
 - Definition of a syntax and semantic for encryptionbased statement
 - Definition of an infrastructure for cryptographic credentials evaluation
 - Enhanced representation of parties portfolios

Context representation/reasoning (1)

- Definition of ontologies for context inferences
- Definition of ontologies for policies inferences
- Policies expansion through ontologies definition
- Ontology-based evaluation of conditions

Example

 >age(**User**,18):- driverLicence(type="B", issuer="ItalianPublicAdministration")

Context representation/reasoning (2)

- Enhanced Context representation containing
 - Approximate information
 - Time-variant information
 - Uncertain information

- Users position
- Mobile information
- Facial expression

Location-aware context

Definition of location-based conditions

 Ability to express, evaluate and enforce access control policies based on location information

Location-based conditions examples

- inArea(User,"Room1")
- disjoint(User, "Italy")
- density("Room7", 1, 10)

Context and Privacy Preferences

- Definition of a new category of privacy preferences regarding timevariant and approximate context information
- Privacy preferences will affect the evaluation of conditions based on enhanced context information

Preferences examples

- When evaluating LBS conditions on me
 - Determine my location with a minimum accuracy of 10 meters
 - Determine my location degrading the measure by a certaint percentage, with respect to location technology accuracy

R&D challenges context awareness (1)

Context information is a set of metadata clearly identifying entities of interest in the domain

A well-understood and shared context representation and a secure infrastructure making it available provide

- Capability of parties to negotiate common knowledge and exploit a shared vocabulary
- Capability of parties to verify policy conditions

R&D challenges context awareness (2)

- Protect privacy of context information. User context information should only be provided to authorized entities
- Describe entities via context ontologies. User context information must be made accessible by entities, dealing with its semantics in a clear and unambiguous way
- Develop a metadata distribution architecture.
 Context information should be made available to any authorized entity at any time
 - Still unauthorized information leaks should be prevented

R&D challenges context awareness (3)

- Semantic portfolio. Support controlled access to contextual resources subject to user-specified privacy constraints
 - Existing standards (e.g., OWL Semantic Web reasoning engine, location tracking functionality, etc.) need to be combined with new enforcement techniques

Secondary use

Constraints on secondary use

- Agreed between the parties (server/client)
- Expressed within the rules or as separate rules
- Need to be obeyed (propagated/satisfied) by the policy of the server

Data handling policies (1)

Specify how PII is used and processed

- Attribute-based language
- Support for purposes
- Support for provisions and obligations
- Support for disputes and remedies (human readable)
- Different types of specifications
 - Server-side
 - Customized
 - User- and server-side

Data handling policies (2)

- Data handling policies composition
 - Data handling policies defined at different level of the data schema
 - Support for multiple purposes
- Automatic negotiation of preferences between users and servers
 - Servers propose a set of policies
 - Users, automatically, customize through their preferences

Data Handling Policies (3)

- Data Handling policies matching
 - Definition of compact policies to boost data handling policies comparison and evaluation
 - Definition of policies templates customizable by the end users

R&D challenges secondary use

- Management of data handling policies lifecycle
- Definition of policies allowing the protection of the users data after chains of releases
- Support for machine readable remedies and disputes

Conclusions

- Current standards are evolving independently to address open issues
- Some (not all) of the aspects are being covered
- But: putting the different aspects together requires some rethinking
- Some aspects not covered by current standards
 - Data handling
 - Credential/declaration management
 - Support for anonymity/privacy
 - Support for policy communication (sanitization)
 - Support for negotiation

Thank you for your attention

Backup slides

Language - elements

- declarations:
 - information uttered by the party and not certified by any authority(e.g.,identity,address,hobbies)
- credentials: digital certificates (c,K)
 - c: signed content (credential name, attribute list)
 - K: public digital signature verification key
- built-in mathematical predicates
- conditions:
 - state
 - trust
 - location
 -

Credentials

We assume a semi-structured organization of credentials

- Credential term: expression of the form credential_name(attribute_list)
 - credential_name: name of the credential
 - attribute_list: list of elements of the form "attribute_name=value_term"

Example

driver-license(name="John Doe")

Language - rules (1)

Authorization

```
\langle subjects \rangle CAN \langle actions \rangle \langle objects \rangle [FOR \langle purposes \rangle] [IF \langle conditions \rangle] [FOLLOW \langle obligations \rangle]
```

- subjects: boolean expression of credentials and declarations
- objects: boolean expression of conditions on metadata
- conditions: boolean expression of generic conditions

Language - rules (2)

Restriction

```
⟨subjects⟩
CAN ⟨actions⟩
⟨objects⟩
[FOR ⟨purposes⟩]
[ONLY IF ⟨conditions⟩]
[FOLLOW ⟨obligations⟩]
```

- subjects: boolean expression of credentials and declarations
- objects: boolean expression of conditions on metadata
- conditions: boolean expression of generic conditions

Language - rules (3)

Some support of variables:

- user: user requesting access
- object: data to be accessed

Support of any kind of **predicates** (provided evaluation):

- dynamic: defining conditions that can be brought to satisfactions at run-time processing of the request
- trust: assessing trustwortiness of server
- location: making enforcement dependent on location of requestor

Support of ontologies and abstractions (subject, object, portfolio ontologies)

Subjects

<subject_id> WITH <subject_expression>

- subject_id: identifier (individual or group) defined in the ontology. Allows indexing of access rules
- subject_expression: boolean formula over credentials and declaration terms. It uses predefined variable user to refer to actual requestor

- declaration(user.name = "Bob", user.age >18)
- credential(passport(user.nationality = "Italian"),K₁)

Objects

<object_id> WITH <object_expression>

- object_id: identifier (individual resourse or class thereof) defined in the ontology. Allows indexing of access rules
- object_expression: boolean formula over credentials and declaration terms. It uses predefined variable object to refer to actual requestor

- declaration(object.creator = "Bob")
- declaration(object.creation_date < "1971")
- declaration(object.creator = user)

Conditions

- boolean expression of conditions
- each term has the form predicate_name(arguments)
- different types of conditions can be stated inside a rule:
 - trust-based conditions
 - location-based conditions
 - state-based conditions

- filled_in_form(user, "form1")
- payment(user, "subscription1")

Examples of rules (1)

Researchers

CAN access

Restricted_Datasets

IF declaration(payment(user,Restricted_Datasets))

Researchers can access restricted dataset if they have paid for the access

Examples of rules (2)

Any-User WITH credential($DriversLicence(Permit.CarPermit="true", Issuer.Country="IT"), K_DL)$ AND declaration(User.Age=17)) CAN rent_a_car Mercedes WITH type="CLK" IF credential($eCoin(Value>100Euro), K_{EC}$) AND declaration(in_area("Italy"))

Users older that 17 who have a valid italian driver licence can rent a Mercedes CLK if they have provided an eCoin for more than 100€ for the access and they are in Italy

Examples of rules (3)

Any-User WITH declaration(user.citizenship="EU")

CAN download

NationalSurvey

IF *metadata*.downloadable = "yes"

European citizens can download national surveys if they are marked as "downloadable"