Collage: A Declarative Programming Model for
Compositional Development and Evolution of
Cross-Organizational Applications

Bruce Lucas, IBM T J Watson Research Center (bdlucas@us.ibm.com)
Charles F Wiecha, IBM T J Watson Research Center (wiecha@us.ibm.com)

Collage Motivation and Goals

Motivated by a mismatch
— today’s applications are loosely coupled, inter-organizational, inter-networked
— but programming models are designed for monolithic, freestanding applications

Bookseller Booksel g, A
—————— <= Merchalms="

End-user device s
i oo g L] o Bt
= S =

| _= | —

Collage programming model goals

— targeted at cross-organizational software
programs are built as compositions of web components

inherently distributed data, execution, development models

— highly composable
fine-grained “gray-box” aspect-like composition
supports loosely coupled cross-organizational development

declarative
focuses on “what” not “how”

» therefore more readily composable

— support evolutionary style of software development

rapid prototyping
» progressive refinement into a deployed, hardened asset
— radically simplified
uniform end-to-end programming model
supports fluidity of application design

Qutline

« Data Model
— RDF Distributed Graph Data Structures
— RDF Classification
— Collage Resources as Mutable Entities
— Collage/RDF as a Unifying Data Model
— Examples — XML, relational
« Execution Model
— Execution Model Concepts
— Bind Construct
— Let and Create Constructs
— End-to-end Example
* Interaction and Composition
— Recursive MVC
— Flexible Decomposition and Styling Example
— Open Composition and Adaptation Example
— Device Adaptation Example

DATA MODEL

RDF Distributed Graph Data Structures

Resource: graph node, identified by URI
Property: graph edge label, named by URI
Literal: graph data node, as typed string

Triple: bidirectional graph edge consisting of
— Subject: resource
— Predicate: property
— QObject: resource or literal

Resource node . . .
RDF Triple Store
identified by URI RO Eggjeeg'gg) with
predicate g subject predicate object
Edges are navigable object RO RO a “f00”
in either direction RO b R2
—_ / RO b R3
a b b R2 d R4
/ v & R3 e R4
“foo” |R2| |R3 R4 f R5
e L N
Literal node ¥ Je RS g RO
containing data “foo” / bar
R4

RDF Classification

* Resources may be classified

« Classes are named by URIs

« Classifications are represented by triples with property rdf:type

« Multiple classification: a resource may have zero, one, or more classes
« Dynamic classification: a resource’s classification may change

» Classifications may originate from disparate development sources

» Implications of classification are not prescribed by RDF

RDF Triple Store

Resource with two cD subject predicate object
\
classes, C and D 20 Application data RO D R1
/\ as RDF triples RO 3 oo
, Resource classes RO rdf:type C
Resource with -
RDF tripl T :
single class C —Cy¥ \4) as ripies RO rdf:type D
R1 foo R1 rdf:type C

Collage Resources as Mutable Entities

» Collage resources have a composite value

— recursively composed value, i.e. tree

— tree of RDF nodes and triples

— triples forming value distinguished by having property that is subproperty of c:value
» Collage resources have a location

— identified by URL such as http:

— value may be read or updated via URL

— this models mutable entities

identified by URLs that give PERSON PERSON

the value a storage location \‘/7\ mother q
name birthdate LI
heavy line indicates part ﬁ EL
\

of I\O/alue trrctee -fthgt ils, this edge is not
subproperty or civalue given family yr mo day part of value tree

¥\ ¥ ¥ X

oy oy oy

‘Kris” “Kringle” “2007”

Collage/RDF as a Unifying Data Model

Shred escripe models
RDF triple store
view ead describe
Relational data e write ™ Entity-Relationship
models
Collage program
Collage/RDF Entity-Relationship UML Relational XML
class entity class class table
resource entity instance object row element, attribute
value property attribute attribute column parent-child relationship
value tree composite attribute XML (sub)-tree
non-value property association PK/FK

XML Data Model Example

PERSON COMPANY
employer >
tssn—b =—pp-“123456789" tname—> =P “Acme Corp”
name | address =
tgiven—b =—p-“John” tstreet-} =P-“123 Main”
family==p»{ [=Pp-“Smith” City===pp =Pp-“Nowhere”
<PERSON> <COMPANY>
<ssn>123456789</ssn> <name>Acme Corp.</name>
<name> <address>
<given>John</given> <street>123 Main</street>
<family>Smith</family> <city>Nowhere</street>
</name> </address>
</PERSON> </COMPANY>

« Uniform data model: RDF triples uniformly represent
— relationships within XML document (e.g. ssn, name, address)
— relationships between XML documents (e.g. employer)

« Allows uniform navigation across entire data model

« Simplifies program and data model refactoring by eliminating
data model boundary between intra- and inter-document

Relational Data Model Example

Relational Table RDF representation
hame age gender PERSON
Smith 37 F row =p»
name age gender
Jones 45 M * * *
“Smith” “37” “F”
PERSON
row =g

name age gender

\ A *

“‘Jones” “45”

EXECUTION MODEL

Execution Model Concepts

Reactive: defined in terms of reactions to external events
Data-centric: defined in terms of evolution of state

— language semantics
— data-centric abstraction, refinement, encapsulation, interfaces

Update-based:

— an update is an assignment of a value to a resource

— update is fundamental semantic unit of action

— all external events manifest as initiating resource updates...

— ...that cause a cascade of ensuing updates
Distributed

— Built on distributed data model

— Messages as implementation protocol, not programming model
Declarative language constructs:

— Bind: spreadsheet-like connection between resource value updates

— Create: data-driven creation of resources

— Let: data-driven creation of structure

Bind Construct

R1
RZRO

« Declarative expression of functional relationship between resource values
— Developer specifies function B to compute output RO from R1, R2, ...
— Effectively a one-way conditional constraint on the resource values
— “Generalized spreadsheet” conceptual model

« May be triggered by an update to an input resource - each input may be
— active: update to that input triggers execution of bind
— passive: update to that input does not trigger execution of bind

« Each input may refer to its resource’s

— new value: value at end of execution cycle
» used for constraint-like computations
— old value: value at beginning of execution cycle
» used for non-idempotent operations such as inserting into a set or adding to a value

Let and Create Constructs

 Declarative data-driven creation of structure

— creation of resources

— classification of resources

— creation of triples to connect resources

A
<let
anchor="A"
path="xpath”
xpath p property="p”

class="C"/>

<create
anchor="A"

” ”

property="p
class="C"/>

w0 > w0
cgpoaNcy
©

for every resource R of class A
for every resource S reachable by xpath from A
classify S with class C
connect R to S with property p

for every resource R of class A
create a resource S
classify S with class C
connect R to S with property p

| WEATHERMAN

End-to-End Application Example

____________ [_____________
T Q—selected 9 city temp

I
| temp-input

| I}'«c:label .

| “Temperature:” “41”

Q Weather g@

City? | New York
Temperature: |41

‘Get Temp| Set Temp |

| |

set-trigger | . New York 5 |
. mty—bD—b“New York™ | geattle 8

G TRIGGER | | ugr Washington 10 |

| |

|

Atlanta 15
Dublin 12
«) ($t-32)*5div9 London 11
Set Temp: Paris 12

<c:create class="c:INPUT" property="temp-input"> <c:bind>
e <c:out path="c:label">Temperature:</c:out> o <c:in path="get-trigger"/>
</c:create> <c:in variable="$t" path="selected/temp"/>
<c:out path="temp-input">{$t * 9 div 5 + 32}</c:out>
<c:create class="c:TRIGGER" property="set-trigger"> </c:bind>
° <c:out path="c:label">Set Temp</c:out>

</c:create> <c:bind>
e <c:in path="set-trigger"/>
<<c:let property="selected" <c:in path="temp-input" variable="$t" passive="true"/>
path="/weather-database/row[city=$city-field]"> <c:out path="selected/temp">{($t - 32) * 5 div 9}</c:out>
<c:in variable="$city-field" path="city-field"/> </c:bind>

</c:let>

. A form (1) represented by WEATHERMAN resource allows querying and updating a relational database (2) of
weather information

. The <create> construct associates Ul elements such as inputs (3) and triggers (4) with the WEATHERMAN class
. The <let> construct (5) uses the "city" input field to select a row from the database, recording it using the "selected"

property

. The <bind> construct (6), triggered by the "set" trigger (4), updates the database with the quantity in the
"temperature” input field, after converting Fahrenheit to Celsius

. A similar <bind> construct (7) retrieves the temperature from the database, converting Celsius to Fahrenheit.
. Dashed boxes indicate possible distribution scenario

demo/weather.xml

INTERACTION
AND

COMPOSITION

Recursive MVC

exposed model controller encapsulated . MVC
resource binds view

resources — model: resource with a value
— view: set of associated resources
— controller: binds connecting model with view

Recursive

— view resources may be models to further
views

— turtles all the way down: recursion is
grounded in primitive resource classes
representing primitive units of interaction

Abstraction defined by
— model content
— model behavior
Refinement

— view refines (possibly implements) model
abstraction

Encapsulation

— model is exposed

— model encapsulates view
Data as interface

— permissible and observed updates to model
resource define interface to view

value

B

recursive primitive

Collage generalizes recursive MVC
as a key composition mechanism

Flexible Decomposition and Styling Example

<c:with anchor="DATE">
<c:create-structure>
<yr/>
<mo/>
<da/>
</c:create-structure>
</c:with>

<c:with anchor="DATE3">
<c:create-view class="c:INPUT" ref="yr">
<c:out path="c:label">year</c:out>
</c:create-view>
<c:create-view class="c:INPUT" ref="mo">
<c:out path="c:label">month</c:out>
</c:create-view>
<c:create-view class="c:INPUT" ref="da">
<c:out path="c:label">day</c:out>
</c:create-view>
</c:with>

<c:let anchor="DATE" class="DATE3"/>

mo=p »09"
“1956” “year’

Define a DATE data structure: every resource
of class DATE has associated yr, mo, and day
resources as its value

Define a DATES view that associates three
input fields with any data structure that has yr,
mo, da resources

Style a DATE with a DATE3 view by
classifying a DATE resource as DATES.
Here every DATE is a DATES, but DATE3
classification might be applied selectively
More flexible than subclassing:

— DATES requires only yr, mo, da fields be present

— DATES classification need not be applied at point
of instantiation of resource

Open Composition and Adaptation Example

ORDER-FORM

o name—bD—}“Bruce Lucas”
total—p| _|ps107"
items—bD =

e aprover-}D—b“app@ibm.com”

[Order Form Q@

Order for Bruce Lucas

Order total is $107

IBM Approver | app@ibm.com

Bookseller Code IBM Code
<c:with anchor="ORDER-FORM"> <c:with anchor="ORDER-FORM">
define structure of model define structure of model
<c:create-structure> <c:create-structure>
<name/> <approver>app@ibm.com</approver>
<total/> </c:create-structure>
<items/>
</c:create-structure> display the approver field
<c:create-view class="c:OUTPUT" ref="approver">
display the customer name <c:out path="c:label">IBM Approver</c:out>
<c:create-view class="c:OUTPUT" ref="name"> </c:create-view>
<c:out path="c:label">Order for</c:out>
</c:create-view> </c:with>

</c:with>

« Scenario: IBM partners with Bookseller to provide IBM employees with supplies
— requires that IBM be able to modify "stock" Bookseller user interfaces and processes
» Bookseller defines stock
— definition of the order form model (1)
— order form presentation (2).
» |IBM separately authors code to customize Bookseller form, specifying
— the addition of an approver field to the model (3)
— addition of a corresponding presentation item (4).
« <with> construct is comparable to class definition, but more flexible
— complete definition of a class may be composed from multiple independently specified sources.
— supports flexible multi-organizational composition of applications.

demo/bn demo/bn+ibm

Device Adaptation Example

2

3 g8 Book details -- Mobile M=

B Book list -- Mobile M=E3

1 ——
8 Order Form -- Desktop E|@|E|
uther? | Find futhar? | Find futhar? | Find

IEM Books of The Month Selected Book of The Month
Title: - Crucial Conversations Details | Crucial Conversations Title: IBM On Demand Technolagy Made Simple

Author: Kerry Patterson
Author: Jim Hoskins

Price: 12 Take 1 to 5ol Details | I8M On Demand Technology Made Simple

Price: 29
Take 1 bo G0l | o Back: |

%B}OOK-DETAILS-FORM

T T
details titte- author- price- take-

Title: IBM On Demand Technology Made Simple
Author: Jim Hoskins

BOOK-LIST-FORM

Price: 29 Take 1 ko Go!

title-
t

ou out out out one
Y P ‘8
cTRIGGER (@3 c:TRIGGER
str @ str str str
copy

« View (1) is search page from desktop book-ordering application
* Views (2) and (3) adapt view (1) to smaller screen of mobile device
» Use recursive MVC: view resources of (1) become model resources of (2) and (3)
« Adaptation accomplished by creating
— new view elements (4),

— binds linking the new view to the old (5)
— binds controlling navigation (6).

ORDER-FORM :
repeated for

T T 1 ! each book
price- author- title- take-

price —>|:|->str out out out one
c.TRIGGER
author->|:|->str

title

repeated for
each book

BACKUP

Relationship to XForms

« Collage assumes RDF as a uniform underlying data model

simplifies programming model
eases evolution and refactoring by eliminating boundaries

« Collage leverages and extends concepts familiar from XForms

resource-resource bind unifies and generalizes model-view and model-
model binds

declarative resource instantiation generalizes model-driven view
instantiation

update-driven execution model regularizes the event model
uniform programming model across all application tiers
recursively composable

ER/UML Data Model Example

UML Diagram
PERSON COMPANY
Example RDF Instance
name employer name
age stock
employer
name ===gp “Smith” name === “|BM”
Qe m—)p “37" StoCk mulpy- “|BM”
ER Diagram gender==p “F” Color =y “blue”

PERSON COMPANY

Collage Conceptual Summary

unit
part of_| bind [€—t1ggers
part of updates reads
part of controls——reads
\ ¥ e classifies
create
——creates reads
/
controls contains connects

rd

let

classifies ropert
creates property

contains

Execution model

1. An asynchronous resource update is observed names
2. A set of bind constructs to execute is chosen based on

currently existing resources and triples

3. The binds are executed in dependency order

to

4. Repeat/use and let constructs are executed based on
updated resources to create new resources and triples

