

Profiles

● basic profile of XML Signature

– flexible, but much easier to implement subset

– ease more important than flexibility?

– fundamentals to enable performance and interoperability

– reduced attack surface

– ease of understanding for implementers!

● deterministic-time processing

– robustness against DoS

– scaling behavior [~ O(n)]

● “bulk signing” -- relationship to non-XML-centric signing mechanisms

Profiles (II)

● use-case specific profiles – big picture?

● use-case-specific

– implementations taught at run-time about constraints, turn off some
features

– run-time and implementation-time profiling

– reuse of profiles?

– WS-Policy, WS-SecurityPolicy?

– protocol messages vs documents

● efficiently-verifiable (much easier to verify than to sign)

– constraining transformations (XSLT)

– discuss under “basic profile”

Refactoring? Backwards-
compatibility?

● Existing specs?

– WSS, XKMS, SAML

– not being compatible means two stacks

● Predefined transformations to allow users to enforce profiles?

– (-> transforms)

● longer-term view?

Refactoring? Backwards-
compatibility?

● backwards-compatibility too constraining?

– transition strategy: new applications MUST be able to verify old
signatures – requirement for WG or for consumers?

– not constrain in charter?

– be explicit that 1.0 not deprecated

– use extension points?

– superset of old spec?

– application vs infrastructure requirements

● impact of algorithm changes?

● efficient core + extensions?

– leverage results from DSS?

● requirements work?

● we get one breaking change.

Implementation Guidance

● How to deal with it in scripting contexts?

● Order of operations

– interaction with one-pass processing?

– partitioning of attack surface anonymous vs non-anonymous

● feeds back to basic profile

● APIs

● how to really do “see what you sign”? -- best practices?

● wrapping countermeasures

● references moving around in documents

● improved security considerations

Key Management

● RetrievalMethod issue

● KeyInfo work more open than rest of spec

– unclear to what extent spec is used

– spec clarity

– RetrievalMethod, X509data

– naked keys (base64) vs self-signed certs

● XKMS for symmetric key cryptosystems

– planning for a world post quantum computing?

– building Kerberos-like systems on top of XKMS

Referencing Model

● processing vs. structural integrity protection

– signature processing works fine

– security properties aren't the ones you thought you got

● how to make ID-based approaches work?

– talk about ID-ness without resorting to schema / xml:id

– uniqueness when you have non-cooperating implementations (-> impl
guidance?)

– mutable IDs

– communicate IDness as signature metadata? (can we flag ID attributes
in context?)

– reference mechanism for just one particular kind of ID?

Referencing Model

● Fully semantic, layered referencing

– just not possible?

● structure-based approaches

– use xpath for dereferencing instead of doing transformation?

● maybe something in the middle? combine?

– remove features that get people in trouble?

– or fall back to implementation guidance?

Algorithms

● NSA Cryptosuite B

● Randomization approaches

– RSA-PSS

– randomized hashing (RMX)

● Mandatory / optional to implement algorithms

– what after SHA-1 (currently mandatory)

– algorithms suites vs individual algorithms

● changing the defaults

– define future algorithms in style used for RSA-PSS

● algorithm ID registry

Other issues

● Exclusive Canonicalization

● Schema extensibility / reuse of XML Signature

● XML 1.1

– specs encouraged to move to XML 1.1 support

– explore implications of XML 1.1 for new signature work

– xpath 2.0 data model; distinct from mandating XPath 2.0

● encapsulating XML?

Transform model

● Use XProc to specify transformations, or roll out another one?

● How to apply XPath 1.0 to XML 1.1?

● Constrain transform model to enable pipelining with memory depending on
document depth, not length

● Actual Implementations include optimized processing models for transform
chains

– interoperable subset?

● Effect on modularized c14n approaches?

● Standardized transforms for certain tasks?

● Require transforms to output documents instead of nodesets?

C14N overall

● not satisfactory

● dual purpose

– output XML

– process XML into an octet stream suitable for hashing

● simplifying current C14N?

● starting from scratch? (à la Thompson)

● splitting out certain features? layering? (Simon)

● relationship with EXI?

● integrating digest + c14n?

● output of transforms goes to applications AND combined “pre-hash”

● what does “what you sign is what you see” mean for c14n (and transforms)?

– wrapping attacks

Interaction with other Groups

● XML Processing Model?

● ID-ness issue / how to benefit from xml:id

– needs bigger picture

● Long-Term Archival

– DSS

– LTANS

● XADES @ ETSI

– also long-term archival

● EXI

● customers: SAML, WS-I, WSS, Liberty (see current charter, plus some)

● DSS basic processing?

Requirements

● Performance

