Profiles

* basic profile of XML Signature

- flexible, but much easier to implement subset

- ease more important than flexibility?

- fundamentals to enable performance and interoperability
- reduced attack surface

- ease of understanding for implementers!

» deterministic-time processing
- robustness against DoS
- scaling behavior [~ O(n)]

* “bulk signing” -- relationship to non-XML-centric signing mechanisms

Profiles (lI)

e use-case specific profiles — big picture?
e use-case-specific

- implementations taught at run-time about constraints, turn off some
features

- run-time and implementation-time profiling
— reuse of profiles?

- WS-Policy, WS-SecurityPolicy?

— protocol messages vs documents

 efficiently-verifiable (much easier to verify than to sign)

— constraining transformations (XSLT)

- discuss under “basic profile”

Refactoring”? Backwards-
compatibility”?
» Existing specs?
- WSS, XKMS, SAML

- not being compatible means two stacks

* Predefined transformations to allow users to enforce profiles?

- (-> transforms)

e longer-term view?

Refactoring”? Backwards-
compatibility”?
* backwards-compatibility too constraining?

- transition strategy: new applications MUST be able to verify old
signatures — requirement for WG or for consumers?

- not constrain in charter?

- be explicit that 1.0 not deprecated

- use extension points?

— superset of old spec?

— application vs infrastructure requirements

e impact of algorithm changes?
» efficient core + extensions?

- leverage results from DSS?

e requirements work?

 we get one breaking change.

Implementation Guidance

How to deal with it in scripting contexts?
Order of operations

- interaction with one-pass processing?
- partitioning of attack surface anonymous vs non-anonymous

feeds back to basic profile

APls

how to really do “see what you sign”? -- best practices?
wrapping countermeasures

references moving around in documents

iImproved security considerations

Key Management

 RetrievalMethod issue
« KeylInfo work more open than rest of spec

- unclear to what extent spec is used

— spec clarity

- RetrievalMethod, X509data

- naked keys (base64) vs self-signed certs
 XKMS for symmetric key cryptosystems

- planning for a world post quantum computing?

- building Kerberos-like systems on top of XKMS

Referencing Model

* processing vs. structural integrity protection

signature processing works fine

security properties aren't the ones you thought you got

 how to make ID-based approaches work?

talk about ID-ness without resorting to schema / xml:id

uniqueness when you have non-cooperating implementations (-> impl
guidance?)

mutable IDs

communicate IDness as signature metadata? (can we flag ID attributes
in context?)

reference mechanism for just one particular kind of ID?

Referencing Model

« Fully semantic, layered referencing

— just not possible?
e structure-based approaches

— use xpath for dereferencing instead of doing transformation?
 maybe something in the middle? combine?

- remove features that get people in trouble?

- or fall back to implementation guidance?

Algorithms

NSA Cryptosuite B
Randomization approaches

- RSA-PSS

- randomized hashing (RMX)
Mandatory / optional to implement algorithms

- what after SHA-1 (currently mandatory)

— algorithms suites vs individual algorithms
changing the defaults

- define future algorithms in style used for RSA-PSS
algorithm ID registry

Other issues

Exclusive Canonicalization
Schema extensibility / reuse of XML Signature
XML 1.1

- specs encouraged to move to XML 1.1 support
- explore implications of XML 1.1 for new signature work
- xpath 2.0 data model; distinct from mandating XPath 2.0

encapsulating XML?

Transform model

Use XProc to specify transformations, or roll out another one?
How to apply XPath 1.0 to XML 1.17?

Constrain transform model to enable pipelining with memory depending on
document depth, not length

Actual Implementations include optimized processing models for transform
chains

- interoperable subset?

Effect on modularized c14n approaches?
Standardized transforms for certain tasks?

Require transforms to output documents instead of nodesets?

C14N overall

not satisfactory
dual purpose
- output XML
- process XML into an octet stream suitable for hashing
simplifying current C14N?
starting from scratch? (a la Thompson)
splitting out certain features? layering? (Simon)
relationship with EXI?
integrating digest + c14n?
output of transforms goes to applications AND combined “pre-hash”
what does “what you sign is what you see” mean for c14n (and transforms)?

- wrapping attacks

Interaction with other Groups

XML Processing Model?
ID-ness issue / how to benefit from xmil:id

- needs bigger picture
Long-Term Archival
- DSS
- LTANS
XADES @ ETSI
- also long-term archival
EXI
customers: SAML, WS-I, WSS, Liberty (see current charter, plus some)

DSS basic processing?

Requirements

» Performance

