SIV for VoiceXML 3.0: Language and Application Design Considerations

Ken Rehor Cisco Systems, Inc.

krehor@cisco.com

March 05, 2009

VoiceXML Application Architecture

SIV in VoiceXML 2.x

- Server-side SIV processing
 - <record>
 - <field> with recordutterance
- Language extensions
 - Nuance "voiceprint forms"
 - BeVocal

VoiceXML 2.x SIV Integration

VoiceXML 2.x SIV Integration

Standard VoiceXML prompt/field model

- Text-independent

 - Submit recording to application server
- Text-dependent, Text-prompted
 - - / <field> (with recordutterance)
 - Submit utterance recording to application server

VoiceXML 2.x <record>

```
<form name="verify">
<!-- could use external grammar -->
  <record name="utterance" maxtime="5s</pre>
      prompt> Say this digit sequence: one two three four five.
     <noinput> I didn't hear anything, please try again. </noinput>
   </record>
  <block>
      <submit next="check utterance.pl" enctype="multipart/form-data"</pre>
     method="post" namelist="utterance"/>
   </block>
</form>
```

VoiceXML 2.1 <field>

```
<form name="verify">
  ompt>Say this digit sequence: one two three four five.
  <field type="digits">
           <filled>
               <!-- if spoken digits match expected response,
                 then process voice model -->
           </filled>
    </field>
</form>
```

VoiceXML 2.1 <field> with recordutterance

```
<form name="verify">
cproperty name="recordutterance" value="true"/>
  ompt>Say this digit sequence: one two three four five.
  <field type="digits">
           <filled>
               <!-- if spoken digits match expected response,
                 then process voice model -->
           </filled>
    </field>
</form>
```

Security Concerns

Architecture / Security / Trust

One architecture may not be suitable for every use case

→ Some architectures may not support the level of (dis)trust required for a particular deployment

Security, Trust and Protocol Considerations in Distributed Voice Web Applications

Architecture options carry security implications

SIV engine and database managed by App server

VoiceXML browser records the utterance and forwards to app server (typical scenario for VoiceXML 2.0/2.1)

Audio stream vs. buffers

Streaming handled by RTP?

Buffers may be handled by audio recorder function. Part of browser or MRCP engine?

SIV engine and database managed by App server

VoiceXML browser records the utterance and forwards to app server (typical scenario for VoiceXML 2.0/2.1)

SIV engine and database managed by MRCP server

SIV engine managed by MRCP server SIV database managed by app server Voice model transmission managed by engine or MRCP Server

SIV engine managed by MRCP server SIV database managed by app server Voice model transmission managed by VoiceXML browser

Voice templates retrieved from database by ap server

SIV in VoiceXML 3.0

V3 Integration Requirements

- Control multiple Input Resources
 - ASR and biometric engines
 - Simultaneously
 - Switch on a per <field> or verification basis
- Consistent with V3 overall design goals
- Simplify integration, yet provide sufficient control

V3 Data, Event relationship between components

SIV "Session"

- Enrollment Session or Verification Session
- Verification process: Uninterrupted process over several dialog states (having a Session-ID) where the results of each utterance are cumulated

Define Data Model

- Data passed to SIV engine
 - Environment
 - Properties
 - Attributes
 - Voice models
- Data returned from SIV engine
 - Results specified as an EMMA result
 - Errors/info
- Data used within SIV session
- Associate SIV result with ASR result

Define event model

- Combine references from:
 - VoiceXML Forum
 - MRCP v2
 - Engine vendors

VoiceXML and SIV Web Services

VoiceXML 2.x/3.x SIV Integration via BIAS web service

VoiceXML 2.x/3.x SIV Integration via <subdialog>

VoiceXML 3.0 SIV Integration

- V3 SIV native language features
- Browser/Engine integration via BioAPI, MRCP, proprietary API, etc.

VoiceXML 3.0 SIV Integration

- V3 SIV native language features
- Browser/Engine integration via BioAPI, MRCP, proprietary API, etc.

VoiceXML SIV Integration via BIAS web service or <subdialog>

VoiceXML Application Switching

Pros and Cons of Native V3 SIV functions

V3 SIV Native Functions: Pros and Cons

SIV engines controlled directly by VoiceXML

Pros

- V3 Requirement: simultaneous processing
 - More than one input engine, e.g. ASR+Verify
- Performance
 - Speed/responsiveness
 - Accuracy
- Consistency of resource control
 - Aligned with other input resources
- Benefit to app developers
 - Don't have to buy, install, maintain SIV engine
 - Shared resource on VXML platform
- Benefit to Platform Vendors / Service Providers
 - Shared resource
 - Ease of deployment
 - Enhanced service offering

Cons

- Not available today; need an interim solution
- App concerns
 - Enables developers to do 'bad' things
- Security concerns
 - Enables developers to do 'bad' things
- Full portability still a long way off
 - Voice models, engine capabilities, results/errors, etc. are all proprietary
- Platform integration not standard yet
 - MRCPv2 not sufficient; need more features (MRCPv3?)

Resource Control and Distributed Decision Making

