A Standard Audio Encapsulation Method

Homayoon Beigi

Beigi@RecognitionTechnologies.com http://www.RecognitionTechnologies.com

ot

Recognition Technologies, Inc.

300 Hamilton Avenue White Plains, NY, U.S.A.

and

Judith Markowitz

Judith@JMarkowitz.com http://www.JMarkowitz.com

of

J. Markowitz Consultants

5801 N. Sheridan Road Chicago, IL, U.S.A.

Large-Scale Speaker Recognition

- Large Government Applications
 - Social Security Eligibility Verification, Border Crossing, etc. millions of participants
 - Forensic Applications
 - Verification of Life Status for remote citizens e.g. Pension plans
- Financial Applications Fraud Protection, Account Access, etc.
- **Large Health Insurance Memberships** Access to Medical Records, etc.
- Large Corporation VoiceMail Applications
- Telephone Order Credit Card Charges Verify buyers in place of signature
- Remote Test Proctoring Requires continuous verification
- Other System-Wide Applications Requiring Remote Authentication or Customization

Starting Question to Ask

What Should be Standardized at This Stage of Development in Speaker Recognition?

Starting Question to Ask

- What Should be Standardized at This Stage of Development in Speaker Recognition?
 - Audio Format?
 - Speaker Models?
 - Results of Recognition?
 - Interaction with Engines?

Starting Question to Ask

- What Should be Standardized at This Stage of Development in Speaker Recognition?
 - Audio Format?

Definitely

- Speaker Models?
- Results of Recognition?
- Interaction with Engines?

Starting Question to Ask

- What Should be Standardized at This Stage of Development in Speaker Recognition?
 - Audio Format?

Definitely

Speaker Models?

Not Yet

- Results of Recognition?
- Interaction with Engines?

Starting Question to Ask

- What Should be Standardized at This Stage of Development in Speaker Recognition?
 - Audio Format?

Definitely

Speaker Models?

Not Yet

Results of Recognition?

Yes

Interaction with Engines?

Starting Question to Ask

What Should be Standardized at This Stage of Development in Speaker Recognition?

Audio Format?

Definitely

Speaker Models?

Not Yet

Results of Recognition?

Yes

Interaction with Engines?

Yes

Proposal and Status

- An Audio Encapsulation Standard
- **Meeting Specific Requirements** *Discussed Later*
- Currently Considered by ANSI/INCITS for standardization
 - Public Review Period has been Completed
- Being Considered by ISO/JTC1 SC37

Goals (Audio Format Only)

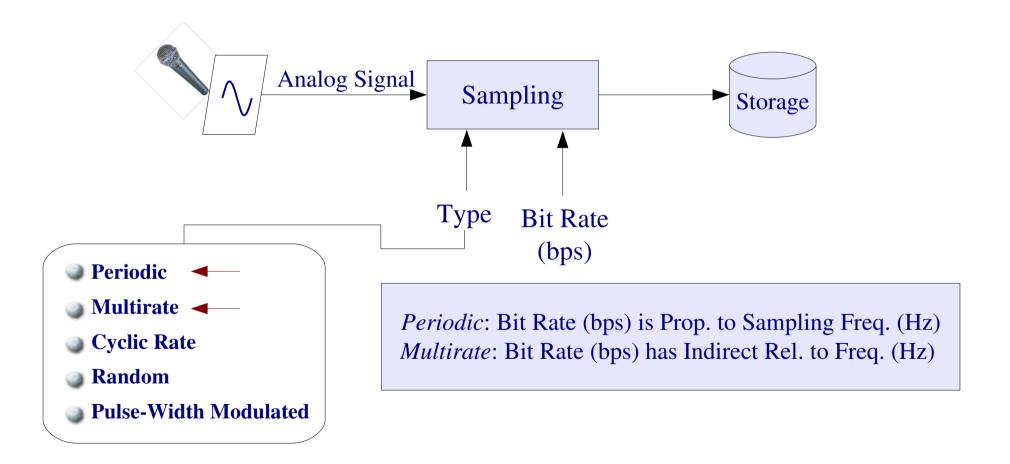
A Basic List of Audio Formats Meeting All Interchange Requirements

- A Basic List of Audio Formats Meeting All Interchange Requirements
 - With Minimal Redundancy for the Sake of Clarity, Simplicity, and Compactness

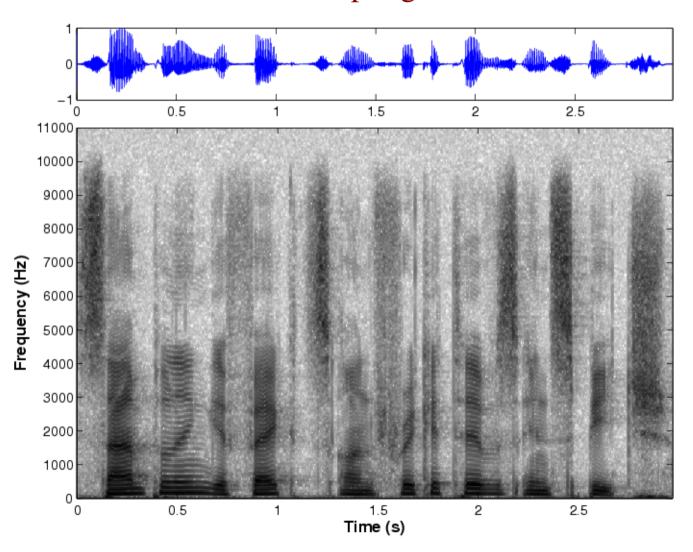
- A Basic List of Audio Formats Meeting All Interchange Requirements
 - With Minimal Redundancy for the Sake of Clarity, Simplicity, and Compactness
- Preference Given to Open-Source and Royalty-Free Formats

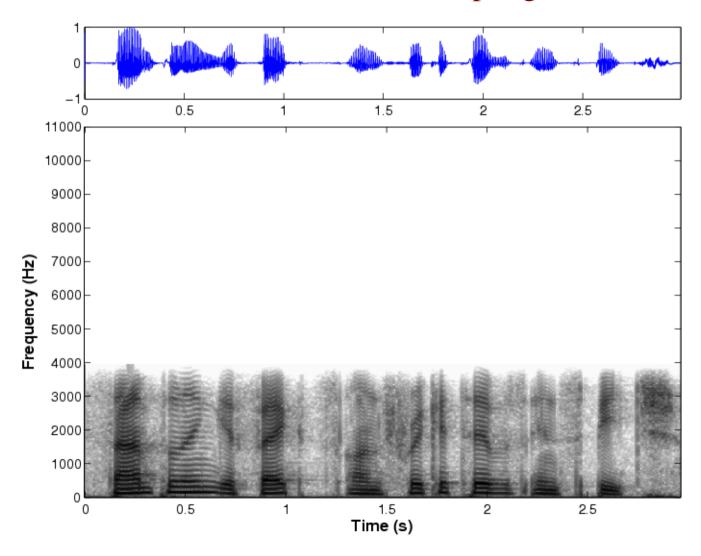
- A Basic List of Audio Formats Meeting All Interchange Requirements
 - With Minimal Redundancy for the Sake of Clarity, Simplicity, and Compactness
- Preference Given to Open-Source and Royalty-Free Formats
- Ease of Adoption

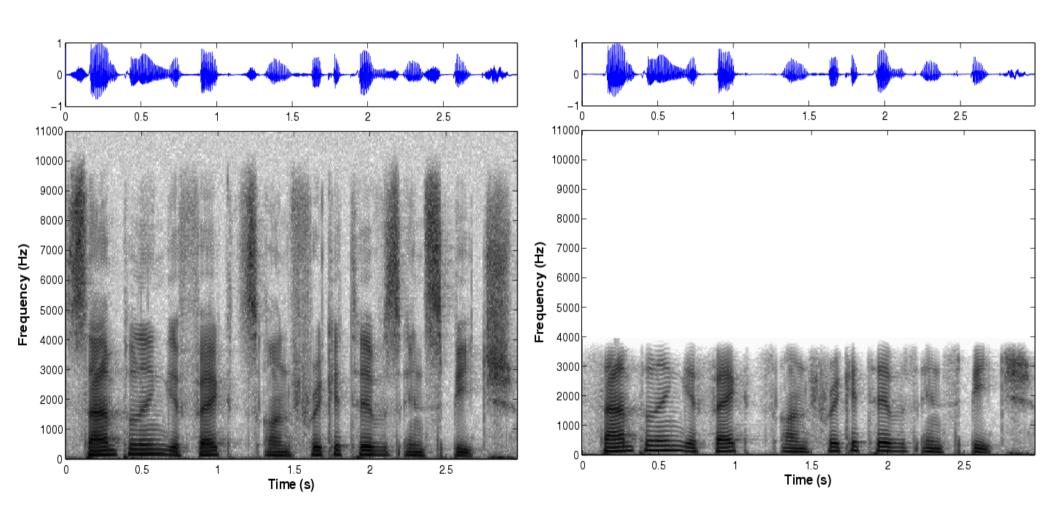
- A Basic List of Audio Formats Meeting All Interchange Requirements
 - With Minimal Redundancy for the Sake of Clarity, Simplicity, and Compactness
- Preference Given to Open-Source and Royalty-Free Formats
- Ease of Adoption
- Stability of Implementation

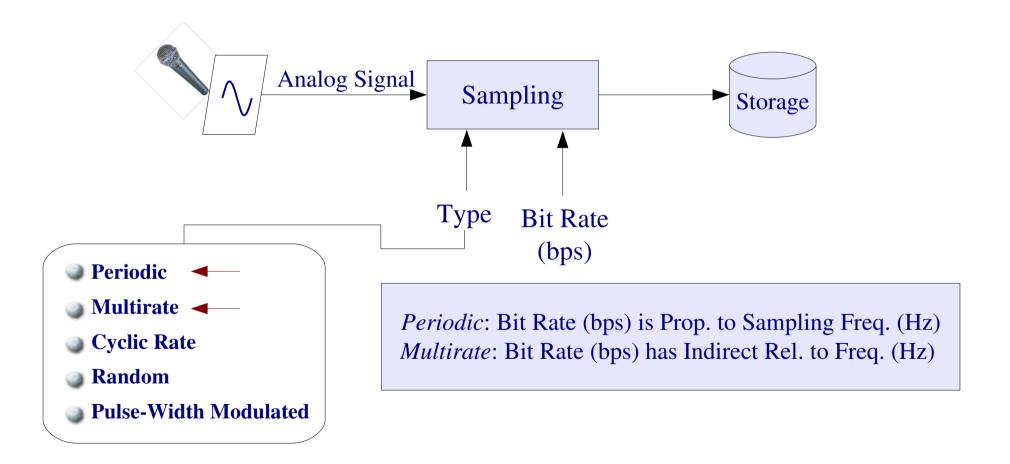


- A Basic List of Audio Formats Meeting All Interchange Requirements
 - With Minimal Redundancy for the Sake of Clarity, Simplicity, and Compactness
- **Preference Given to Open-Source and Royalty-Free Formats** as Suggested by Kazuyuki
- Ease of Adoption
- Stability of Implementation
- Relative Quality Compared to Contenders


Sampling Process


22kHz Sampling Rate


Band Limitation – 8kHz Sampling Rate


Band Limitation – Telephony (Landline)

Sampling Process

Audio Coding Scenarios

■ Lossless Representation – Amplitude and Frequency are Unchanged

Audio Coding Scenarios

- Lossless Representation Amplitude and Frequency are Unchanged
- **Amplitude Compression** Freq. Stays the Same, Amplitude is Represented Nonlinearly

Audio Coding Scenarios

- Lossless Representation Amplitude and Frequency are Unchanged
- **Amplitude Compression** Freq. Stays the Same, Amplitude is Represented Nonlinearly
- Multirate Sampling Aggressive Variable Bitrate Compression

Audio Coding Scenarios

- Lossless Representation Amplitude and Frequency are Unchanged
- **Amplitude Compression** Freq. Stays the Same, Amplitude is Represented Nonlinearly
- Multirate Sampling Aggressive Variable Bitrate Compression
- Streaming Usually includes multirate sampling and streaming

- Lossless Representation
 - Microsoft WAV Comes to Mind A Wrapper which includes over 104 codecs
 - LPCM offers all that is needed Just need to code the header information

- Lossless Representation
 - LPCM offers all that is needed Just need to code the header information
- Amplitud Compression
 - **G.711 and G.711.1 ITU-T define PCMU and PCMA for 64, 80, and 96kbps**
 - **ADPCM** was considered, but it has many flavors and is not open source

- Lossless Representation
 - LPCM offers all that is needed Just need to code the header information
- Amplitud Compression
 - G.711 and G.711.1 ITU-T define PCMU and PCMA for 64, 80, and 96kbps
- Multirate Sampling
 - → MP3 comes to mind Patent driven and certainly not an open standard
 - **OGG Vorbis** *Open Source and better quality as MP3 for the same bit rate*

- Lossless Representation
 - LPCM offers all that is needed Just need to code the header information
- Amplitud Compression
 - **G.711 and G.711.1 ITU-T define PCMU and PCMA for 64, 80, and 96kbps**
- Multirate Sampling
 - **OGG Vorbis** Open Source and better quality as MP3 for the same bit rate
- Streaming Usually includes multirate sampling and streaming
 - **OGG Media Stream** Open Source with capability of streaming different audio types

Quality	Format
Lossless	Linear PCM (LPCM)
Amplitude Compression	μ-law (PCMU) and
	A-law (PCMA)
Aggressive variable	OGG Vorbis
bit-rate compression	
Streaming	OGG Media Stream

Audio Format Header

Type	Variable	Description	
U16	ByteOrder	The value is 0xFF00 and it is set by the audio file producer	
U16	HeaderSize	Size of the header in bytes	
Boolean	Streaming	This will 0 for non-streaming and 1 for streaming. This boolean	
		variable is redundant since the AF_FORMAT for streaming audio	
		is greater than 0x0FFF. However, it is used for convenience.	
U64	FileLengthInBytes	In Bytes not including the header	
U64	FileLengthInSamples	In Number of samples	
U16	AudioFormat	See AF_FORMAT macros	
U16	NumberOfChannels	Number of channels, N.B., Channel data alternates	
U32	SamplingRate	Sampling rate in samples per second – This is the audio	
		sampling rate and not necessarily the sampling rate of the carrier	
		which may be variable.	
U64	AudioFullSecondsOf	It is the truncated number of seconds of audio	
U32	AudioRemainderSamples	This is the number of samples of audio in the remainder which	
		was truncated by the above variable	
U16	BitsPerSample	Number of bits per sample, may be 0 for formats which use	
		variable bits	

Macro	Value
AF_FORMAT_UNKNOWN	0x0000
AF_FORMAT_LINEAR_PCM	0x0001
AF_FORMAT_MULAW	0x0002
AF_FORMAT_ALAW	0x0003
AF_FORMAT_OGG_VORBIS	0x0004
AF_FORMAT_OGG_STREAM	0x1000

Conclusion

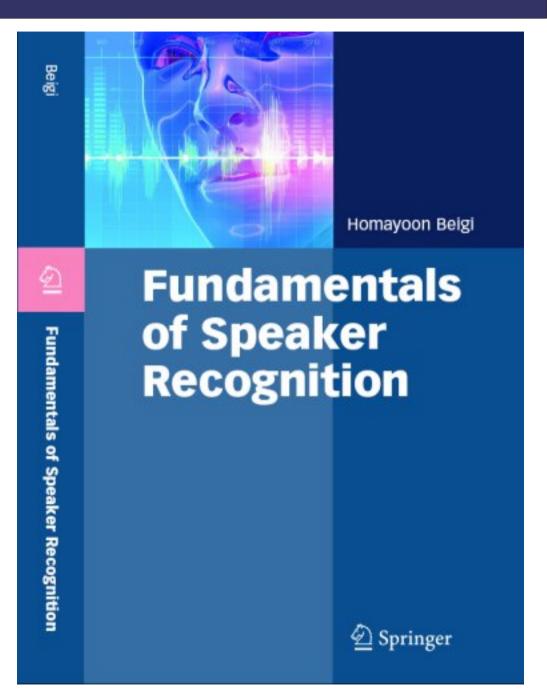
Are There any Interchange Requirements Not Covered?

Conclusion

- Are There any Interchange Requirements Not Covered?
- Are There any Important Features Missing in General?

Conclusion

- Are There any Interchange Requirements Not Covered?
- Are There any Important Features Missing in General?
- Are There any Formats that will Lose Important Features when Converted?


Conclusion

- Are There any Interchange Requirements Not Covered?
- Are There any Important Features Missing in General?
- Are There any Formats that will Lose Important Features when Converted?
- Any other Compelling Reasons to Add more Formats to the Supported List?
 - Please! "Popularity" is no Reason!

Fundamentals of Speaker Recognition Out in April 2009 – Springer

A Standard Audio Encapsulation Method

Homayoon Beigi

Beigi@RecognitionTechnologies.com http://www.RecognitionTechnologies.com

ot

Recognition Technologies, Inc.

300 Hamilton Avenue White Plains, NY, U.S.A.

and

Judith Markowitz

Judith@JMarkowitz.com http://www.JMarkowitz.com

of

J. Markowitz Consultants

5801 N. Sheridan Road Chicago, IL, U.S.A.