
HTML.Next
Panel, W3C TPAC Plenary

Larry Masinter
(DISCLAIMER: Personal opinions

Not Adobe or W3C TAG)
Lyon, France, 11/3/2010

New directions for
HTML.next technology

What I said I would talk about…

(not speaking to following slides,
read them later)

Simple Model of The Web

Author Server Browse Web
User

More complicated model of The Web

Creation

Authoring

Editing
tool

XML
workflow

Manage

CMS

App

engine

Aggregator

Serve

HTTP
server

Load
balancer

CDN

Filter

Transform
gateway

Virus
Scanner

Proxy
cache

Consume

Browser

eBook

reader

Search
Engine

Some different requirements:
High quality publications

• Finer grain control of layout through CSS
enhancements

• Integration of XML toolchain

• Making an archival profile of HTML/CSS

Some different requirements:
Authoring tools

• Graphics model to match Authoring Model
– Key frames, scrubbing, timelines, synchronization

• Ability to target versions
– Identify modules, versions, deployment

• Asynchronous environment and animation
– Look at synchronization

• Ability to extract API from document
– Forms, declarative vs. imperative

Requirements:
HTML in Email & other environments

• No Scripting?
– (Canvas requires scripting)

• No content negotiation
– Sniffing rules different

– Security model different

HTML.Next: Polarized Opinions

• Set of choices
– Capture the ways in which opinions are polarized
– Give a handy label to the issue

• Rough cut
– Label may not match how you think of it
– You probably hate both

• Which one do you agree with more?
– Which one do you hate less?
– Just for fun, informal show of hands

1. Match Reality

a) Standards should match reality
the standard should follow what some [all,
most, the important, the open source]
implementations have implemented [are
willing to implement in the very near future]

b) Standards should try to lead reality
try to move things in directions that improve
simplicity, modularity, reliability, and other
values.

2. Reverse Engineering

a) Standards should reduce “reverse engineering”
Say enough to reduce costs of anyone else
having to reverse engineer how things (content,
common readers) work in the world today…

b) Matching behavior isn’t important
Matching existing behavior is only of short term
interest; such guidelines might appear in a
"current implementation guide" but don't belong
in a standard of long-term value

3. Precision

a) Standards should precisely specify behavior
Give detail of how to implement something
compatible with the what is currently deployed,
sufficiently that no user will complain that some
implementation doesn't work "the same". Such
behavior should be mandated by the standard.

b) Standards be loose as possible
Minimize conformance requirements to allow widest
possible range of implementations; even if it means
that not all existing (badly written) content works
uniformly. Conformance ("MUST") should be used
rarely.

4. Leading

a) Standards should lead the community
Standards should add exciting new features.
New features should ideally appear first in
the standard.

b) Standards follow innovation
Sample implementations should be widely
reviewed and tested and only after wide
experience with technology be added to the
standard.

5. Extensibility

a) Non-standard extensions should be avoided
Ideally, we should eliminate any non-standard
extensions and technologies; everyone's
experience should be the same.

b) Non-standard extensions are valuable
Innovations have come (will continue to come)
from competing (non-standard) extensions; such
extensions (and plug-ins) should be encouraged,
even though particular extensions are not
universally deployed.

6. Modularity

a) Modularity is valuable
Specifying technology in smaller separate
parts is beneficial: the ability to choose
subsets extends the range of applications;
modules can evolve independently

b) Modularity is disruptive
Independent evolution leads to divergence
and confusion. Subsets just mean unwanted
choices, chaos.

7. Timely

a) Standards take too long, move faster
Shipping the latest proposed features is a good
way to validate proposed standards and get
technology in the hands of users; standards that
take years aren’t interesting.

b) Taking years to finish a standard is OK
Encouraging users to deploy experimental
extensions before they are completed will cause
fragmentation; not all experiments will (should)
succeed.

8. Authors Ignore Standards

a) Web authors don’t care about standards
Most individual authors, designers,
developers and content providers ignore
standards anyway, so any efforts based on
assuming authors will change isn't helpful.

b) Influencing authors is possible
Authors can and will stick to standards if at
least some popular browsers agree to tie new
features to standards-conforming content.

9. Always-On Committee

a) The Web should continue to grow
Web standards committee should be always on, to
allow for rapid evolution. The notion of version
numbers for standards is obsolete in a world where
there are continual improvements.

b) Standards should be stable
Continual innovation may be good for technology
suppliers, but is bad for standards; evolution should
be handled by allowing individual technology
providers to innovate, and then to bring these
innovations into standards in specific versions.

10. Open source

a) Open source implementation is crucial
Allowing any company or software developer to
provide their own private extensions is harmful; a
content standard should be managed by the group of
major (or major open source) implementors, so that
any "standard" extension is available to all.

b) Open source is unnecessary
Proprietary extensions and capabilities (from a single
source or a consortium) have benefited the web in the
past and will continue to be sources of innovation

11. Browsers and the Web

a) The web is first and foremost “what browsers do”
The web is an application dominated by browsers
primarily, and secondarily web applications (browser
technology used for installable applications)

b) Other needs can dominate browser needs
Web technologies extend to the widest range of
Internet applications, including email, instant
messaging, news distribution, syndication and
aggregation, help systems, electronic publishing;
requirements of these applications should have equal
weight, even when they are meaningless for what
“browsers” are used for.

12. Royalty Free

a) Avoid all patented technology
Every component of a browser MUST be
implementable without any restriction based on
patents or copyright (although creation tools,
search engines, analysis, translation gateways,
traffic analysis may not be)

b) Patented technology has a place
In some cases, patented technology cannot be
avoided, or is so widespread that “royalty free”
is just one more requirement among many
tradeoffs

13. Forking

a) Forking the spec allows innovation
Having multiple specifications which offer
different definitions same thing (HTML) allows
leading features to be widely known and
implemented, and allows group to work around
organizational bottlenecks.

b) Forking the spec is harmful
Multiple specifications which claim to define the
same thing is a power trip, causing confusion.

14. Accessibility

a) Accessibility is one of many requirements
Accessibility is an important requirement for the
web platform, but only one of many sets of
requirements, to be traded off against the
requirements of other user communities when
developing standards

b) Accessibility is not an option
Insuring that those who deploy products
implementing W3C standards allow building
accessible content is necessary before W3C can
endorse or recommend that standard.

15. Architecture

a) Architecture is mainly theoretical
“Architecture” is primarily a theoretical and not
very useful way, mainly of adding requirements
that aren’t very useful.

b) Architecture and consistency is crucial
Consistency between components of the web
architecture and guidelines for consistency and
orthogonality are important enough that
existing work should slow down to insure
architectural consistency.

More topics

• DRM: DRM is Evil? DRIM is Important Feature?

• Privacy: Up to browsers? Mandated in specs?

• Voice: Integrated? Separate spec?

• Applications: Great? Misuse: use Browser?

• JavaScript: Essential, stable?
Fundamentally broken?

Summary

• None of these are HTML5 issues
… all of them are HTML.next issues

• None of these differences are irreconcilable
… but ‘compromise’ may not be the answer

• Multiple specs, co-existence, reconciliation

Can’t solve the problems unless
you acknowledge them

	HTML.Next�Panel, W3C TPAC Plenary
	New directions for �HTML.next technology
	Simple Model of The Web
	More complicated model of The Web
	Some different requirements:�High quality publications
	Some different requirements:�Authoring tools
	Requirements:�HTML in Email & other environments
	HTML.Next: Polarized Opinions
	1. Match Reality
	2. Reverse Engineering
	3. Precision
	4. Leading
	5. Extensibility
	6. Modularity
	7. Timely
	8. Authors Ignore Standards
	9. Always-On Committee
	10. Open source
	11. Browsers and the Web
	12. Royalty Free
	13. Forking
	14. Accessibility
	15. Architecture
	More topics
	Summary

