
Unified Lightweight Semantic Descriptions

of Web APIs and Web Services

Carlos Pedrinaci, Jacek Kopecký, Maria Maleshkova,
Dong Liu, Ning Li, John Domingue

Knowledge Media Institute, The Open University, UK

{c.pedrinaci, j.kopecky, m.maleshkova, d.liu, n.li, j.b.domingue}@open.ac.uk

Abstract

Recently, Linked Data and Web APIs have emerged as the preferred means of
exposing data and Web application functionality. In this paper we argue that
service systems should be adapted in the light of both trends. In particular
we believe that i) common means for discovering and interacting with Web
services and Web APIs are necessary, and that ii) we should bridge the gap
between services and linked data both by supporting the publication of ser-
vices as linked data and by enabling the processing of linked data by services.
We show a set of technologies we have devised towards this goal.

1 Introduction

Service-orientation prescribes the development of software applications by reusing
(possibly remote) services, that is software components offered via programming-
language independent interfaces. Standards such as WSDL, SOAP and further WS–
∗specifications were devised in order to provide the necessary technologies to sup-
port this. Although highly appealing from an engineering perspective and despite
the progress in the area, the core technologies originally devised for this purpose,
e.g., WSDL, still require substantial manual effort related to locating, interpreting
and integrating existing services. The main reason for this is that the semantics of
these services and of the data they manipulate remain implicit.

Semantic Web Services (SWS) have long tried to overcome these limitations by
enriching Web service descriptions and data models with semantic annotations. The
landscape of SWS is characterised by a number of approaches that, despite a few
common characteristics, remain essentially incompatible due to the use of different
representation languages as well as because of certain conceptual differences. Major
proposals include OWL-S, WSMO, and SAWSDL.1 Furthermore and regardless of
the differences at the semantic level, the vast majority of the SWS initiatives are
predicated upon the semantic enrichment of WSDL Web services, which have turned
out not to be prevalent on the Web.

1http://www.w3.org/Submission/OWL-S/, http://www.w3.org/Submission/WSMO/,
http://www.w3.org/TR/sawsdl/

1



The world of services on the Web has recently been marked by the proliferation
of Web APIs, also called RESTful services when they conform to REST princi-
ples [3]. Major Web sites such as Facebook, Flickr, Salesforce or Amazon provide
access to their data and functionality through Web APIs. This trend is largely
driven by the simplicity of the technology stack as well as by the rapidity with
which third parties are combining diverse APIs into mashups that provide added-
value solutions. Yet, Web APIs are most often described solely through HTML
Web pages that are intended for humans and provide no means for supporting
their automated discovery, invocation, and composition [6].

In parallel, the publication of data on the Web is also experiencing a signifi-
cant evolution that has given birth to the Web of Data, “a Web of things in the
world, described by data on the Web” [1]. Underpinning this evolution is a set of
best practices for publishing and connecting structured data known as linked data.
Nowadays, there are about 30 billion statements about diverse domains such as
media, government, life sciences, and geography, captured in this manner, which
better supports applications in processing data and discovering related distributed
data automatically.

In the light of the recent evolution of the Web we believe that it is necessary to
rethink the principles and technologies underlying services and the development of
Web applications. Our position consists of the following tenets:

• Service systems should provide an homogeneous view over the heterogeneous
service technologies in use nowadays, i.e., WSDL and Web APIs;

• Semantics are essential to reach a minimum level of automation during the
life-cycle of services and service-oriented applications;

• Service technologies should be aligned with linked data to promote services
integration and discoverability.

In the remainder of this paper, we briefly introduce a number of technologies
we have developed which implement these tenets in real solutions.

2 Service Description

Effectively supporting the development of service-oriented applications in hetero-
geneous environments like the Web requires models that capture in sufficient detail
the characteristics of the services, such as the operations offered and the data ma-
nipulated, as well as the semantics of both the services and the data that drives
them. In the light of the state of the art in service technologies but also guided by
lessons learnt from research on the Semantic Web and Semantic Web Services, we
propose the Minimal Service Model (MSM), a simple model for capturing service
descriptions, which

• covers WSDLs and Web APIs homogeneously;

• captures the core semantics of services and data employed by the main se-
mantic Web service models;

• minimizes modelling and processing overhead;

• closer aligns services with linked data.

2



In a nutshell, MSM is a simple RDFS ontology based on the principle of minimal
ontological commitment. It captures the common structures of existing conceptual
models for services. Thus, it does not aim to be yet another service model to bring
further heterogeneity to the SWS landscape; it is instead an integration model at
the intersection of existing formalisms. This model is able to capture the core se-
mantics of both Web services and Web APIs in a way that enables the homogeneous
publication and discovery of both kinds of services.

MSM characterises Services as being composed of a number of Operations,
which in turn have input, output and fault MessageContent descriptions. Mes-
sageContent may be composed of mandatory or optional MessageParts. The
model is complemented by the WSMO-Lite vocabulary [2], which defines classes for
describing the four core aspects of service semantics identified by previous research
on service semantics,2 namely, functional semantics, nonfunctional semantics, be-
havioural semantics, and an information model. These types of service semantics
are relevant for advanced discovery, selection and composition, among other tasks.
The main classes of WSMO-Lite are Condition, Effect, and FunctionalClassifica-
tionRoot, used for capturing functional and behavioral semantics, and Nonfunc-
tionalParameter for nonfunctional semantics.

To attach the semantics to the service model, we use the RDF mapping of
SAWSDL, which defines three properties, namely modelReference, liftingSche-
maMapping and loweringSchemaMapping. The former links service elements to
semantic models; WSMO-Lite clarifies the semantics of model reference annota-
tions. Schema mapping properties indicate data transformations between Web ser-
vice messages and their semantic representations, providing a grounding from the
service’s Information Model to the concrete on-the-wire messages.

2.1 Syntactic WS–∗ and Web API Descriptions

MSM is largely a simplification of WSDL; Web service description in WSDL, an-
notated with SAWSDL, can thus be mapped to MSM in a straightforward manner.
However, the situation is more complicated for Web APIs.

Even though there have been proposals like WADL,3 there is currently no estab-
lished interface description language for capturing Web APIs. Instead developers
most often provide a plain HTML web page documenting the API, which needs
to be manually interpreted on a per-API basis. Additionally, current Web APIs
are highly heterogeneous both in terms of the formats used for representing data
(XML, JSON, and others), as well as with respect to the flavor of the interface
(RESTful, RPC-oriented or hybrid) [6].

Given the fact that usually the only public element on the Web indicating the ex-
istence of a Web API is an HTML document, we have designed a simple poshformat
hRESTS [4] that allows one to structure and semantically annotate HTML doc-
uments in order to adequately characterise the corresponding Web API. hRESTS
defines the HTML classes service, operation, input, output, and parameter which
we believe are self-explanatory. Additionally, in order to appropriately support
the invocation of Web APIs, hRESTS can capture resource URI templates, HTTP
methods, and the mapping of input message parameters to the HTTP request (URI

2http://lsdis.cs.uga.edu/ lib/presentations/WWW2003-ESSW-invitedTalk-Sheth.pdf
3http://www.w3.org/Submission/wadl/

3



template parameters, HTTP headers and body). With the hRESTS poshformat,
we can make the HTML documentation of a Web API machine-processable, with
information about the structure of the API akin to what WSDL can express about
WS–∗ services. Finally, we will note that since hRESTS ultimately expresses a
service description in the RDF-based MSM, RDFa can be employed as a straight-
forward alternative to the poshformat syntax.

3 Service Discovery and Publication

Thanks to its simplicity, MSM captures the essence of services in a way that can
support scalable service matchmaking using state of the art algorithms. We have
developed iServe [7], an open registry for publishing and discovering services which
uses MSM and WSMO-Lite as its core conceptual model. The registry transparently
supports the discovery of heterogeneous services, mainly WSDL services (described
in WSDL and SAWSDL) and Web APIs (documented with hRESTS). Additional
support is also provided for OWL-S services.

The essence of the approach followed by iServe lies in exposing the registered
service descriptions as linked data, which we call linked services, better support-
ing their discoverability and explicitly capturing the essential relationship existing
between the services and the data they manipulate. On the basis of this core con-
ceptual model iServe provides a range of advanced service analysis and discovery
techniques that can transparently be applied across different types of services and
description formalisms. For instance, iServe currently supports input/output dis-
covery using RDFS and SKOS reasoning, functional classification-based discovery
with RDFS reasoning, and similarity-based discovery given services’ textual de-
scriptions.

4 Service Invocation

OmniVoke [5] is an invocation engine which provides a single interface for invoking
linked services. The engine takes RDF data as input and returns RDF data as
a response, enabling a seamless integration of linked services within applications
as linked data producers and/or consumers. For services that do not handle RDF
natively, the engine uses lowering and lifting schema mappings as declared on the
service description in order to transform, respectively, the RDF input into the
suitable data format the underlying endpoint accepts and viceversa. Currently,
OmniVoke embeds an XSPARQL4 engine to this end.

A distinctive feature of OmniVoke is its generic support for transparently in-
voking most Web APIs that can be found on the Web thanks to the use of semantic
annotations as proposed. OmniVoke uses the grounding information supported by
the MSM, which covers the vast majority of APIs one can encounter on the Web.

4http://www.w3.org/Submission/xsparql-language-specification/

4



5 Discussion

In this paper we have argued that service systems should be adapted in the light
of the recent emergence of Linked Data and Web APIs as the preferred means of
exposing data and Web application functionality. In essence we suggest that i) ser-
vice systems should transparently support heterogeneous service technologies, esp.
WSDL and Web APIs; ii) semantics are essential to provide sufficient automation
in service-based applications, and iii) we should bridge the gap between services
and linked data both by supporting the publication of services as linked data and
by enabling the processing of linked data by services.

We have presented a set of technologies we have developed towards this goal.
An important aspect of our approach is that it takes a “Remote Procedure Call”
view over services. The main reasons for adopting this view are that i) a survey we
carried out [6] showed that currently the majority of Web APIs take the RPC view;
and ii) our analysis of the interactions between Web APIs and their programmatic
clients shows that the RPC model is a good fit [4]. Additionally, maintaining an
RPC view enables the reuse of most technologies produced thus far for supporting
the development of service-oriented technologies.

References

[1] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked Data – The Story So Far.
Intl Journal on Semantic Web and Information Systems (IJSWIS), Special Issue on
Linked Data, 2009.

[2] Dieter Fensel, Florian Fischer, Jacek Kopecký, Reto Krummenacher, Dave Lambert,
and Tomas Vitvar. WSMO-Lite: Lightweight Semantic Descriptions for Services on
the Web, August 2010. W3C member submission, available at http://www.w3.org/

Submission/WSMO-Lite/.
[3] Roy Thomas Fielding. Architectural styles and the design of network-based software

architectures. PhD thesis, University of California, Irvine, 2000.
[4] Jacek Kopecký, Karthik Gomadam, and Tomas Vitvar. hRESTS: an HTML Mi-

croformat for Describing RESTful Web Services. In Proceedings of the 2008
IEEE/WIC/ACM International Conference on Web Intelligence (WI-08), Sydney,
Australia, December 2008.

[5] Ning Li, Carlos Pedrinaci, Maria Maleshkova, Jacek Kopecky, and John Domingue.
OmniVoke: a framework for automating the invocation of Web APIs. In ICSC 2011
Fifth IEEE International Conference on Semantic Computing, 2011.

[6] Maria Maleshkova, Carlos Pedrinaci, and John Domingue. Investigating Web APIs on
the World Wide Web. In Proceedings of he 8th IEEE European Conference on Web
Services (ECOWS 2010), 2010.

[7] Carlos Pedrinaci, Dong Liu, Maria Maleshkova, Dave Lambert, Jacek Kopecký, and
John Domingue. iServe: a Linked Services Publishing Platform. In Proceedings of 1st
International Workshop on Ontology Repositories and Editors for the Semantic Web,
ORES 2010, colocated with 7th ESWC, 2010.

5


