Harlan Yu!

Department of Computer Science

Center for Information Technology Policy
Princeton University

W3C Workshop on Web Privacy and User Privacy
April 28-29, 2011

Accurately Communicating the Do Not Track User Preference

One advantage of the user preference approach to Do Not Track is that users don’t
need to know in advance whether servers engage in tracking activities. The user
simply needs to communicate her preference to the server, and the burden will then
be on the server to refrain from any tracking. A simple and elegant way to
communicate the user preference is using an HTTP header. Most users can choose a
blanket tracking preference—to always send an “enabled” header to all sites or to
never send the header to any site.

However, some users may decide to make more fine-grained tracking choices. For
instance, a user could signal a preference to not be tracked only to third party
domains and not to first party domains. Or, the user could consent to tracking by
some third party domains and not others. Or further, the user could consent to
tracking by some third party domains only when they’re present on certain first
party websites—while signaling to all other first and third parties a preference not
to be tracked. The Abine Firefox extension has already made some of these finer-
grained header preference options available to the user.2

In nearly all cases, the header should be sufficient to convey the user’s tracking
preferences. But, situations exist where the header may fail to accurately
communicate the user preference, such as if a network intermediary unexpectedly
strips the header out of the request. In other scenarios, the server may simply prefer
to use an alternate technical mechanism to check the user preference. For example,
a site using a complicated hosting infrastructure may find it easier to detect the
user’s preference using client-side code, rather than at the server that initially
receives the HTTP request.3

It may be useful for browsers to include a client-side hook, accessible via Javascript,
which conveys the same user preference as the header. The W3C submission from

1 Email: harlanyu@cs.princeton.edu

2 “To Track or Not to Track? Introducing DNT+.” Abine Privacy Blog, March 15,
2011. http://abine.com/wordpress/http:/abine.com/wordpress/2011 /to-track-or-
not-to-track-introducing-dnt/

3 Stamm, Sid. Comment on “DOM Flag” on the Do Not Track mailing list, March 14,
2011. http://groups.google.com/group/do-not-track/msg/31df310ceb01c582

Microsoft proposes the use of a DOM property for this purpose.* As currently
proposed, the property is a global binary variable that is set uniformly for all
domains. This is sufficient when the user has chosen a blanket tracking preference,
but once a user decides to fine-tune her tracking preferences, the global DOM
property will no longer accurately reflect the user’s choice in every case.

One requirement of such a client-side mechanism should be that it accurately
mirrors the user’s original header preference. This means that the mechanism must
support the same level of granularity as the header preference allows. An
undesirable scenario is one where the HTTP header signifies an opt-out preference,
but the DOM property misreports either opt-in or no stated preference. The server
will have received a conflicting user preference, and the server may well proceed to
track the user despite the header opt-out.

Some users will inevitably set more granular header choices. This is bound to
happen, whether through functionality implemented directly in browsers or
through extensions like Abine. It’s not clear that DOM properties will be able to
easily and accurately mirror the more fine-grained header choices.

To implement DOM access to user tracking preferences, a single DOM attribute such
as document .doNotTrack will likely be insufficient. A better implementation
would be an access method such as:

document.getTrackingPreference (in DOMString domain)
to look up the user’s tracking preference for a domain from this document.

There is one significant implementation hurdle: access control. The problem is that
when a first party site includes code from a third party, whether locally or remotely,
the code will run on behalf of the first party, within the first party’s protection
domain. Thus, when client-side code calls the access method, the browser cannot
tell which entity—the first party or a third party—is trying to access the
information. This means, for example, that the New York Times (the first party site)
could learn that the user consents to tracking by DoubleClick but not by Quantcast
on its website. Moreover, even Doubleclick could potentially learn that the user does
not consent to tracking by Quantcast from the New York Times site.

Resolving the access control issue seems quite challenging to overcome in today’s
browsers. Browsers don’t currently tag the origin of client-side code. Even if it did,
there would be no way for browsers to distinguish actual first party code from
“third party code” that is added locally on the first party site. Poorly implemented
access control could lead to a form of history-stealing attacks or make it even easier
to fingerprint the browser. Additionally, if it is desirable that the user tracking

4 “Web Tracking Protection.” W3C Member Submission, February 24, 2011.
http://www.w3.org/Submission/2011/SUBM-web-tracking-protection-20110224/

preference is read-write rather than read-only (as discussed below) these access
control problems become even more pronounced.

Opting-back-in and Maintaining Tracking Transparency

Another reason to potentially consider a client-side DNT mechanism is that servers
may want to request that a user opt-back-in to tracking, inline in its Web application.
A site may want to offer a special deal or premium services to an opted-out user, if
the user is willing to opt-back-in to tracking. This could give sites a more flexible
commercial framework to negotiate access to content or services, in exchange for
tracking capabilities. Of course, any opt-back-in mechanism should carefully
consider how to provide sufficient notice and obtain meaningful user consent.

But, regardless of whether a client-side mechanism is feasible, some sites may
attempt to gain opt-back-in consent from users by storing the user preference
server-side. Another undesirable scenario is where the user has selected the blanket
preference to not be tracked, but certain entities continue to engage in tracking
because the user—whether knowingly or not—has opted-back-in. Browsers would
not be able to show in its interface which entities are still tracking the user.

As much as possible, tracking activities by servers should be transparent to the user.
One potential remedy would be to implement a DNT ack header with the server’s
HTTP response. The ack would contain two parts. The first part just mirrors the
DNT header from the HTTP request, so the user can verify that the preference was
accurately received. The second part allows the server to report the user’s tracking
status.

For example, a DNT ack of “10” signifies two things. The “1” signifies that the server
received a DNT:1 header in the user request. The “0” means that the server is still
tracking the user, perhaps because the user has opted-back-in to tracking. Including
an ack allows browsers to verify that DNT preferences are accurately received (and
to notify the user when they are not) and to report in its interface how the user is
being tracked, to the extent possible.

Separating the W3C submission on Web Tracking Protection

On a separate note, the Microsoft W3C submission on Web Tracking Protection
proposes two distinct technical concepts to deal with the same issue. The first
approach uses filter lists to block certain unwanted user agent requests. The second
approach describes a user preference for tracking to communicate user tracking
preferences to Web servers.

While both approaches strive toward a similar goal, there’s no reason why they
need to be considered together from a technical perspective. It may be that users
will find it most beneficial to adopt both technologies simultaneously, but it need

not be this way. Each approach has its distinct strengths and weaknesses, as well as
separate technical and policy challenges. Indeed, browser vendors may decide to
implement one approach but not the other.

[believe it would be beneficial to the general discussion around web tracking to
separate these two approaches.

Acknowledgements

Thanks to Ari Feldman at Princeton for helpful comments on this paper.

