XHTML™ Modularization 1.1 XHTML™ Modularization 1.1
W3C

XHTML™ Modularization 1.1

W3C Working Draft 5 July 2006

This version:
|http:/fiwww.w3.0rg/TR/2006/WD-xhtml-modularization-20060705|
Latest version:
|http://www.w3.org/TR/xhtml-modularization|
Previous version:
|http://www.w3.0rg/TR/2006/PR-xhtml-modularization-20060213|
Diff-marked version:
xhtml-modularization-diff.html
Diff-marked from version 1.0
xhtml-modularization-rec-diff.html
Version 1.1 Editors:
Daniel Austin, Sun Microsystems
Subramanian Peruvemba, Oracle Corporation
Shane McCarron, Applied Testing and Technology, Inc.
[Masayasu Ishikawal, W3C
Mark Birbeck, x-port.net
Editors:
Murray Altheim, [Sun Microsystems|
Frank Boumphrey, HTML Writers Guild|
Sam Dooley,
Shane McCarron, |[Applied Testing and Technology]|
Sebastian Schnitzenbaumer, Mozquito Technologies AG

Ted Wugofski, (formerly Gateway)

This document is also available in these non-normative formats:|Single HTML file][p.1] ,
PostScript version, PDF version, ZIP archive, or Gzip'd TAR archive.

[Copyrightl ©2006 W3C|® (MIT] [ERCIM| [Keig), All Rights Reserved. W3C [liability} frademark] and
rules apply.

Abstract

This document is version 1.1 of XHTML Modularization, an abstract modularization of XHTML

and implementations of the abstraction using XML Document Type Definitions (DTDs), and XML
Schemas. This modularization provides a means for subsetting and extending XHTML, a feature
needed for extending XHTML’s reach onto emerging platforms. This specification is intended for

http://www.w3.org/
http://www.w3.org/TR/2006/WD-xhtml-modularization-20060705
http://www.w3.org/TR/xhtml-modularization
http://www.w3.org/TR/2006/PR-xhtml-modularization-20060213
http://www.w3.org/People/mimasa/
http://www.sun.com/
http://www.hwg.org/
http://www.ibm.com/
http://www.aptest.com/
http://www.openwave.com/
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.csail.mit.edu/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents

Status of This Document XHTML™ Modularization 1.1

use by language designers as they construct new XHTML Family Markup Languages. This
specification does not define the semantics of elements and attributes, only how those elements
and attributes are assembled into modules, and from those modules into markup languages.
This second version of this specification includes several minor updates to provide clarifications
and address errors found in the first version. It also provides an implementation using XML
Schemas.

Status of This Document

This section describes the status of this document at the time of its publication. Other
documents may supersede this document. A list of current W3C publications and the latest
revision of this technical report can be found in the W3C technical reports index] at
http://www.w3.0rg/TR/.

This is the [Last Call Working Draft|of "XHTML™ Modularization 1.1" for review by members of
the W3C and other interested parties in the general public. The last call period ends on 4 August
2006. This document is the merger of the [Modularization of XHTML in XML Schema|last call
draft of 3 October 2003 and the [Modularization of XHT ML W3C Recommendation of 10 April
2001. The materials from the former are incorporated as appendices into this document (as
indicated during that document’s last call period), and some clarifications were applied to
material from the latter. No major changes in methodology or functionality are included in this
version. The HTML Working Group believes that this specification addresses all known issues.
Evidence of implementation use of the methodology and schema described herein is
documented in the Implementation Reportl If this document is approved as a W3C
Recommendation, it will supersede the [I0 April 2001] version of Modularization of XHTML. The
HTML Working Group does not plan to work further on[Modularization of XHTML in XML |
since it is included herein in its entirety.

Publication as a Working Draft does not imply endorsement by the W3C Membership. This is a
draft document and may be updated, replaced or obsoleted by other documents at any time. It is
inappropriate to cite this document as other than work in progress.

This document has been produced by the W3C HTML Working Group| (members only) as part of
the W3C HTML Activity} The goals of the HTML Working Group are discussed in the HTML
[Working Group charter]

This document was produced by a group operating under the |24 January 2002 CPP|as
amended by the W3C Patent Policy Transition Procedurel W3C maintains a[public list of any|
[patent disclosures|made in connection with the deliverables of the group; that page also
includes instructions for disclosing a patent. An individual who has actual knowledge of a patent
which the individual believes contains [Essential Claim(s)| must disclose the information in
accordance with|section 6 of the W3C Patent Policy}

Public discussion of HTML takes place on www-html@w3.org (archivel)). To subscribe send an
email to www-html-request@w3.org with the word subscribe in the subject line.

http://www.w3.org/TR/
http://www.w3.org/2005/10/Process-20051014/tr.html#last-call
http://www.w3.org/TR/2003/WD-xhtml-m12n-schema-20031003
http://www.w3.org/TR/2001/REC-xhtml-modularization-20010410
http://www.w3.org/MarkUp/2006/m12n-11-implementation.html
http://www.w3.org/TR/2001/REC-xhtml-modularization-20010410
http://www.w3.org/TR/2003/WD-xhtml-m12n-schema-20031003
http://www.w3.org/TR/2003/WD-xhtml-m12n-schema-20031003
http://www.w3.org/MarkUp/Group/
http://cgi.w3.org/MemberAccess/AccessRequest
http://www.w3.org/MarkUp/
http://www.w3.org/2002/05/html/charter
http://www.w3.org/2002/05/html/charter
http://www.w3.org/TR/2002/NOTE-patent-practice-20020124
http://www.w3.org/2004/02/05-pp-transition
http://www.w3.org/MarkUp/2002/Disclosures
http://www.w3.org/MarkUp/2002/Disclosures
http://www.w3.org/Consortium/Patent-Policy-20040205/#def-essential
http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure
http://lists.w3.org/Archives/Public/www-html/

XHTML™ Modularization 1.1 Quick Table of Contents

Please report errors in this document to www-html-editor@w3.org (archive).

Quick Table of Contents

2.[Terms and Definitions| |
3.[Conformance Definiton| 17
4. |Defining Abstract Modules| 2
5.XHTML Abstract Modules| 24
A.|Building Schema Modules| A, .
B. [Developing Schema with defined and extended modulesl B5
C.IXHTML Schema Module Implementations| e 4
D.Building DTD Modules| S R
E.[Developing DTDs with defined and extended modulesl 0139
F.XHTML DTD Module Implementations|153
G. . L
HDesignGoald 240
J. IAcknowledgementsl 253
I.[Changes from XHTML Modulanzatlon 1 0|25

Full Table of Contents

1. 9
1.1 I\Nhat IS XHTML’)I 9
1.2.What is XHTML Modularlzatlon’?l 9
1.3.[Why Modularize XHTML?| A ¢

1.3.1. [Abstract modules| X0
1.3.2.[Module implementations| 10
1.3.3.|Hybrid document types| 10
1.3.4. e
1.3.5. [Formatting Model| .
2.[Terms and Definitions| <

3.[Conformance Definition| . . . 4
3.1.[XHTML Host Language Document Type Conformancel . 4
3.2.XHTML Integration Set Document Type Conformance] 18
3.3.XHTML Family Module Conformance| 18
3.4.XHTML Family Document Conformance T K¢
3.5.XHTML Family User Agent Conformance] 19
3.6. T T
3.7.XHTML Module Evolutionf 20

4. |Defining Abstract Modules| 2

4.1.|Syntactic Conventionsf 21

http://lists.w3.org/Archives/Public/www-html-editor/

Full Table of Contents XHTML™ Modularization 1.1

4.2.Content Types| 22
4.3. [Attribute Types| .. .22
4.4.]1An Example Abstract Module Deflnltlonl 26
4.4.1.XHTML Skiing Module| 26
5.XHTML Abstract Modules| 24
5.1.|Attribute Collections| C s s 29
5.2.[Core Modules] . . < 10
5.2.1.Structure ModuIeI < o)
522 ffextModuld3
5.2.3.|Hypertext Module] . 1
5.2.4. T X
5.3.|Applet Module| 34
5.4.[Text Extension Modules| . 7
5.4.1.|Presentation Module¢} 34
5.4.2. - 1>
5.4.3.|Bi-directional Text Module} 35
5.5.|Forms Modules| e
5.5.1.Basic Forms Module} 36
5.5.2.[Forms Module} 37
5.6.[Table Modules| . . . e 1
5.6.1.|Basic Tables Modulel T 1 |
5.6.2.[Tables Module| 40

5.7. e
5.8.[Client-side Image Map Modulef 41
5.9.|Server-side Image Map Module] Y 24
5.10.|Object Module] Y
5.11.[Frames Module, 43
5.12.[Target Module| e
5.13. [lframe Modulg] e v
5.14.[Intrinsic Events Module} 45
5.15.[Metainformation Module 45
5.16.[Scripting Module| 46
5.17.[Style Sheet Module} 46
5.18.[Style Attribute Module| O £
5.19.[CinkModule] 47
5.20.[BaseModule] 47
5.21.[Name Identification Module| 48
5.22.|Legacy Module 48
A.|Building Schema Modules| .y
A.1.[Named Content Models| o
A.2.|Defining the Namespace ofaModule, B2
A.2.1.|Global and Local Element Declarations| B2
A.2.2.|Global and Local Attribute Declarations|] §2

XHTML™ Modularization 1.1 Full Table of Contents

A.3.|Importing External Namespace Schema Components|
A.4.[Datatype Definitions and Namespaces| .
A.5.|Content Model Redefinitions| .
B. |Developing Schema with defined and extended modulesl
B.1.|Defining additional attributes|
B.2.|Defining additional elements| .
B.3.|Defining the content model for a collection of modulesl
B.3.1.|Integrating a stand-alone module into XHTML|
B.3.2.[Mixing a new module throughout the modules in XHTML|
B.4.|Creating a new Document Type|
B.4.1.|Creating a simple Document Type|
B.4.2.|Creating a Language by extending XHTML]

B.4.3.|Creating a Language by removing and replacing XHTML modulesl

B.4.4.|Creating a the new Document Type|
C.IXHTML Schema Module Implementations|
C.1.[Character Entities| .
C.2.XHTML Schema Modular Frameworkl
C.2.1.[XHTML Notations|
C.2.2.XHTML Datatypes|
C.2.3.XHTML Common Attribute Deflnltlonsl
C.2.4.[XHTML Character Entities|
C.3.[XHTML Module Implementations|
C.3.1.[XHTML Core Modules|

C32.Bppl . .
C.3.3. [Text Modules|
C.3.4.[Formg
C.3.5. [Tabley)
C.3.6.[mage]

C.3.7.[Client-side Image Map|
C.3.8.|Server-side Image Map|

C.3.9.0bfec .
C.3.10. [Frameg]
C.3.11.[Targeq .
C.3.12.[framq] .

C.3.13.|Intrinsic Events|
C.3.14. Metainformation]

C.3.15. .
C.3.16.
C.3.17.
C.3.18.

C.3.19.

C.3.20.[Name Identification|

C.3.21.

53
53
53
55
56
56
57
57
58
58
59
61
62
62
7
77
77
78
79
80
81
82
82
86
87
89
a5

. 100
. 101
. 102
. 103
. 104
. 105
. 106
. 107
. 108
. 109
. 110
. 110
. 111
. 111
. 112
. 113

Full Table of Contents XHTML™ Modularization 1.1

C.3.22. Ruby]

C.4.XHTML Schema Support Modulesl
C.4.1.[Block Phrasal
C.4.2.|Block Presentationall
C.4.3.|Block Structural| .
C.4.4.
C.4.5.|Inline Presentational| .
C.4.6.|Inline Structurall .
C.4.7. oo
C.4.8.|Legacy - Miscellaneous|
D.|Building DTD Modules|
D.1.|Parameter Entity Naming|
D.2.|Defining the Namespace of a Module]
D.2.1.[Qualified Names sub-module]
D.2.2.|Declaration sub-module(s)|
D.2.3.|Using the module as a stand-alone DTD]| .
D.2.4.[Namespace Idiosyncrasies| .
E.|Developing DTDs with defined and extended modules|
E.1.|Defining additional attributes|
E.2.|Defining additional elements| ..
E.3.[Defining the content model for a collection of moduIesI
E.3.1.[Integrating a stand-alone module into XHTML|
E.3.2.[Mixing a new module throughout the modules in XHTML]
E.4.|Creating a new DTD]
E.4.1.[Creating a simple DTD| .
E.4.2.|Creating a DTD by extending XHTMLI
E.4.3.|Creating a DTD by removing and replacing XHTML modulesl
E.4.4.|Creating a new DTD) .
E.5.|Using the new DTD).
F.XHTML DTD Module Implementatlonsl
F.1.XHTML Character Entities| .
F.1.1.[XHTML Latin 1 Character Entltlesl
F.1.2.[XHTML Special Characters|
F.1.3.XHTML Mathematical, Greek, and Symbollc Charactersl
F.2.[XHTML Modular Framework]
F.2.1.[XHTML Base Architecture]
F.2.2.[XHTML Notations|
F.2.3.[XHTML Datatypes|
F.2.4.XHTML Common Attribute Deflnltlonsl
F.2.5.XHTML Qualified Names|
F.2.6.[XHTML Character Entities|
F.3.XHTML Module Implementations|
F.3.1.XHTML Core Modules|

. 114
. 117
. 117
. 119
. 120
. 121
. 123
. 123
. 124
. 125
. 131
. 131

52

. 132
. 134
. 136
. 138
. 139

56
56
57

. 141
. 141
. 142
. 142
. 144
. 145
. 145
. 151
. 153
. 153
. 153
. 154
. 156
. 159
. 161

78
79
80

. 168

81

. 174

82

XHTML™ Modularization 1.1 Full Table of Contents

F3.2.Appled18
F3.3.fexdModules 87
F3.4.[Foomg18
F.3.5.[Tables19%
F3.6.lmaggl203
F.3.7.[Client-side Image Map|204
F.3.8.|Server-side ImageMap|, 206
F.3.9.0bjecy206
F.3.10. [Frames] 0 v
F3.1l.[Targed20
F.3.12.framel20
F.3.13.|Intrinsic Events|21
F.3.14. |Metainformation| g
F.3.15.[Scriptin215
F.3.16. [Style Sheef 2
F.3.17.[Style Attribute]217
F.3.18. [LinK| 2
F319.Basd218
F.3.20.|Name Identification| 219
F.3.21.[Cegacy] . . . o |
F.4.XHTML DTD Support Moduleslo .. 228
F.4.1.BlockPhrasal228
F.4.2.|Block Presentational23
F.4.3.Block Structura23
F.4.4.[nlnePhrasal23
F.4.5.|Inline Presentational 236
F.4.6.[Inline Structurall239
F.4.7.Param] . . e s 240
F.4.8.|Legacy Redeclaratlonsl . |
G.References]24
G.1.Normative References| 245
G.2.[Informative References|. 246
H.DesignGoald 249
H.1.[Requirements249
H.1.1.Grandlarity]249
H.1.2.[Composibility]249
H.1.3.EaseofUs¢.28
H.1.4.Compatbly]25
H.15.[Conformancel25
J.JAcknowledgements| 253
[.|IChanges from XHTML Modularlzatlon 10|28

Full Table of Contents XHTML™ Modularization 1.1

XHTML™ Modularization 1.1 1. Introduction

1. Introduction

This section is informative.

1.1. What is XHTML?

XHTML is the reformulation of HTML 4 as an application of XML. XHTML 1.0 [XHTMLI] [p.246]
specifies three XML document types that correspond to the three HTML 4 DTDs: Strict,
Transitional, and Frameset. XHTML 1.0 is the basis for a family of document types that subset
and extend HTML.

1.2. What is XHTML Modularization?

XHTML Modularization is a decomposition of XHTML 1.0, and by reference HTML 4, into a
collection of abstract modules that provide specific types of functionality. These abstract
modules are implemented in this specification using the XML Document Type Definition
language, but an implementation using XML Schemas is expected. The rules for defining the
abstract modules, and for implementing them using XML DTDs, are also defined in this
document.

These modules may be combined with each other and with other modules to create XHTML
subset and extension document types that qualify as members of the XHTML-family of
document types.

1.3. Why Modularize XHTML?

The modularization of XHTML refers to the task of specifying well-defined sets of XHTML
elements that can be combined and extended by document authors, document type architects,
other XML standards specifications, and application and product designers to make it
economically feasible for content developers to deliver content on a greater number and
diversity of platforms.

Over the last couple of years, many specialized markets have begun looking to HTML as a
content language. There is a great movement toward using HTML across increasingly diverse
computing platforms. Currently there is activity to move HTML onto mobile devices (hand held
computers, portable phones, etc.), television devices (digital televisions, TV-based Web
browsers, etc.), and appliances (fixed function devices). Each of these devices has different
requirements and constraints.

Modularizing XHTML provides a means for product designers to specify which elements are
supported by a device using standard building blocks and standard methods for specifying which
building blocks are used. These modules serve as "points of conformance" for the content
community. The content community can now target the installed base that supports a certain
collection of modules, rather than worry about the installed base that supports this or that
permutation of XHTML elements. The use of standards is critical for modularized XHTML to be

1.3.1. Abstract modules XHTML™ Modularization 1.1

successful on a large scale. It is not economically feasible for content developers to tailor
content to each and every permutation of XHTML elements. By specifying a standard, either
software processes can autonomously tailor content to a device, or the device can automatically
load the software required to process a module.

Modularization also allows for the extension of XHTML's layout and presentation capabilities,
using the extensibility of XML, without breaking the XHTML standard. This development path
provides a stable, useful, and implementable framework for content developers and publishers
to manage the rapid pace of technological change on the Web.

1.3.1. Abstract modules

An XHTML document type is defined as a set of abstract modules. A abstract module defines
one kind of data that is semantically different from all others. Abstract modules can be combined
into document types without a deep understanding of the underlying schemas that define the
modules.

1.3.2. Module implementations

A module implementation consists of a set of element types, a set of attribute-list declarations,
and a set of content model declarations, where any of these three sets may be empty. An
attribute-list declaration in a module may modify an element type outside the element types
defined in the module, and a content model declaration may modify an element type outside the
element type set of the module.

One implementation mechanism is XML DTDs. An XML DTD is a means of describing the
structure of a class of XML documents, collectively known as an XML document type. XML
DTDs are described in the XML 1.0 Recommendation [XML]| [p.246] . Another implementation
mechanism is XML Schema[[XMLSCHEMA] [p.246] .

1.3.3. Hybrid document types

A hybrid document type is an document type composed from a collection of XML DTDs or DTD
Modules. The primary purpose of the modularization framework described in this document is to
allow a DTD author to combine elements from multiple abstract modules into a hybrid document
type, develop documents against that hybrid document type, and to validate that document
against the associated hybrid document type definition.

One of the most valuable benefits of XML over SGML is that XML reduces the barrier to entry for
standardization of element sets that allow communities to exchange data in an interoperable
format. However, the relatively static nature of HTML as the content language for the Web has
meant that any one of these communities have previously held out little hope that their XML
document types would be able to see widespread adoption as part of Web standards. The
modularization framework allows for the dynamic incorporation of these diverse document types
within the XHTML-family of document types, further reducing the barriers to the incorporation of
these domain-specific vocabularies in XHTML documents.

-10-

XHTML™ Modularization 1.1 1.3.4. Validation

1.3.4. Validation

The use of well-formed, but not valid, documents is an important benefit of XML. In the process
of developing a document type, however, the additional leverage provided by a validating parser
for error checking is important. The same statement applies to XHTML document types with
elements from multiple abstract modules.

A document is an instance of one particular document type defined by the DTD identified in the
document’s prologue. Validating the document is the process of checking that the document
complies with the rules in the document type definition.

One document can consist of multiple document fragments. Validating only fragments of a
document, where each fragment is of a different document type than the other fragments in the
document, is beyond the scope of this framework - since it would require technology that is not
yet defined.

However, the modularization framework allows multiple document type definitions to be
integrated and form a new document type (e.g. SVG integrated into XHTML). The new
document type definition can be used for normal XML 1.0 validation.

1.3.5. Formatting Model

Earlier versions of HTML attempted to define parts of the model that user agents are required to
use when formatting a document. With the advent of HTML 4, the W3C started the process of
divorcing presentation from structure. XHTML 1.0 maintained this separation, and this document
continues moving HTML and its descendants down this path. Consequently, this document
makes no requirements on the formatting model associated with the presentation of documents
marked up with XHTML Family document types.

Instead, this document recommends that content authors rely upon style mechanisms such as
CSS to define the formatting model for their content. When user agents support the style
mechanisms, documents will format as expected. When user agents do not support the style
mechanisms, documents will format as appropriate for that user agent. This permits XHTML
Family user agents to support rich formatting models on devices where that is appropriate, and
lean formatting models on devices where that is appropriate.

-11 -

1.3.5. Formatting Model XHTML™ Modularization 1.1

-12 -

XHTML™ Modularization 1.1 2. Terms and Definitions

2. Terms and Definitions
This section is informative.

While some terms are defined in place, the following definitions are used throughout this
document. Familiarity with the W3C XML 1.0 Recommendation [p.246] is highly
recommended.

abstract module
a unit of document type specification corresponding to a distinct type of content,
corresponding to a markup construct reflecting this distinct type.

content model
the declared markup structure allowed within instances of an element type. XML 1.0
differentiates two types: elements containing only element content (no character data) and
mixed content (elements that may contain character data optionally interspersed with child
elements). The latter are characterized by a content specification beginning with the
"#PCDATA" string (denoting character data).

document model
the effective structure and constraints of a given document type. The document model
constitutes the abstract representation of the physical or semantic structures of a class of
documents.

document type
a class of documents sharing a common abstract structure. The ISO 8879 [p.245]
definition is as follows: "a class of documents having similar characteristics; for example,
journal, article, technical manual, or memo. (4.102)"

document type definition (DTD)
a formal, machine-readable expression of the XML structure and syntax rules to which a
document instance of a specific document type must conform; the schema type used in
XML 1.0 to validate conformance of a document instance to its declared document type.
The same markup model may be expressed by a variety of DTDs.

driver
a generally short file used to declare and instantiate the modules of a DTD. A good rule of
thumb is that a DTD driver contains no markup declarations that comprise any part of the
document model itself.

element
an instance of an element type.

element type
the definition of an element, that is, a container for a distinct semantic class of document
content.

entity
an entity is a logical or physical storage unit containing document content. Entities may be
composed of parse-able XML markup or character data, or unparsed (i.e., non-XML,
possibly non-textual) content. Entity content may be either defined entirely within the
document entity ("internal entities™) or external to the document entity ("external entities"). In
parsed entities, the replacement text may include references to other entities.

-13-

2. Terms and Definitions XHTML™ Modularization 1.1

entity reference
a mnemonic string used as a reference to the content of a declared entity (eg., "&" for
"&", "&It;" for "<", "©" for "©".)

facilities
elements, attributes, and the semantics associated with those elements and attributes.

generic identifier
the name identifying the element type of an element. Also, element type name.

hybrid document
A hybrid document is a document that uses more than one XML namespace. Hybrid
documents may be defined as documents that contain elements or attributes from hybrid
document types.

instantiate
to replace an entity reference with an instance of its declared content.

markup declaration
a syntactical construct within a DTD declaring an entity or defining a markup structure.
Within XML DTDs, there are four specific types: entity declaration defines the binding
between a mnemonic symbol and its replacement content; element declaration constrains
which element types may occur as descendants within an element (see also content
model); attribute definition list declaration defines the set of attributes for a given element
type, and may also establish type constraints and default values; notation declaration
defines the binding between a notation name and an external identifier referencing the
format of an unparsed entity.

markup model
the markup vocabulary (i.e., the gamut of element and attribute names, notations, etc.) and
grammar (i.e., the prescribed use of that vocabulary) as defined by a document type
definition (i.e., a schema) The markup model is the concrete representation in markup
syntax of the document model, and may be defined with varying levels of strict conformity.
The same document model may be expressed by a variety of markup models.

module
an abstract unit within a document model expressed as a DTD fragment, used to
consolidate markup declarations to increase the flexibility, modifiability, reuse and
understanding of specific logical or semantic structures.

modularization
an implementation of a modularization model; the process of compaosing or de-composing a
DTD by dividing its markup declarations into units or groups to support specific goals.
Modules may or may not exist as separate file entities (i.e., the physical and logical
structures of a DTD may mirror each other, but there is no such requirement).

modularization model
the abstract design of the document type definition (DTD) in support of the modularization
goals, such as reuse, extensibility, expressiveness, ease of documentation, code size,
consistency and intuitiveness of use. It is important to note that a modularization model is
only orthogonally related to the document model it describes, so that two very different
modularization models may describe the same document type.

parameter entity
an entity whose scope of use is within the document prolog (i.e., the external subset/DTD or
internal subset). Parameter entities are disallowed within the document instance.

-14 -

XHTML™ Modularization 1.1 2. Terms and Definitions

parent document type
A parent document type of a hybrid document is the document type of the root element.
tag
descriptive markup delimiting the start and end (including its generic identifier and any
attributes) of an element.

-15-

2. Terms and Definitions XHTML™ Modularization 1.1

-16 -

XHTML™ Modularization 1.1 3. Conformance Definition

3. Conformance Definition

This section is normative.

In order to ensure that XHTML-family documents are maximally portable among XHTML-family
user agents, this specification rigidly defines conformance requirements for both of these and for
XHTML-family document types. While the conformance definitions can be found in this section,
they necessarily reference normative text within this document, within the base XHTML
specification [XHTML1] [p.246] , and within other related specifications. It is only possible to fully
comprehend the conformance requirements of XHTML through a complete reading of all
normative references.

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as

described in[REC2119] [p.245] .

3.1. XHTML Host Language Document Type Conformance

It is possible to modify existing document types and define wholly new document types using
both modules defined in this specification and other modules. Such a document type is "XHTML
Host Language Conforming” when it meets the following criteria:

1. The document type MUST be defined using one of the implementation methods defined by
the W3C. Currently this is limited to XML DTDs and XML Schema.

2. The schema which defines the document type MUST have a unique identifier as defined in
[p.19] that begins with the character sequence "XHTM.".

3. The schema which defines the document type must include, at a minimum, the Structure,
Hypertext, Text, and List modules defined in this specification.

4. For each of the W3C-defined modules that are included, all of the elements, attributes,
types of attributes (including any required enumerated value lists), and any required minimal
content models must be included (and optionally extended) in the document type’s content
model. When content models are extended, all of the elements and attributes (along with
their types or any required enumerated value lists) required in the original content model
must continue to be required.

5. The schema that defines the document type may define additional elements and attributes.
However, these MUST be in their own XML namespace [XMLNAMES] [p.246] . If additional
elements are defined by a module, the attributes defined in included XHTML modules are
available for use on those elements, but MUST be referenced using their
namespace-qualified identifier (e.g., xhtml:class). The semantics of the attributes remain the
same as when used on an XHTML-namespace element.

-17 -

3.2. XHTML Integration Set Document Type Conformance XHTML™ Modularization 1.1

3.2. XHTML Integration Set Document Type Conformance

It is also possible to define document types that are based upon XHTML, but do not adhere to its
structure. Such a document type is "XHTML Integration Set Conforming" when it meets the
following criteria:

1.

2.

The document type MUST be defined using one of the implementation methods defined by
the W3C. Currently this is limited to XML DTDs and XML Schemas.

The schema that defines the document type MUST have a unique identifier as defined in
[p.19] . This identifier MUST contain the character sequence "XHTML", but
MUST NOT start with that character sequence.

. The schema which defines the document type MUST include, at a minimum, the Hypertext,

Text, and List modules defined in this specification.

For each of the W3C-defined modules that are included, all of the elements, attributes,
types of attributes (including any required enumerated lists), and any required minimal
content models MUST be included (and optionally extended) in the document type’s content
model. When content models are extended, all of the elements and attributes (along with
their types or any required enumerated value lists) required in the original content model
MUST continue to be required.

. The schema that defines the document type MAY define additional elements and attributes.

However, these MUST be in their own XML namespace [XMLNAMES] [p.246] . If additional
elements are defined by a module, the attributes defined in included XHTML modules are
available for use on those elements, but MUST be referenced using their
namespace-qualified identifier (e.g., xhtml:class). The semantics of the attributes remain the
same as when used on an XHTML-namespace element.

3.3. XHTML Family Module Conformance

This specification defines a method for defining XHTML-conforming modules. A module
conforms to this specification when it meets all of the following criteria:

1.

2.

The document type MUST be defined using one of the implementation methods defined by
the W3C. Currently this is limited to XML DTDs and XML Schemas.

The schema that defines the module MUST have a unique identifier as defined in[Naming |
[p.19] .

. When the module is defined using an XML DTD, the module MUST isolate its parameter

entity names through the use of unique prefixes or other, similar methods.
The module definition MUST have a prose definition that describes the syntactic and
semantic requirements of the elements, attributes, and/or content models that it declares.

. The module definition MUST NOT reuse any element names that are defined in other

W3C-defined modules, except when the content model and semantics of those elements
are either identical to the original or an extension of the original, or when the reused
element names are within their own namespace (see below).

. The module definition’s elements and attributes MUST be part of an XML namespace

XMLNAMES]|[p.246] . If the module is defined by an organization other than the W3C, this

-18-

XHTML™ Modularization 1.1 3.4. XHTML Family Document Conformance

namespace MUST NOT be the same as the namespace in which other W3C modules are
defined.

3.4. XHTML Family Document Conformance

A conforming XHTML family document is a valid instance of an XHTML Host Language
Conforming Document Type.

3.5. XHTML Family User Agent Conformance
A conforming user agent must meet all of the following criteria (as defined in [XHTML1] [p.246]):

1. In order to be consistent with the XML 1.0 Recommendation [p.246] , the user agent
MUST parse and evaluate an XHTML document for well-formedness. If the user agent
claims to be a validating user agent, it MUST also validate documents against their
referenced schemas.

2. When the user agent claims to support facilities defined within this specification or required
by this specification through normative reference, it MUST do so in ways consistent with the
facilities’ definition.

3. When a user agent processes an XHTML document as generic [XML] [p.246] , it MUST
recognize only attributes of type | D (e.g., the i d attribute on most XHTML elements) as
fragment identifiers.

4. If a user agent encounters an element it does not recognize, it MUST continue to process
the children of that element.

5. If a user agent encounters an attribute it does not recognize, it MUST ignore the entire
attribute specification (i.e., the attribute and its value).

6. If it encounters an entity reference (other than one of the predefined entities) for which the
user agent has processed no declaration (which could happen if the declaration is in the
external subset which the user agent hasn’t read), the entity reference SHOULD be
rendered as the characters (starting with the ampersand and ending with the semi-colon)
that make up the entity reference.

7. When rendering content, user agents that encounter characters or character entity
references that are recognized but not renderable SHOULD display the document in such a
way that it is obvious to the user that normal rendering has not taken place.

8. Whitespace is defined as in [p.246] . On input all whitespace is preserved - this is
exactly as if the value of xim : space, as defined in [p.246] , is set to "preserve". If
the value of that attribute is set to "default”, that is the same as if it were set to "preserve".
On rendering, whitespace is processed according to the rules of [CSS2] [p.245] .

3.6. Naming Rules

XHTML Host Language document types must adhere to strict naming conventions so that it is
possible for software and users to readily determine the relationship of document types to
XHTML. The names for document types implemented as XML Document Type Definitions are
defined through Formal Public Identifiers (FPIs). Within FPIs, fields are separated by double

-19-

3.7. XHTML Module Evolution XHTML™ Modularization 1.1

slash character sequences (/ /). The various fields must be composed as follows:

1. The leading field must be "-" to indicate a privately defined resource.

2. The second field must contain the name of the organization responsible for maintaining the
named item. There is no formal registry for these organization names. Each organization
should define a name that is unique. The name used by the W3C is, for example, VBC.

3. The third field contains two constructs: the public text class followed by the public text
description. The first token in the third field is the public text class which should adhere to
ISO 8879 Clause 10.2.2.1 Public Text Class. Only XHTML Host Language conforming
documents should begin the public text description with the token XHTML. The public text
description should contain the string XHTML if the document type is Integration Set
conforming. The field must also contain an organization-defined unique identifier (e.qg.,
MyML 1.0). This identifier should be composed of a unique hame and a version identifier
that can be updated as the document type evolves.

4. The fourth field defines the language in which the item is developed (e.g., EN).

Using these rules, the name for an XHTML Host Language conforming document type might be
-/ MyConpany// DTD XHTML MyM. 1. 0// EN. The name for an XHTML family conforming
module might be -/ / MyConpany/ / ELEMENTS XHTM. MyEl enents 1. 0// EN. The name for
an XHTML Integration Set conforming document type might be - / / MyConpany/ / DTD

Speci al Markup with XHTM.//EN.

3.7. XHTML Module Evolution

Each module defined in this specification is given a unique identifier that adheres to the naming
rules in the previous section. Over time, a module may evolve. A logical ramification of such
evolution may be that some aspects of the module are no longer compatible with its previous
definition. To help ensure that document types defined against modules defined in this
specification continue to operate, the identifiers associated with a module that changes will be
updated. Specifically, the Formal Public Identifier and System Identifier of the module will be
changed by modifying the version identifier included in each. Document types that wish to
incorporate the updated functionality will need to be similarly updated.

In addition, the earlier version(s) of the module will continue to be available via its earlier, unique
identifier(s). In this way, document types developed using XHTML modules will continue to
function seamlessly using their original definitions even as the collection expands and evolves.
Similarly, document instances written against such document types will continue to validate
using the earlier module definitions.

Other XHTML Family Module and Document Type authors are encouraged to adopt a similar
strategy to ensure the continued functioning of document types based upon those modules and
document instances based upon those document types.

-20-

XHTML™ Modularization 1.1 4. Defining Abstract Modules

4. Defining Abstract Modules

This section is normative.

An abstract module is a definition of an XHTML module using prose text and some informal
markup conventions. While such a definition is not generally useful in the machine processing of
document types, it is critical in helping people understand what is contained in a module. This
section defines the way in which XHTML abstract modules are defined. An XHTML-conforming
module is not required to provide an abstract module definition. However, anyone developing an
XHTML module is encouraged to provide an abstraction to ease in the use of that module.

4.1. Syntactic Conventions

The abstract modules are not defined in a formal grammar. However, the definitions do adhere
to the following syntactic conventions. These conventions are similar to those of XML DTDs, and
should be familiar to XML DTD authors. Each discrete syntactic element can be combined with
others to make more complex expressions that conform to the algebra defined here.

element name
When an element is included in a content model, its explicit name will be listed.

content set
Some modules define lists of explicit element names called content sets. When a content
set is included in a content model, its name will be listed.

expr ?

Zero or one instances of expr are permitted.
expr +

One or more instances of expr are required.
expr *

Zero or more instances of expr are permitted.
a, b

Expression a is required, followed by expression b.
al| b

Either expression a or expression b is required.
a-»b

Expression a is permitted, omitting elements in expression b.
parentheses

When an expression is contained within parentheses, evaluation of any subexpressions
within the parentheses take place before evaluation of expressions outside of the
parentheses (starting at the deepest level of nesting first).

extending pre-defined elements
In some instances, a module adds attributes to an element. In these instances, the element
name is followed by an ampersand (&).

defining required attributes
When an element requires the definition of an attribute, that attribute name is followed by an
asterisk (*).

-21 -

4.2. Content Types XHTML™ Modularization 1.1

defining the type of attribute values
When a module defines the type of an attribute value, it does so by listing the type in
parentheses after the attribute name.

defining the legal values of attributes
When a module defines the legal values for an attribute, it does so by listing the explicit
legal values (enclosed in quotation marks), separated by vertical bars (|), inside of
parentheses following the attribute name. If the attribute has a default value, that value is
followed by an asterisk (*). If the attribute has a fixed value, the attribute name is followed
by an equals sign (=) and the fixed value enclosed in quotation marks.

4.2. Content Types

Abstract module definitions define minimal, atomic content models for each module. These
minimal content models reference the elements in the module itself. They may also reference
elements in other modules upon which the abstract module depends. Finally, the content model
in many cases requires that text be permitted as content to one or more elements. In these
cases, the symbol used for text is PCDATA (processed characted data). This is a term, defined
in the XML 1.0 Recommendation, that refers to processed character data. A content type can
also be defined as EMPTY, meaning the element has no content in its minimal content model.

4.3. Attribute Types

In some instances, it is hecessary to define the types of attribute values or the explicit set of
permitted values for attributes. The following attribute types (defined in the XML 1.0
Recommendation) are used in the definitions of the abstract modules:

Attribute Type Definition

CDATA Character data

ID A document-unigue identifier

IDREF A reference to a document-unique identifier

IDREFS A space-separated list of references to document-unique identifiers

NAME A name with the same character constraints as ID above

NMTOKEN A name composed of only name tokens as defined in XML 1.0 [XML] [p.246]
NMTOKENS One or more white space separated NMTOKEN values

In addition to these pre-defined data types, XHTML Modularization defines the following data
types and their semantics (as appropriate):

Data type Description

Character A single character from|[[1ISO10646]|[p.245] .

-22 -

XHTML™ Modularization 1.1

Charset A character encoding, as per|[[REC2045] [p.245] .
Charsets A space-separated list of character encodings, as per [RFC2045]|[p.245] .
The attribute value type "Color" refers to color definitions as specified in
SRGB]|[p.246] . A color value may either be a hexadecimal number (prefixed
by a hash mark) or one of the following sixteen color names. The color names
are case-insensitive.
Color names and sRGB values
. Black = "#000000" . Green = "#008000"
[] siver="#cococo [Lime = "#00FFo0"
. Gray = "#808080" . Olive = "#808000"
Color
D White = "#FFFFFF" D Yellow = "#FFFF00"
. Maroon = "#800000" . Navy = "#000080"
. Red = "#FF0000" . Blue = "#0000FF"
. Purple = "#800080" . Teal = "#008080"
. Fuchsia = "#FFOOFF" D Aqua = "#00FFFF"
Thus, the color values "#800080" and "Purple" both refer to the color purple.
ContentType A media type, as per|[RFC2045] [p.245] .
ContentTypes | A comma-separated list of media types, as per|[[REC2045]|[p.245] .
Coords Comma separated list of coordinates to use in defining areas.
Datetime Date and time information.
FPI A character string representing an SGML Formal Public Identifier.
FrameTarget Frame name used as destination for results of certain actions.
LanguageCode | A language code, as per[[RFC3066]| [p.245] or its successor.
Length The value may be either in pixels or a percentage of the available horizontal

or vertical space. Thus, the value "50%" means half of the available space.

-23-

4.3. Attribute Types

4.3. Attribute Types

LinkTypes

Authors may use the following recognized link types, listed here with their
conventional interpretations. A LinkTypes value refers to a space-separated
list of link types. White space characters are not permitted within link types.

These link types are case-insensitive, i.e., "Alternate" has the same meaning
as "alternate".

User agents, search engines, etc. may interpret these link types in a variety of
ways. For example, user agents may provide access to linked documents
through a navigation bar.

Alternate
Designates substitute versions for the document in which the link occurs.
When used together with the hr ef | ang attribute, it implies a translated
version of the document. When used together with the nedi a attribute, it
implies a version designed for a different medium (or media).
Stylesheet
Refers to an external style sheet. See the [Style Module][p.46] for details.
This is used together with the link type "Alternate” for user-selectable
alternate style sheets.
Start
Refers to the first document in a collection of documents. This link type
tells search engines which document is considered by the author to be
the starting point of the collection.
Next
Refers to the next document in a linear sequence of documents. User
agents may choose to pre-load the "next" document, to reduce the
perceived load time.
Prev
Refers to the previous document in an ordered series of documents.
Some user agents also support the synonym "Previous".
Contents
Refers to a document serving as a table of contents. Some user agents
also support the synonym ToC (from "Table of Contents").
Index
Refers to a document providing an index for the current document.
Glossary
Refers to a document providing a glossary of terms that pertain to the
current document.
Copyright
Refers to a copyright statement for the current document.
Chapter
Refers to a document serving as a chapter in a collection of documents.
Section
Refers to a document serving as a section in a collection of documents.
Subsection
Refers to a document serving as a subsection in a collection of
documents.
Appendix
Refers to a document serving as an appendix in a collection of
documents.
Help
Refers to a document offering help (more information, links to other
sources information, etc.)
Bookmark
Refers to a bookmark. A bookmark is a link to a key entry point within an
extended document. The title attribute may be used, for example, to label
the bookmark. Note that several bookmarks may be defined in each
document.

Authors may wish to define additional link types not described in this
specification. If they do so, they should use a profile to cite the conventions
used to define the link types. Please see the profile attribute of the [head|
[p.30] element for more information.

Note that in a future version of this specification, the Working Group expects
to evolve this type from a simple name to a Qualified Name (QName][p.26]).

-24 -

XHTML™ Modularization 1.1

XHTML™ Modularization 1.1

MediaDesc

The MediaDesc attribute is a comma-separated list of media descriptors. The
following is a list of recognized media descriptors:

screen
Intended for non-paged computer screens.

tty
Intended for media using a fixed-pitch character grid, such as teletypes,
terminals, or portable devices with limited display capabilities.

Intended for television-type devices (low resolution, color, limited
scrollability).
projection
Intended for projectors.
handheld
Intended for handheld devices (small screen, monochrome, bitmapped
graphics, limited bandwidth).
print
Intended for paged, opague material and for documents viewed on
screen in print preview mode.
braille
Intended for braille tactile feedback devices.
aural
Intended for speech synthesizers.
all
Suitable for all devices.

Future versions of XHTML may introduce new values and may allow
parameterized values. To facilitate the introduction of these extensions,
conforming user agents must be able to parse the media attribute value as
follows:

1. The value is a comma-separated list of entries. For example,

medi a="screen, 3d-glasses, print and resolution > 90dpi"

is mapped to:

"screen”
"3d- gl asses"
"print and resolution > 90dpi "

2. Each entry is truncated just before the first character that isn't a US
ASCII letter [a-zA-Z] (ISO 10646 hex 41-5a, 61-7a), digit [0-9] (hex
30-39), or hyphen-minus (hex 2d). In the example, this gives:

"screen”
"3d- gl asses"
"print"

3. A case-insensitive match is then made with the set of media types
defined above. User agents may ignore entries that don’t match. In the
example we are left with screen and pri nt.

Note. Style sheets may include media-dependent variations within them (e.g.,
the CSS @media construct). In such cases it may be appropriate to use
"media =all".

MultiLength

The value may be a Length or a relative length. A relative length has the form
"i*", where "i" is an integer. When allotting space among elements competing
for that space, user agents allot pixel and percentage lengths first, then divide
up remaining available space among relative lengths. Each relative length
receives a portion of the available space that is proportional to the integer
preceding the "*". The value "*" is equivalent to "1*". Thus, if 60 pixels of
space are available after the user agent allots pixel and percentage space,
and the competing relative lengths are 1*, 2*, and 3*, the 1* will be allotted 10
pixels, the 2* will be allotted 20 pixels, and the 3* will be allotted 30 pixels.

MultiLengths

A comma separated list of items of type [MultiLength| [p.25] .

Number

One or more digits

-25-

4.3. Attribute Types

4.4. An Example Abstract Module Definition

Pixels

The value is an integer that represents the number of pixels of the canvas
(screen, paper). Thus, the value "50" means fifty pixels. For normative
information about the definition of a pixel, please consult[CSS2] [p.245]

QName

An [XMLNS] [p.246]]-qualified name. See [QName]for a formal definition.

QNames

A space-separated list of QNames, as defined above.

Script

Script data can be the content of the "script" element and the value of intrinsic
event attributes. User agents must not evaluate script data as HTML markup
but instead must pass it on as data to a script engine.

The case-sensitivity of script data depends on the scripting language.

Please note that script data that is element content may not contain character
references, but script data that is the value of an attribute may contain them.

Shape

The shape of a region.

Text

Arbitrary textual data, likely meant to be human-readable.

URI

A Uniform Resource Identifier Reference, as defined by the type anyURI in
XMLSCHEMA| [p.246] . Note that this includes what is now referred to as an
"IRI"[REC3987] [p.245] .

URIs

A space-separated list of URIs as defined above.

4.4. An Example Abstract Module Definition

This section is informative

XHTML™ Modularization 1.1

This section defines a sample abstract module as an example of how to take advantage of the
syntax rules defined above. Since this example is trying to use all of the various syntactic
elements defined, it is pretty complicated. Typical module definitions would be much simpler
than this. Finally, note that this module references the attribute collection Common. This is a
collection defined in the XHTML Modularization specification that includes all of the basic
attributes that most elements need.

4.4.1. XHTML Skiing Module

The XHTML Skiing Module defines markup used when describing aspects of a ski lodge. The
elements and attributes defined in this module are:

-26-

http://www.w3.org/TR/xmlschema-2/#QName

XHTML™ Modularization 1.1

Elements Attributes Minimal Content Model
resort Common, href (CDATA) | description, Aspen+
lodge Common description, (Aspen - lift)+
lift Common, href description?

chalet Common, href description?

room Common, href description?

lobby Common, href description?

fireplace | Common, href description?

description | Common PCDATA*

4.4.1. XHTML Skiing Module

This module also defines the content set Aspen with the minimal content model lodge | lift |
chalet | room | lobby | fireplace.

-27 -

4.4.1. XHTML Skiing Module XHTML™ Modularization 1.1

-28-

XHTML™ Modularization 1.1 5. XHTML Abstract Modules

5. XHTML Abstract Modules

This section is normative.

This section specifies the contents of the XHTML abstract modules. These modules are abstract
definitions of collections of elements, attributes, and their content models. These abstract
modules can be mapped onto any appropriate specification mechanism. [XHTML DTD Module]
[[mplementations][p.153] , for example, maps these modules onto DTDs as described in [XML]
[p.246] .

Content developers and device designers should view this section as a guide to the definition of
the functionality provided by the various XHTML-defined modules. When developing documents
or defining a profile for a class of documents, content developers can determine which of these
modules are essential for conveying their message. When designing clients, device designers
should develop their device profiles by choosing from among the abstract modules defined here.

Except when overridden in this document, the semantics of these elements and attributes are

defined in[HTML4]|[p.245] .

5.1. Attribute Collections

Many of the abstract modules in this section define the required attributes for elements. The
table below defines some collections of attributes that are referenced throughout the modules.
These expressions should in no way be considered normative or mandatory. They are an
editorial convenience for this document. When used in the remainder of this section, it is the
expansion of the term that is normative, not the term itself.

The following basic attribute sets are used on many elements. In each case where they are
used, their use is identified via their collection name rather than enumerating the list.

Each of the attributes defined in an XHTML attribute collection is available for use when their
corresponding module is included in an XHTML Host Language or an XHTML Integration Set. In
such a situation, the attributes are available for use in the definition of elements that are NOT in
the XHTML namespace when they are referenced using their namespace-qualified identifier
(e.g., xht i : cl ass). The semantics of the attributes remain the same regardless of whether
they are referenced using their qualified identifier or not. It is an error to use an XHTML
namespace-qualified attribute on elements from the XHTML Namespace.

-29-

5.2. Core Modules XHTML™ Modularization 1.1

Collection

Attributes in Collection
Name

xml:space ("default"* | "preserve"), class (NMTOKENS] [p.22]), id (ID][p.22]),
title (CDATA|[p.22])

Core

118N xml:lang (CDATA|[p.22])

onclick (Scripil [p.26]), ondbiclick (Scripf [p.26]), onmousedown (Scripf [p.26]),
onmouseup (Scripf] [p.26]), onmouseover (Scripi [p.26]), onmousemove
[p.26]), onmouseout (Scripf [p.26]), onkeypress (Scripf [p.26]), onkeydown
(Script [p.26]), onkeyup (Scripd [p.26])

Events

Style style (CDATA|[p.22])

Common |[Care] [p.30] + [Events] [p.30] +[I8N][p.30] +[Siyle] [p.30]

Note that the Events collection is only defined when the Intrinsic Events Module is selected.
Otherwise, the Events collection is empty.

Also note that the Style collection is only defined when the Style Attribute Module is selected.
Otherwise, the Style collection is empty.

5.2. Core Modules

The core modules are modules that are required to be present in any XHTML Family|
[Conforming Document Type|[p.17] .

5.2.1. Structure Module

The Structure Module defines the major structural elements for XHTML. These elements
effectively act as the basis for the content model of many XHTML family document types. The
elements and attributes included in this module are:

. Minimal
Elements Attributes Content Model
(Heading |
body | [COmmon [p-30 Block | Lis)?
head I18N][p.30] , id (ID][p.22]), profile (URIS|[p.26]) title

htm I18N][p.30] , id (ID][p.22]), version (CDATA][p.22]), xmins (UR] head. bod
[p.26] = "http:/www.w3.0rg/1999/xhtmI") ’ y

title 118N][p.30] , id (ID][p.22]) PCDATA

-30-

XHTML™ Modularization 1.1 5.2.2. Text Module

This module is the basic structural definition for XHTML content. The ht M element acts as the
root element for all XHTML Family Document Types.

Note that the value of the xmins attribute is defined to be "http://www.w3.0rg/1999/xhtml". Also
note that because the xmins attribute is treated specially by XML namespace-aware parsers
[p.246]], it is legal to have it present as an attribute of each element. However,
any time the xmins attribute is used in the context of an XHTML module, whether with a prefix or
not, the value of the attribute shall be the XHTML namespace defined here. See [Defining the]
[Namespace of a Modul€][p.52] for more on rules regarding namespace usage with XHTML
family modules.

Implementations: [DTD] [p.175] , XML Schema][p.82]
5.2.2. Text Module

This module defines all of the basic text container elements, attributes, and their content model:

-31-

5.2.2. Text Module

Element Attributes Minimal Content Model
abbr [p.30] (PCDATA | Inline)*
acronym |[Common][p.30] (PCDATA | Inline)*
address [p.30] (PCDATA | Inline)*
blockquote |[Common] [p.30] , cite (URI|[p.26]) | (Heading | Block | List)*
br [Coré] [p.30] EMPTY
cite [p.30] (PCDATA | Inline)*
code [Common][p.30] (PCDATA | Inline)*
dfn [Common] [p.30] (PCDATA | Inline)*
div [p.30] (PCDATA | Flow)*
em [Common][p.30] (PCDATA | Inline)*
hl [Common] [p.30] (PCDATA | Inline)*
h2 [Common] [p.30] (PCDATA | Inline)*
h3 [Common] [p.30] (PCDATA | Inline)*
h4 [Common][p.30] (PCDATA | Inline)*
h5 [Common] [p.30] (PCDATA | Inline)*
h6 [Common] [p.30] (PCDATA | Inline)*
kbd [p.30] (PCDATA | Inline)*
p [Common][p.30] (PCDATA | Inline)*
pre [Common] [p.30] (PCDATA | Inline)*
q [Common]|[p.30] , cite (URI|[p.26]) | (PCDATA | Inline)*
samp [Common][p.30] (PCDATA | Inline)*
span [p.30] (PCDATA | Inline)*
strong [Common][p.30] (PCDATA | Inline)*
var [Common] [p.30] (PCDATA | Inline)*

The minimal content model for this module defines some content sets:

-32-

XHTML™ Modularization 1.1

XHTML™ Modularization 1.1 5.2.3. Hypertext Module

Heading

hl|h2|h3|h4|h5]|h6
Block

address | blockquote | div | p | pre
Inline

abbr | acronym | br | cite | code | dfn | em | kbd | q | samp | span | strong | var
Flow
Heading | Block | Inline

Implementations: [DTD][p.177] , [XML Schema][p.83]
5.2.3. Hypertext Module

The Hypertext Module provides the element that is used to define hypertext links to other
resources. This module supports the following element and attributes:

Minimal
Element Attributes Content
Model

[p-30] , accesskey [p-22]), charset
[p.23]), href (URI|[p.26]), hreflang (CanguageCode] [p.23]), rel (PCDATA |
[p.24]), rev [p.24]), tabindex [p.25] | Inline - a)*
), type [p-23])

This module adds the a element to the Inline content set of the Text Module.

Implementations: [DTD] [p.178] , XML Schema[p.84]
5.2.4. List Module

As its name suggests, the List Module provides list-oriented elements. Specifically, the List
Module supports the following elements and attributes:

Elements Attributes Minimal Content Model
dl [Common] [p.30] | (dt | dd)+

dt [Common][p.30] | (PCDATA | Inline)*

dd [Common] [p.30] | (PCDATA | Flow)*

ol [€ommon] [p.30] | li+

ul [Common][p.30] | li+

l [Common] [p.30] | (PCDATA | Flow)*

-33-

5.3. Applet Module XHTML™ Modularization 1.1

This module also defines the content set List with the minimal content model (dI | ol | ul)+ and
adds this set to the Flow content set of the Text Module.

Implementations: [DTD][p.179] , XML Schema][p.85]

5.3. Applet Module

This module is deprecated. Similar functionality can be found in the|Object Module|[p.43] .

The Applet Module provides elements for referencing external applications. Specifically, the
Applet Module supports the following elements and attributes:

Minimal

Element Attributes Content Model

Core, alt* (Text[p.26]), archive (CDATA][p.22]), code (CDATA (PCDATA |
applet | [p.22]), codebase (URI|[p.26]), height* (Length|[p.23]), object Flow | param)*
(CDATA|[p.22]), width* (Cength] [p.23]) P

id (D] [p.22]), name* (CDATA][p.22]), type (ContentType][p.23]),
value (CDATAI[p.22]), valuetype ("data™ | "ref" | "object")

param EMPTY

When the Applet Module is used, it adds the appl et element to the Inline content set of the
Text Module.

Implementations: [DTD] [p.181] , XML Schema][p.86]
5.4. Text Extension Modules

This section defines a variety of additional textual markup modules.

5.4.1. Presentation Module

This module defines elements, attributes, and a minimal content model for simple
presentation-related markup:

-34-

XHTML™ Modularization 1.1 5.4.2. Edit Module

Element Attributes Minimal Content Model

b [Common] [p.30] | (PCDATA [Inline)*
big [Common] [p.30] | (PCDATA | Inline)*
hr [Common] [p.30] | EMPTY

i [Common] [p.30] | (PCDATA | Inline)*
small |[Common]|[p.30] | (PCDATA | Inline)*
sub [Common]|[p.30] | (PCDATA | Inline)*
sup [Common][p.30] | (PCDATA | Inline)*
tt [Common] [p.30] | (PCDATA | Inline)*

When this module is used, the hr element is added to the Block content set of the Text Module.
In addition, the b, big, i, small, sub, sup, andtt elements are added to the Inline
content set of the Text Module.

Implementations: [DTD] [p.182] , XML Schemal[p.87]
5.4.2. Edit Module

This module defines elements and attributes for use in editing-related markup:

Element Attributes Minimal Content
Model

del [p.30] , cite (URI|[p.26]), datetime (PCDATA | Elow)"

ins [p.30] , cite [URI [p.26]), datetime (PCDATA | Flow)"

When this module is used, the del and i ns elements are added to the Inline content set of the
Text Module.

Implementations: [DTD] [p.183] , XML Schema][p.88]
5.4.3. Bi-directional Text Module

The Bi-directional Text module defines an element that can be used to declare the bi-directional
rules for the element’s content.

-35-

5.5. Forms Modules XHTML™ Modularization 1.1

Elements Attributes Minimal Content Model

bdo [Corel[p.30] , dir* (“Itr" | “rtl") | (PCDATA | Inline)*

When this module is used, the bdo element is added to the Inline content set of the Text
Module. Selecting this module also adds the attribute di r* ("Itr™ | "rtl") tothe 118N
attribute collection.

Implementations: [DTD] [p.184] , XML Schema][p.88]

5.5. Forms Modules

5.5.1. Basic Forms Module

The Basic Forms Module provides the form-related elements, but only in a limited form.
Specifically, the Basic Forms Module supports the following elements, attributes, and minimal
content model:

Minimal
Elements Attributes Content
Model

[Common][p.30] , action* [URI|[p.26]), method ("get"* | "post"), (LTsﬁdEI,T(?cL)
enctype [p.23])

form)+

form

[p.30] , accesskey [p.22]), checked
("checked"), maxlength (Number[p.25]), name (CDATA|[p.22]),
input size (Number][p.25]), src (URI|[p.26]), tabindex [p.25]), |EMPTY

type ("text"* | "password" | "checkbox" | "radio” | "submit" | "reset" |

"hidden"), value [p.22])

label [Common|[p.30] , accesskey (Character][p.22]), for [IDREH [p.22]) I(rljlicr:wgérﬁalel)*

select [Common|[p.30] , multiple ("multiple"), name (CDATA][p.22]), size option+
[p-25]), tabindex [p-25]) P

option [Common]|[p.30] , selected ("selected"), value (CDATA][p.22]) PCDATA

[p.30] , accesskey [p.22]), cols*
textarea |[p.25]), name (CDATA][p.22]), rows* (Number][p.25]), tabindex PCDATA
[p.25])

This module defines two content sets:

-36-

XHTML™ Modularization 1.1 5.5.2. Forms Module

Form
form
Formctrl
input | label | select | textarea

When this module is used, it adds the Form content set to the Block content set and it adds the
Formctrl content set to the Inline content set as these are defined in the Text Module.

The Basic Forms Module is a subset of the Forms Module. These modules may not be used
together in a single document type.

Implementations: [DTD] [p.185] , XML Schema|[p.89]
5.5.2. Forms Module

The Forms Module provides all of the forms features found in HTML 4.0. Specifically, the Forms
Module supports:

-37-

5.5.2. Forms Module XHTML™ Modularization 1.1

Minimal
Content Model

[Common|[p.30] , accept (ContentTypes| [p.23]), accept-charset | (Heading | List |
form (Charsets|[p.23]), action* (URI|[p.26]), method ("get"* | "post”), | Block - form |
enctype [p.23]) fieldset)+

[p.30] , accept [p.23]), accesskey
[p.22]), alt [p.26]), checked ("checked"),
disabled ("disabled"), maxlength (Number][p.25]), name
input (CDATA|[p.22]), readonly ("readonly"), size (Number[p.25]), src | EMPTY
[p.26]), tabindex [p.25]), type ("text™ |
"password" | "checkbox" | "button” | "radio” | "submit” | "reset" |

“file" | "hidden" | "image"), value (CDATA|[p.22])

Elements Attributes

[Common][p.30] , disabled ("disabled"), multiple ("multiple”), (optgroup |
select | name (CDATA|[p.22]), size (Numbef [p.25]), tabindex Pigrouip

[0.25]) option)+
option [Common][p.30] , disabled ("disabled"), label (Texi[p.26]), PCDATA

selected ("selected"), value (CDATA|[p.22])

[p.30] , accesskey (Character][p.22]), cols*
textarea | [p.25]), disabled ("disabled"), name (CDATA][p.22]), readonly PCDATA

("readonly"), rows* [p.25]), tabindex [p.25])

(PCDATA |
[Common|[p.30] , accesskey (Character] [p.22]), disabled Heading | List |
button ("disabled"), name [p.22]), tabindex [p.25]), |Block - Form |
type ("button” | "submit"* | "reset"), value (CDATA][p.22]) Inline -
Formctrl)*
(PCDATA |

fieldset [p.30]

legend | Flow)*

label [Common][p.30] , accesskey (Character] [p.22]), for IDREHF [p.22] | (PCDATA |
) Inline - label)*
(PCDATA |
egend 0301, accesskey p22)) oo,
optgroup |[Common|[p.30], disabled ("disabled"), label* (Tex{[p.26]) option+

This module defines two content sets:

Form
form | fieldset
Formctrl
input | select | textarea | label | button

-38-

XHTML™ Modularization 1.1 5.6. Table Modules

When this module is used, it adds the Form content set to the Block content set and it adds the
Formctrl content set to the Inline content set as these are defined in the Text Module.

The Forms Module is a superset of the Basic Forms Module. These modules may not be used
together in a single document type.

Implementations: [p.189] , XML Schema|[p.92]

5.6. Table Modules
5.6.1. Basic Tables Module

The Basic Tables Module provides table-related elements, but only in a limited form.
Specifically, the Basic Tables Module supports:

Minimal
Elements Attributes Content

Model
caption | Common [p.30] (PCDATA|

table [Common][p.30] , width ([Cength] [p.23]), summary ([Tex{[p.26]) caption?, tr+
[Common|[p.30] , abbr [Texi|[p.26]), align ("left" | "center" | "right"),

d axis (CDATA][p.22]), colspan (Number [p.25]), headers ([IDREFS| | (PCDATA |
[p.22]), rowspan (Number][p.25]), scope ("row" | "col"), valign Flow - table)*

("top" | "middle" | "bottom")

[Common|[p.30] , abbr [Texi|[p.26]), align ("left" | "center" | "right"),
h axis (CDATA|[p.22]), colspan (Number [p.25]), headers (PCDATA |

[p.22]), rowspan (Number][p.25]), scope ("row" | "col"), valign Flow - table)*
("top" | "middle" | "bottom")

T [Common][p.30] , align ("left" | "center" | "right"), valign ("top" |
"middle" | "bottom")

(td | th)+

When this module is used, it adds the t abl e element to the Block content set as defined in the
Text Module.

The Basic Tables Module is a subset of the Tables Module. These modules may not be used
together in a single document type.

Implementations: [DTD] [p.194] , XML Schema][p.95]

-39-

5.6.2. Tables Module

5.6.2. Tables Module

As its name suggests, the Tables Module provides table-related elements that are better able to
be accessed by non-visual user agents. Specifically, the Tables Module supports the following
elements, attributes, and content model:

XHTML™ Modularization 1.1

Elements

Attributes

Minimal Content
Model

caption

[p-30]

(PCDATA |
Inline)*

table

[Common|[p.30] , border (Pixels| [p.26]), cellpadding
[p.23]), cellspacing (Cength][p.23]), frame ("void" | "above" |
"below" | "hsides" | "lhs" | "rhs" | "vsides" | "box" | "border"),
rules ("none" | "groups" | "rows" | "cols" | "all"), summary

[p-26]), width (Cength|[p.23])

caption?, (col* |
colgroup*), ((
thead?, tfoot?,
tbody+) | (tr+))

td

[Common|[p.30] , abbr ([Text[p.26]), align ("left" | "center" |
"right" | "justify" | "char"), axis (CDATA|[p.22]), char
[p.22]), charoff (Length][p.23]), colspan (Number[p.25]),
headers [p.22]), rowspan [p.25]), scope
("row" | "col" | "rowgroup" | "colgroup"), valign ("top" | "middle" |
"bottom" | "baseline™)

(PCDATA | Flow)*

th

[Common][p.30] , abbr (Texi|[p.26]), align ("left" | "center" |
"right" | "justify" | "char"), axis (CDATA][p.22]), char (Character]
[p.22]), charoff (Length| [p.23]), colspan (Number [p.25]),
headers [p.22]), rowspan [p.25]), scope
("row" | "col" | "rowgroup" | "colgroup"), valign ("top" | "middle" |
"bottom" | "baseline™)

(PCDATA | Flow)*

tr

[Common|[p.30], align ("left" | "center" | "right" | "justify" |
"char"), char [p.22]), charoff [p.23]), valign

("top" | "middle" | "bottom" | "baseline™)

(td | th)+

col

[Common][p.30] , align ("left" | "center" | "right" | "justify" |
“char"), char [p.22]), charoff [p.23]), span
(Number][p.25]), valign ("top" | "middle" | "bottom" |
"baseline"), width [p.25])

EMPTY

colgroup

[Common|[p.30] , align ("left" | "center" | "right" | "justify" |
"char"), char [p.22]), charoff [p.23]), span
(Number][p.25]), valign ("top" | "middle" | "bottom" |
"baseline"), width [p-25])

col*

-40 -

XHTML™ Modularization 1.1 5.7. Image Module

Minimal Content

Elements Attributes Model

[Common|[p.30], align ("left" | "center" | "right" | "justify" |
tbody "char"), char [p.22]), charoff [p.23]), valign | tr+

("top" | "middle" | "bottom" | "baseline™)

[Common|[p.30], align ("left" | "center" | "right" | "justify" |
thead "char"), char [p.22]), charoff [p.23]), valign | tr+

("top" | "middle" | "bottom" | "baseline™)

[Common][p.30] , align ("left" | "center" | "right" | "justify" |
tfoot "char"), char [p.22]), charoff [p.23]), valign | tr+
("top" | "middle" | "bottom" | "baseline™)

When this module is used, it adds the t abl e element to the Block content set of the Text
Module.

The Tables Module is a superset of the Basic Tables Module. These modules may not be used
together in a single document type.

Implementations: [DTD] [p.197] , XML Schemal[p.97]

5.7. Image Module

The Image Module provides basic image embedding, and may be used in some
implementations independently of client side image maps. The Image Module supports the
following element and attributes:

Minimal

Elements Attributes Content Model

img [Common [p.30] , alt* (Texq [p-26]), height (Cength [p-23]),

longdesc (UR] [p.26]), src* (ORI [p.26]), width p.23)) |EMPTY

When this module is used, it adds the i ng element to the Inline content set of the Text Module.

Implementations: [DTD] [p.203] , [XML Schema][p.100]

5.8. Client-side Image Map Module

The Client-side Image Map Module provides elements for client side image maps. It requires
that the Image Module (or another module that supports the i ng element) be included. The
Client-side Image Map Module supports the following elements:

-41 -

5.9. Server-side Image Map Module

XHTML™ Modularization 1.1

Minimal Content

Elements Attributes Model
coords (CDATA|[p.22]), shape ("rect" | "circle" | "poly" |
a& " " n/a
default™)
[p.30] , accesskey [p.22]), alt*
[p.26]), coords (CDATA][p.22]), href (URI|[p.26]), nohref
area " " - e arals . EMPTY
("nohref"), shape ("rect"* | "circle” | "poly" | "default"),
tabindex [p.25])
img& usemap [p.22]) n/a
Note: Only when the
input& usemap (IDREH[p.22]) Forms or Basic Forms
module is included
map | BN[p.30] EvENS[p.30], class (WTOREN [p.22]), id* | ((Heading | Block)|
P [p.22]), title [p.22]) area)+
Note: Only when the
object& |usemap [p.22]) object module is

included

When this module is used, the map element is added to the Inline content set of the Text

Module.

Implementations: [p.204] , XML Schema|[p.101]

5.9. Server-side Image Map Module

The Server-side Image Map Module provides support for image-selection and transmission of
selection coordinates. It requires that the Image Module (or another module that supports the
i mg element) be included. The Server-side Image Map Module supports the following attributes:

Elements | Attributes Minimal Content Notes
Model
: ismap
img& (ismap”) n/a
. ismap When the Forms or Basic Forms Module is
input& " n/a
("ismap") selected.

Implementations: [DTD] [p.206] , XML Schema] [p.102]

-42 -

XHTML™ Modularization 1.1 5.10. Object Module

5.10. Object Module

The Object Module provides elements for general-purpose object inclusion. Specifically, the
Object Module supports:

Minimal
Elements Attributes Content

Model

[Common][p.30] , archive (URIS|[p.26]), classid (URI][p.26]),
codebase [p.26]), codetype [p.23]), data (PCDATA |
object [p.26]), declare ("declare"), height (Cength][p.23]), name (CDATA| | Flow |

[p.22]), standby [p.26]), tabindex [p.25]), type param)*
[0.23]), width [p-23])

wam |9 @[p:221), name* COATAp.22]), ype COMEMTEE-23), | gyypry
P value [p.22]), valuetype ("data" | "ref" | "object")

When this module is used, it adds the obj ect element to the Inline content set of the Text
Module.

Implementations: [p.206] , XML Schema|[p.103]

5.11. Frames Module

As its name suggests, the Frames Module provides frame-related elements. Specifically, the
Frames Module supports:

_ Minimal
Elements Attributes Content Model

Corel|[p.30], cols ([MultiLength|[p.25]), rows ([MultiLength|[p.25] (frameset |
frameset frame)+
) i)

noframes?

[Core][p.30] , frameborder ("1" | "0"), longdesc ([URI] [p.26]),
frame marginheight ([Pixels| [p.26]), marginwidth ([Pixels] [p.26]), EMPTY
noresize ("noresize"), scrolling ("yes" | "no" | "auto™*), src (|URI

[p.26])

noframes [p.30] body

When this module is selected, the minimal content model of the ht 1 element of the Structure
Module is changed to (head, franeset).

-43-

5.12. Target Module XHTML™ Modularization 1.1

Implementation: [p.207]

5.12. Target Module

The content of a frame can specify destination targets for a selection. This module adds the

t ar get attribute to the area and link defining elements. This is defined as a separate module so
it can be included in documents that will be included in frames and documents that use the

t ar get feature to open a new window.

Elements Attributes Notes
a& target ([CDATA|[p.23])

area& target ([CDATA|[p.23]) | When the Client-side Image Map Module is selected.
base& target ([CDATA][p.23]) | When the Base Module is selected.

link& target ([CDATA][p.23]) | When the Link Module is selected.

form& target ([CDATA][p.23]) | When the Basic Forms or Forms module is selected.

Implementation: [p.209]

5.13. Iframe Module

The Iframe Module defines an element for the definition of inline frames. The element and
attribute included in this module are:

Minimal
Elements Attributes Content
Model

[Core][p.30] , frameborder ("1" | "0"), height (Length| [p.23]),
longdesc (URI|[p.26]), marginheight (Pixels| [p.26]), marginwidth | (PCDATA |
(Pixels|[p.26]), scrolling ("yes" | "no" | "auto™), src (URI|[p.26]), Flow)*

width (Length] [p.23])

iframe

When this module is used, the i f r ame element is added to the Inline content set as defined by
the Text Module.

Implementations: [p.210] , XML Schema|[p.106]

-44 -

XHTML™ Modularization 1.1 5.14. Intrinsic Events Module

5.14. Intrinsic Events Module

Intrinsic events are attributes that are used in conjunction with elements that can have specific
events occur when certain actions are performed by the user. The attributes indicated in the
following table are added to the attribute set for their respective elements only when the
modules defining those elements are selected. Note also that selection of this module defines
the attribute collection [Events|[p.30] as described above. Attributes defined by this module are:

Elements Attributes Notes

a& onblur (Scripf [p.26]), onfocus (Script [p.26])

When the Client-side Image
Map Module is also used

area& onblur (Script [p.26]), onfocus [p.26])

When the Frames Module is
also used.

frameset& | onload (Scripf|[p.26]), onunload (Script [p.26])

When the Basic Forms or
Forms Module is used

form& onreset [p.26]), onsubmit [p.26])

body& onload (Scripf [p.26]), onunload (Scripf [p.26])

When the Forms Module is
used

label& onblur (Scripf [p.26]), onfocus [p.26])

onblur (Scripf] [p.26]), onchange [p.26]), | When the Basic Forms or

Inputé: onfocus [p.26]), onselect [p.26]) Forms Module is used

celect& onblur (Scripf] [p.26]), onchange [p.26]), | When the Basic Forms or
onfocus [p.26]) Forms Module is used

textaread, onblur (Scripf [p.26]), onchange (Scripf[p.26]), | When the Basic Forms or
onfocus [p.26]), onselect (Scripi [p.26]) Forms Module is used

When the Forms Module is
used

button& | onblur (Scripf [p.26]), onfocus [p.26])

Implementations: [p.211] , XML Schema|[p.107]

5.15. Metainformation Module

The Metainformation Module defines an element that describes information within the
declarative portion of a document (in XHTML within the head element). This module includes the
following element:

- 45 -

5.16. Scripting Module XHTML™ Modularization 1.1

Minimal
Elements Attributes Content
Model
[p.30] , content* [p.22]), http-equiv
meta [p.22]), id (ID][p.22]), name (NMTOKEN][p.22]), scheme EMPTY
(CDATA[p.22])

When this module is selected, the met a element is added to the content model of the head
element as defined in the Structure Module.

Implementations: [p.214] , XML Schema|[p.108]

5.16. Scripting Module

The Scripting Module defines elements that are used to contain information pertaining to

executable scripts or the lack of support for executable scripts. Elements and attributes included
in this module are:

Elements Attributes Minimal Content
Model
noscript | [Common] [p.30] gj(‘jjlg'jg | List|

charset [p.23]), defer ("defer"), src (URI [p.26]), PCDATA
type* [p.23])

script

When this module is used, the scri pt and noscri pt elements are added to the Block and
Inline content sets of the Text Module. In addition, the scri pt element is added to the content
model of the head element defined in the Structure Module.

Implementations: [p.215] , XML Schemal[p.109]

5.17. Style Sheet Module

The Style Sheet Module defines an element to be used when declaring internal style sheets.
The element and attributes defined by this module are:

Elements Attributes Minimal Content
Model

stvle [18N][p.30] , id (ID][p.22]), media (MediaDesd [p.25]), title PCDATA
y [0.26]), type* [0.23])

- 46 -

XHTML™ Modularization 1.1 5.18. Style Attribute Module

When this module is used, it adds the st yl e element to the content model of the head element
of the Structure Module.

Implementations: [p.216] , XML Schema|[p.110]

5.18. Style Attribute Module

The Style Attribute Module defines the st yl e attribute. When this module is selected, it
activates the[Style Attribute Collection|[p.30] .

Implementations: [p.217] ,[XML Schema|[p.110]

5.19. Link Module

The Link Module defines an element that can be used to define links to external resources.
These resources are often used to augment the user agent’s ability to process the associated
XHTML document. The element and attributes included in this module are:

Minimal
Elements Attributes Content
Model
[p-30] , charset [p.23]), href [p-26]),
link hreflang (CanguageCode][p.23]), media (MediaDesd] [p.25]), rel EMPTY
(LinkTypes|[p.24]), rev [p.24]), type
[p.23])

When this module is used, it adds the | i nk element to the content model of the head element
as defined in the Structure Module.

Implementations: [p.217] ,[XML Schemal[p.111]

5.20. Base Module

The Base Module defines an element that can be used to define a base URI against which
relative URIs in the document will be resolved. The element and attribute included in this module
are:

Elements Attributes Minimal Content Model

base href* (URI [p.26]), id (ID][p.22]) | EMPTY

When this module is used, it adds the base element to the content model of the head element
of the Structure Module.

-47 -

5.21. Name ldentification Module XHTML™ Modularization 1.1

Implementations: [p.218] , XML Schema|[p.111]

5.21. Name ldentification Module
This module is deprecated.

The Name Identification Module defines the attribute name for a collection of elements. The
nane attribute was used historically to identify certain elements within HTML documents. While
the nane attribute has been supplanted by the i d attribute in all of these elements, there may
be instances where markup languages will wish to support both. Such markup languages may
do so by including this module.

Note that by including this module, both the nanme and i d attributes are defined for the elements
indicated. In this situation, if the nane attribute is defined for an element, the i d attribute must
also be defined. Further, these attributes must both have the same value. Finally, when
documents that use this attribute are served as Internet Media Type "text/xml" or
"application/xml", the value of the nane attribute on these elements shall not be used as a
fragment identifier.

Elements Attributes Notes
a& name (CDATA|[p.22])

applet& | name (CDATA|[p.22]) | When the Applet Module is selected.
form& name (CDATA|[p.22]) | When the Forms or Basic Forms Module is selected.

frame& name (CDATA|[p.22]) | When the Frames Module is selected.

iframe& | name (CDATA|[p.22]) | When the Iframe Module is selected.
img& name (CDATA|[p.22]) | When the Image Module is selected.

map& name (CDATA|[p.22]) | When the Client-side Image Map Module is selected.

Implementations: [p.219] , (XML Schemal[p.112]

5.22. Legacy Module
This module is deprecated.

The Legacy Module defines elements and attributes that were already deprecated in previous
versions of HTML and XHTML, and remain deprecated in XHTML Modularization. Markup
language authors should no longer use these elements and attributes.

Note: This module is not intended to reproduce all of the deprecated elements, attributes, and
content models. Just those that were thought to be of maximal use at the time this specification
was written.

-48 -

XHTML™ Modularization 1.1

5.22. Legacy Module

The following table defines the elements and attributes that are defined when the Legacy
Module is selected.

Elements

Attributes

Minimal Content

Model
basefont | 20" (Color[p.23]), face (CDATA|[p.22]), id (ID][p.22]), size EMPTY
(CDATA[p.22])
center [Common][p.30] (PCDATA | Flow)*
dir [Common|[p.30] , compact ("compact”) (li)+
font [p-30] , [18N][p-30] , color [p-23]), face (PCDATA | Inline)*
[p.22]), size (CDATA|[p.22])
isindex |[Core][p.30] , [I8N][p.30] , prompt (Tex{[p.26]) EMPTY
menu [Common|[p.30] , compact ("compact”) (l)+
s [Common][p.30] (PCDATA | Inline)*
strike [Common|[p.30] (PCDATA | Inline)*
u [Common|[p.30] (PCDATA | Inline)*

The following table shows additional attributes for elements defined elsewhere when the Legacy
module is selected.

[p.26])

Elements Attributes Notes
alink (Color [p.23]), background (URI|[p.26]), bgcolor

body& [p.23]), link [p.23]), text [p-23]),
vlink [p.23])

br& clear ("left" | "all" | "right" | "none"*)

caption& | align ("top" | "bottom" | "left" | "right™)

div& align ("left" | "center" | "right" | "justify")

di& compact ("compact"), type (CDATA|[p.22])

h1l-h6& align ("left" | "center" | "right" | "justify")

hr& align ("left" | "center” | "right" | "justify"), noshade
("noshade"), size [p.26]), width [p.23]),
align ("top" | "middle" | "bottom™ | "left" | "right"), border

img& [p.26]), hspace [p.26]), vspace

-49 -

5.22. Legacy Module

XHTML™ Modularization 1.1

Elements Attributes Notes
When the Basic Forms or
input& align ("top" | "middle” | "bottom™ | "left" | "right") Forms Module is
selected.
legend& | align ("left” | "center” | "right" | "justify") When the Forms Module
9 g g J is selected.
li& type [0.22]), value [p-25])
ol& compact ("compact"), start [p.25]), type
([CDATA|[p.22])
p& align ("left" | "center" | "right", "justify")
pre& width [p.25])
script& language (CDATA|[p.22]) When the Scripting
P guag P module is selected.
table& align ("left" | "center" | "right"), bgcolor (Color [p.23]) When the Tables module
is selected.
When the Tables module
tr& bgcolor [p.23]) is selected.
th& bgcolor (Color [p.23]), height (Length][p.23]) nowrap | When the Tables module
("nowrap"), width [p.23]) is selected.
& bgcolor (Color [p.23]), height (Length|[p.23]) nowrap | When the Tables module
("nowrap"), width [p.23]) is selected.
ul& compact ("compact"), type (CDATA|[p.22])

Implementations: [p.221] ,[XML Schema|[p.113]

-50-

XHTML™ Modularization 1.1 A. Building Schema Modules

A. Building Schema Modules
This appendix is normative.

XHTML modules are implemented as XML Schemas. When these XML Schemas are
assembled in a specific manner (described in[Developing Schemas with defined and extended |
[p.55]), the resulting Schema is a representation of a complete document type. This
representation can then be used for validation of instances of the document type.

The key to combining these schema components into a meaningful, cohesive schema is the
rules used to define the individual XML Schemas. This section defines those rules. When these
rules are followed, markup language authors can be confident that their modules will interface
cleanly with other XHTML-compatible modules.

Modules conforming to these rules also need to satisfy the conformance requirements defined in
XHTML Family Module Conformance in order to be called XHTML Family Modules.

A.1l. Named Content Models

This specification classifies named content model into categories and names them consistently
using the following suffixes

.content
model group definitions use the suffix . cont ent when they are used to represent the
content model of an element type.

.class
model group definitions use the suffix . cl ass when they are used to represent elements of
the same class.

.mix
model group definitions use the suffix . m x when they are used to represent a collection of
element types from different classes.

.extra
model group definitions use the suffix . ext r a when they are used to extend other groups
above.

.export
model group definitions add the suffix . export when they are to be used by a host
language as the basis for extending the related content model (e.g., xht ml . Fl ow. m x
could have an xht ml . Fl ow. mi x. export that defines a collection of elements that must
be included in a redefinition of the xht ml . Fl ow. m x by a host language.

type
named complex type definitions use the suffix . t ype when they are used to represent type
of an element. Types usually include the . attl i st and . cont ent components.

.attlist
attribute groups use the suffix . att | i st when they are used to represent the attributes for
a specific element.

-51-

A.2. Defining the Namespace of a Module XHTML™ Modularization 1.1

.attrib
attribute groups use the suffix . at t ri b when they are used to represent a group of tokens
representing one or more complete attribute specifications within an .attlist declaration.

For example, in HTML 4, the %l ock; parameter entity is defined to represent the
heterogeneous collection of element types that are block-level elements. In this specification, the
corollary named content model is xht ni . Bl ock. mi x.

When defining named content model in the classes defined here, modules should scope the
names of the model group definitions and attribute groups by using unique prefixes (this
recommendation uses the prefix xht ml . . For example, the content model for the element

myel emrent in the module mymodule could be named nynodul e. nyel enent . cont ent .
Other schemes are possible. Regardless of the scheme used, module authors should strive to
ensure that named content model they define are named uniquely so that they do not collide
with other named content model and so that the interface methods for the module are obvious to
its users.

A.2. Defining the Namespace of a Module

XHTML requires that the elements and attributes declared in a module be within a defined XML
namespace [XMLNAMES] [p.246] . The identification of this namespace is an arbitrary URI.
XHTML does not require that a module declare its target namespace using the

t ar get nanespace attribute. XHTML Modularization using XML Schema has adopted a "late
binding" approach to associating with a namespace. This permits the development of so-called
"chameleon” modules, where the elements and attributes of a module can be in more than one
namespace.

A.2.1. Global and Local Element Declarations

While XML Schema allows an the definition of global and local element declarations, to be
compatible with DTD definitions of XHTML Modularization module implementations must not
declare local elements.

A.2.2. Global and Local Attribute Declarations

While the approach defined here permits the definition of global as well as local attribute
declarations, schema authors should consider the consequences of such definitions on an
document instance. Global attributes must always be explicitly prefixed in a instance document
by declaring a namespace prefix xm ns: pr ef i x, while local attributes depending on the
schema implementation may be explicitly prefixed.

-52-

XHTML™ Modularization 1.1 A.3. Importing External Namespace Schema Components

A.3. Importing External Namespace Schema Components

An XML Schema provides definitions that belong to a given target namespace. A schema must
use i nport element to include components from an XML Schema that uses a different target
namespace. i mport element in XML Schema requires an namespace attribute and a optional
schemalocation attribute. Multiple modules (included in a document type) importing
components from the same external namespace but providing different schema location URI
values will result in invalid driver schema. To avoid such issues modularization requires that
modules importing external schemas must not provide a schemalocation attribute so that a
document type’s driver file may import these schemas with the schemalocation attribute.

A.4. Datatype Definitions and Namespaces

While the elements and attributes of a module should NOT be in a namespace until they are
used by a markup language, the datatypes that a module relies upon may need to be. This is
especially important if the datatypes are to be shared with other markup languages. If your
module has datatypes that you want to share with other modules, you should define a
namespace for those datatypes, place the datatype definitions in a separate "module" and bind
that module to the namespace. In XHTML Modularization, for example, we use the namespace
http://ww. w3. or g/ 1999/ xht nl / dat at ypes/ .

A.5. Content Model Redefinitions

Quite often modules change the content model of elements defined by other modules. For
example, the XHTML Events module adds event attributes to elements defined by the forms
module. It is also possible that multiple modules may change the content model of a single
element defined by a third module, for example both XHTML Events Module and XHTML Image
Map module add attributes to elements in form module.

XML Schemas allows for changes to a declared content model using the r edef i ne element.
While XML Schema supports r edef i ne element that redefines the named content model and
type definition, XML Schema does not directly support redefinition of an element or attribute
declaration.

To support element content model redefinitions, all content models are defined with a . cont ent
identifier. This identifier can be easily redefined when creating a driver module.

e Schema module implementations must define the content model of an element using
named complex types schema component . t ype. Further the named schema types must
be defined in terms of named content model . content and . attli st

e redefine in XML Schema by default includes the referenced schema. Since the
instantiation of a module is decided by document type’s driver file, the module
implementations must not directly redefine the content model of other modules in its
implementation.

® Modules that expect to have their content model defined or extended by the host language
must define a special . export group for each element or content class that needs to have

-53-

A.5. Content Model Redefinitions XHTML™ Modularization 1.1

its content model extended. Host languages will use this . export group as the basis for
the content model of an element, extending it with whatever additional content is
appropriate. elements that

-54-

XHTML™ Modularization 1.1 B. Developing Schema with defined and extended modules

B. Developing Schema with defined and extended
modules

This appendix is informative.

The primary purpose of defining XHTML modules and a general modularization methodology is
to ease the development of document types that are based upon XHTML using XML Schemas.
These document types may extend XHTML by integrating additional capabilities (e.g.,
[p.246]), or they may define a subset of XHTML for use in a specialized device. This section
describes the techniques that document type designers must use in order to take advantage of
the XML Schema implementation of this modularization architecture. It does this by applying the
XHTML Modularization techniques in progressively more complex ways, culminating in the
creation of a complete document type from disparate modules.

Note that in no case do these examples require the modification of the XHTML-provided module
file entities themselves. The XHTML module file entities are completely parameterized, so that it
is possible through separate module definitions and driver files to customize the definition and
the content model of each element and each element’s hierarchy.

Finally, remember that most users of XHTML are not expected to be XML Schema authors. XML
Schema authors are generally people who are defining specialized markup that will improve the
readability, simplify the rendering of a document, or ease machine-processing of documents, or
they are client designers that need to define the specialized markup language for their specific
client. Consider these cases:

® An organization is providing subscriber’s information via a Web interface. The organization
stores its subscriber information in an XML-based database. One way to report that
information out from the database to the Web is to embed the XML records from the
database directly in the XHTML document. While it is possible to merely embed the records,
the organization could define a module that describes the records, attach that module to an
XHTML implementation, and thereby create a complete markup language for the pages.
The organization can then access the data within the new elements via the Document
Object Model [DOM] [p.245] , validate the documents, provide style definitions for the
elements that cascade using Cascading Style Sheets [CSS2] [p.245] , etc. By taking the
time to define the structure of their data and create a markup language using the processes
defined in this section, the organization can realize the full benefits of XML.

® An Internet client developer is designing a specialized device. That device will only support
a subset of XHTML, and the devices will always access the Internet via a proxy server that
validates content before passing it on to the client (to minimize error handling on the client).
In order to ensure that the content is valid, the developer creates a markup language that is
a subset of XHTML using the processes defined in this section. They then use the new
language definition in their proxy server and in their devices, and also make the language
definition available to content developers so that developers can validate their content
before making it available. By performing a few simple steps, the client developer can use
the architecture defined in this document to greatly ease their language development cost

-55-

B.1. Defining additional attributes XHTML™ Modularization 1.1

and ensure that they are fully supporting the subset of XHTML that they choose to include.

B.1. Defining additional attributes

In some cases, an extension to XHTML can be as simple as additional attributes. Schema
authors should an provide the attribute definitions for each attribute, for example:

<xs:attributeGoup nane="nyattrs.attrib">
<xs:attribute name="nyattribute" type="xs:string"/>
</ xs:attributeG oup>

would declare an attribute "myattr" and attribute group "myattrs.attrib” in the target namespace
of the schema ("xs" is the prefix for XML Schema Namespace). Authors should note that the
attribute is created as local attribute (as part attribute group). Alternatively, declaring an attribute
by placing the attribute declaration as direct child of schena element would create a Global
attribute (and document instances would have to use qualified attribute name such as
xlink:show). For a discussion of qualified names and Namespace prefixes, see [Defining the]
[Namespace of a Modul€][p.52] .

To add this attribute to the content model of an element, the attribute group (that makes the
content model of the element) would need to be redefined (by the document type’s driver file) to
include the new attribute. for example:

<xs: redefine schemaLocati on="xhtm - basi c10. xsd" >
<xs:attributeGoup name="a.attlist">
<xs:attributeGoup ref="a.attlist"/>
<xs:attributeGoup ref="nym :nyattrs.attrib"/>
</ xs:attributeG oup>
</ xs: redefine>

The target namespace of the attribute group definition is not XHTML namespace and must be
contained in a separate XML schema.

Naturally, adding an attribute to a schema does not mean that any new behavior is defined for
arbitrary clients. However, a content developer could use an extra attribute to store information
that is accessed by associated scripts via the Document Object Model (for example).

B.2. Defining additional elements

Defining additional elements is similar to attributes, but a typical XHTML module would define
the element as a global element (as a direct child of schena element). Schema authors should
first provide the element declaration for each element:

<l-- In the nym -nodul e-1. xsd -->
<xs:group nane="nmnyel enent.content">
<xs: choi ce>
<xs: el enent nanme="ot herel enent"/>
</ xs: choi ce>
</ xs: group>

-56 -

XHTML™ Modularization 1.1 B.3. Defining the content model for a collection of modules

<xs:attributeG oup nane="nyel emrent.attlist">
<xs:attribute nane="nyattribute" type="xs:string"/>
</ xs:attributeG oup>

<xs: conpl exType name="nyel enent.type" ni xed="true">
<xs: choi ce>
<xs:group ref="mnyel enent.content” m nCccurs="0" naxCccurs="1"/>
</ xs: choi ce>
<xs:attributeGoup ref="nyelenment.attlist"/>
</ xs: conpl exType>

<xs: el ement name="nyel enent" type="nyel enent.type"/>

The target namespace of "myelement" declared is not XHTML namespace, hence must be
contained in a separate XML Schema. "xs" is the prefix for XML Schema Namespace. After the
elements are defined, they need to be integrated into the content model. Strategies for
integrating new elements or sets of elements into the content model are addressed in the next
section.

B.3. Defining the content model for a collection of modules

Since the content model of XHTML modules is fully parameterized using named content models,
Schema authors may modify the content model for every element in every module. The details
of the schema module interface are defined in[Building Schema Modules|[p.51] . Basically there
are two ways to approach this modification:

1. Re-define the named content model, . cont ent , for each element.
2. Define one or more of the global named content model entities to include the element in
those named model definitions (normally via the named content model, . ext r as).

The strategy taken will depend upon the nature of the modules being combined and the nature
of the elements being integrated. The remainder of this section describes techniques for
integrating two different classes of modules.

B.3.1. Integrating a stand-alone module into XHTML

When a module (and remember, a module can be a collection of other modules) contains
elements that only reference each other in their content model, it is said to be "internally
complete”. As such, the module can be used on its own; (for example, you could define a
schema that was just that module, and use one of its elements as the root element). Integrating
such a module into XHTML is a three step process:

1. Decide what element(s) can be thought of as the root(s) of the new module.
2. Decide where these elements need to attach in the XHTML content tree.

3. Then, for each attachment point in the content tree, add the root element(s) to the content
definition for the XHTML elements.

-57-

B.4. Creating a new Document Type XHTML™ Modularization 1.1

Consider attaching the elements defined [above] [p.56] . In that example, the element
nyel ement is the root. To attach this element under the i ng element, and only the i ng
element, of XHTML, the following redefinition would work:

<xs: redefine schemalLocati on="xhtnl - basi c10. xsd" >
<xs:group nane="ing.content">
<xs: choi ce>
<xs:group ref="ing.content"/>
<xs: el enment ref="nym :nyel enent"/>
</ xs: choi ce>
</ xs: group>
</ xs: redefine>

Such redefinition must not be included in the module implementation, but instead provided as
part of the document type’s driver implementation. A schema defined with this content model
would allow a document like the following fragment:

<ing src="http://exanpl es.conlimage" alt="alt-text">
<mym : nyel ement >This is content of a |locally defined el enent</nynl:nyel enent >

It is important to note that normally the i ng element has a content model of EMPTY. By adding
myelement to that content model, we are really just replacing EMPTY with nyel enent . In the
case of other elements that already have content models defined, the addition of an element
would require the restating of the existing content model in addition to myel enent .

B.3.2. Mixing a new module throughout the modules in XHTML

Extending the example above, to attach this module everywhere that the %I ow. ni x content
model group is permitted, would require something like the following in the schema that defines
the document model of the document type:

<xs: redefine schemaLocation="xhtm 11. xsd" >
<xs:group nane="M sc. extra">
<xs: choi ce>
<xs:group ref="Msc.extra"/>
<xs: el ement ref="nym :nyel enent"/>
</ xs: choi ce>
</ xs: group>
</ xs: redefine>

Since the Misc.extra content model class is used in the content model the named model
Misc.class, and that named model is used throughout the XHTML modules, the new module
would become available throughout an extended XHTML document type.

B.4. Creating a new Document Type

So far the examples in this section have described the methods of extending XHTML and
XHTML's content model. Once this is done, the next step is to collect the modules that comprise
the Document Type into a schema driver and schema file that provides the content model

-58 -

XHTML™ Modularization 1.1 B.4.1. Creating a simple Document Type

redefinitions of included modules, incorporating the new definitions so that they override and
augment the basic XHTML definitions as appropriate.

B.4.1. Creating a simple Document Type

Using the trivial example above, it is possible to define a new schema that uses and extends the
XHTML modules pretty easily. First, define the new elements and their content model in a
module:

<?xm version="1.0" encodi ng="UTF-8"?>

<xs:schema xm ns: xs="http://ww. w3. org/ 2001/ XM_Schena"
t ar get Nanespace="http://ww. exanpl e. com xm ns/ si npl end 1"
xm ns="http://ww. exanpl e. conl xm ns/ si npl em 1" >

<xs:annot ati on>
<xs: docunent ati on>
This is the XM. Schenma nodul e for nodul e Sinpl eMo
$ld: sinmplem -nodul e-1. xsd,v 1.5 2006/ 06/ 12 22: 38: 55 ahby Exp $
</ xs: docunent ati on>
<xs: docunent ati on source="http://ww. w3. or g/ Mar kUp/ SCHEMA/ xht ml - copyri ght - 1. xsd"/ >
</ xs:annot ati on>

<xs:attributeGoup name="xhtm . Conmon. attrib">
<xs:attribute name="id" type="xs:1D'/>
</xs:attributeG oup>

<xs:group nane="ot herel ement.content">
<Xs:sequence/ >
</ Xxs: group>

<xs:attributeGoup nane="ot herel enent.attlist">
<xs:attributeGoup ref="xhtm .Comon.attrib"/>
</xs:attributeG oup>

<xs: conpl exType nane="ot herel enent.type">
<xs:group ref="otherel ement.content"/>
<xs:attributeGoup ref="otherelenment.attlist"/>
</ xs: conpl exType>

<xs: el ement nane="ot herel ement" type="otherel ement.type"/>

<xs:group nane="el emrent.content">
<xs: choi ce>
<xs:elenent ref="otherelement" m nCccurs="0" maxQccurs="unbounded"/>
</ xs: choi ce>
</ xs: group>

<xs:attributeGoup nane="el enent.attlist">
<xs:attributeGoup ref="xhtm .Common. attrib"/>
</ xs:attributeG oup>

<xs:conpl exType nane="el ement . type" mni xed="true">
<xs:group ref="el emrent.content"/>
<xs:attributeGoup ref="elenent.attlist"/>

</ xs: conpl exType>

-50-

B.4.1. Creating a simple Document Type XHTML™ Modularization 1.1

<xs: el ement nane="el ement" type="el enent.type"/>

<I-- Note: dobal attribute -->
<xs:attribute name="nyattr" type="xs:string"/>

</ xs: schema>

Now, define the schema driver for the new language:

<?xm version="1. 0" encodi ng="UTF-8"?>
<xs:schema xm ns: xs="http://ww. w3. org/ 2001/ XM_Schena"
tar get Nanespace="http://ww. w3. or g/ 1999/ xht m "
xm ns: sinmpl em ="htt p: // www. exanpl e. com xm ns/ si npl end 1"
xm ns="http://ww.w3. org/ 1999/ xhtm "
bl ockDef aul t ="#al | ">

<xs:annot ati on>
<xs: docunent ati on>
This is the XML Schema Driver for new
Docunent Type XHTM. Basic 1.0 + SinpleM
$ld: simplem -1_0.xsd,v 1.5 2006/ 06/12 22:38:55 ahby Exp $
</ xs: docunent ati on>
<xs: docunent ati on source="http://ww. w3. or g/ Mar kUp/ SCHEMA/ xht ml - copyri ght - 1. xsd"/ >
</ xs:annot ati on>

<xs:inport nanespace="http://ww. exanpl e.com xm ns/si npl emd 1"
schemalLocat i on="si npl en - nodul e- 1. xsd"/ >

<xs: redefine schemaLocati on="http://ww. w3. or g/ Mar kUp/ SCHEMY xht m - basi c10. xsd" >
<xs:group name="xhtm .M sc. cl ass">
<xs: choi ce>
<xs:group ref="xhtm .M sc.class"/>
<xs:elenment ref="sinplen:elenment"/>
</ xs: choi ce>
</ xs: group>

<xs:attributeGoup name="xhtm .ing.attlist">
<xs:attributeGoup ref="xhtm .ing.attlist"/>
<xs:attribute ref="sinplem:nyattr"/>
</xs:attributeG oup>
</ xs: redefine>

</ xs: schema>

A schema defined with this content model would allow a document like the following:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<htm xm ns="http://ww.w3. org/ 1999/ xhtm "
xm ns: sinplem ="http://ww. exanpl e. com xm ns/ si npl eml 1"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://wwmv. w3. org/ 1999/ xht M sinplem -1_0. xsd">
<head>
<title>An exanpl e using defaults</title>
</ head>
<body>
<p>This is content in the XHTM. nanespace</ p>
<sinmpl em : el enent >

-60 -

XHTML™ Modularization 1.1 B.4.2. Creating a Language by extending XHTML

This is content in the SinpleM nanmespace.
<si nmpl em : ot herel ement/ >

</ si npl em : el emrent >

<p>
<ing src="nissing" alt="Mssing inmage" sinplenm:nyattr="value"/>

</ p>

</ body>
</htm >

B.4.2. Creating a Language by extending XHTML

Next, there is the situation where a complete, additional, and complex module is added to
XHTML (or to a subset of XHTML). In essence, this is the same as in the example above, the
only difference being that the module being added is incorporated in the schema by creating an
new document model schema.

One such complex module is the Schema for [MATHML] [p.246] . In order to combine MathML
and XHTML into a single Schema, an author would just decide where MathML content should be
legal in the document, and add the MathML root element to the content model at that point. First,
define a new document model that instantiates the MathML Schema and connects it to the
content XHTML content model by redefining the XHTML content model. Providing a redefinition
of the XHTML content model by implication includes the XHTML content model in the new
document content model :

<?xm version="1.0" encodi ng="UTF-8" ?>

<xs:schena target Namespace="http://ww. w3. or g/ 1999/ xht mi "
xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns="http://ww. w3. or g/ 1999/ xht m "
xm ns: mat h="http://ww. w3. or g/ 1998/ Mat h/ Mat hM." >

<xs:inport nanespace="http://ww. w3. org/ 1998/ Mat h/ Mat hM."/ >

<xs: redefine schemalLocati on="http://ww. w3. or g/ Mar kUp/ SCHEMA xht M 11- nodel - 1. xsd" >
<xs:group name="xhtm .| nl Speci al . cl ass">
<xs: choi ce>
<xs:group ref="xhtm .Inl Speci al . cl ass"/>
<xs:element ref="path: math"/>
</ xs: choi ce>
</ xs: group>
</ xs: redefine>

</ xs: schema>

Next, define a Schema driver that includes our new document content model with XHTML1.1
modules and MathML module (for example):

<?xm version="1. 0" encodi ng="UTF-8"?>
<xs:schema xm ns: xs="http://ww:. w3. org/ 2001/ XM_Schena"
t ar get Nanespace="http://ww. w3. or g/ 1999/ xht m "
xm ns: si nmpl em ="ht t p: // www. exanpl e. com xm ns/ si npl enmd 1"
xm ns="http://ww.w3. org/ 1999/ xhtm "
bl ockDef aul t ="#al | ">

-61 -

B.4.3. Creating a Language by removing and replacing XHTML modules XHTML™ Modularization 1.1

<xs:inport nanespace="http://ww. w3. or g/ XM./ 1998/ nanespace”
schemalLocati on="http://ww. w3. or g/ 2001/ xm . xsd"/ >

<xs:inport nanespace="http://ww:. w3. org/ 1998/ Mat h/ Mat hM."
schermaLocati on="htt p: // ww. w3. or g/ Mat h/ XM_LSchema/ mat hm 2/ mat hml 2. xsd"/ >

<xs:include schemaLocation="http://wwm. w3. or g/ Mar kUp/ SCHEMA/ xht ml 11- nodul es- 1. xsd"/ >
<xs:include schemaLocation="mat hm - nodel - 1. xsd"/ >

</ xs: schema>

B.4.3. Creating a Language by removing and replacing XHTML
modules

Another way in which Schema authors may use XHTML modules is to define a Schema that is a
subset of an XHTML family document type (because, for example, they are building devices or
software that only supports a subset of XHTML). To do this simple create a Schema driver that
does not include the relevant modules. Schema author should note that r edef i ne in schema
by default includes all the content model of the referenced schema, authors should also not
include any redefinitions of modules that they do not wish to include. The basic steps to follow
are:

1. Take an XHTML family Schema as the basis of the new document type (e.g. XHTML 1.1).

2. Select the modules to remove from that Schema.

3. Physically, remove i ncl ude and r edef i ne schema elements that include any non
relevant modules from the driver file. Also references to schema components from such
modules used in redefinitions of other modules must be deleted.

4. Introduce some new modules

B.4.4. Creating a the new Document Type

Finally, some Schema authors may wish to start from scratch, using the XHTML Modularization
framework as a toolkit for building a new markup language. This language must be made up of
the minimal, required modules from XHTML. It may also contain other XHTML-defined modules
or any other module that the author wishes to employ. In this example, we will take the XHTML
required modules, add some XHTML-defined modules, and also add in the module we defined

above.

The first step is to define a module that defines the elements and attributes using the provided
template.

<?xm version="1.0" encodi ng="UTF-8"?>

<xs:schema xm ns: xs="http://ww. w3. org/ 2001/ XM_Schena"
t ar get Nanespace="http://ww. exanpl e. com xm ns/ mymi "
xm ns: xhtm ="http://ww. w3. org/ 1999/ xht m "
xm ns="http://ww. exanpl e. con? xm ns/ nym ">

<Xs:annot ati on>
<xs: docunent ati on>

-62-

XHTML™ Modularization 1.1 B.4.4. Creating a the new Document Type

This is XML Schema tenplate for MLM. nodul e
$1d: nyml - nmodul e-1. xsd, v 1.4 2005/10/20 14:14:40 ahby Exp $
</ xs: docunent ati on>
<xs: docunent ati on source="http://ww. w3. or g/ Mar kUp/ SCHEMA/ xht m - copyri ght - 1. xsd"/ >
</ xs: annot ati on>

<xs:annot ati on>
<xs: docunent ati on>
My El ements Modul e
+ nyel enent
+ nyot her el ement

Thi s nobdul e has no purpose other than to provide structure for sone
PCDATA content.
</ xs: docunent ati on>
</ xs: annot ati on>

<xs:inport nanespace="http://ww.w3.org/ 1999/ xhtm "/ >

<xs:attributeGoup nanme="nymnl . nyotherel enent.attlist">
<xs:attributeGoup ref="xhtm :xhtm .d obal.common. attrib"/>
</ xs:attributeG oup>

<xs: group name="nynl . nyot herel ement. content">
<xs: sequence/ >
</ xs: group>

<xs: conpl exType nane="nym . myot herel enent.type">
<xs:group ref="nym . myot herel enent. content"/>
<xs:attributeGoup ref="nmym .nyotherelenment.attlist"/>
</ xs: conpl exType>

<xs: el ement nane="nyot herel enent" type="nynl . nyotherel enent.type"/>

<xs:group name="nynl . nyel emrent. content">
<xs: choi ce>
<xs: el enent ref="nyotherel ement"/>
</ xs: choi ce>
</ xs: group>

<xs:attributeGoup name="nyel ement.attlist">
<xs:attribute nane="nyattribute" type="xs:string"/>
<xs:attributeGoup ref="xhtn :d obal.conmon. attrib"/>
</xs:attributeG oup>

<xs:conpl exType name="nyn . nyel enent.type" m xed="true">
<xs: choi ce>
<xs:group ref="nym . nyel enent.content” m nCccurs="0" naxCccurs="1"/>
</ xs: choi ce>
<xs:attributeGoup ref="nym .nyelenent.attlist"/>
</ xs: conpl exType>

<xs: el ement nane="nyel enent" type="nym . nyel enent.type"/>

<I-- Note: G obal attribute -->
<xs:attribute name="nyattr" type="xs:string"/>

</ xs: schema>

-63-

B.4.4. Creating a the new Document Type XHTML™ Modularization 1.1

Now, build a content model description that hooks the new elements and attributes into the other
XHTML elements. The following example is patterned after the XHTML Basic content model, but
is a complete, free-standing content model module:

<?xm version="1.0" encodi ng="UTF-8"?>

<xs:schema xm ns: xs="http://ww. w3. org/ 2001/ XM_Schena"
tar get Nanespace="http://ww. w3. org/ 1999/ xht m "
xm ns="http://ww. w3. org/ 1999/ xht m "
xm ns: nym ="http:// ww. exanpl e. conl xm ns/ nym ">

<xs:annot ati on>
<xs: docunent ati on>
This is the XML Schena nodul e of comon content nodels for MM
$1d: nmym -nodel -1. xsd, v 1.6 2005/ 10/ 20 14: 14: 40 ahby Exp $
</ xs: docunent ati on>
<xs: docunent ati on source="http://ww. w3. or g/ Mar kUp/ SCHEMA/ xht ml - copyri ght - 1. xsd"/ >
</ xs: annot ati on>

<xs:annot ati on>
<xs: docunent ati on>
XHTML + MyM. Docunent Model

Thi s nodul e descri bes the groupings of elements/attributes that nmake up
common content nodels for XHTM. el enents.

XHTML has foll owi ng basic content nodels:

Inline. mx; character-level elenents

Bl ock. m x; bl ock-1i ke el enents, eg., paragraphs and lists
Fl ow. mi x; any block or inline elenents

HeadOpt s. mi X; Head El enents

InlinePre.mx; Speci al class for pre content nodel

I nli neNoAnchor. m x; Content nodel for Anchor

Any groups declared in this nodul e nay be used
to create el enent content nodels, but the above are
consi dered 'global’ (insofar as that term applies here).

XHTML has the following Attribute G oups
Core.extra.attrib
118n.extra.attrib
Common. extra

The above attribute G oups are considered G obal

</ xs: docunent ati on>
</ Xxs:annot ati on>

<xs:inport nanespace="http://ww. exanpl e. con? xm ns/ nym "/ >

<xs:attributeGoup name="xhtm .| 18n.extra.attrib">
<xs:annot ati on>
<xs: docunent ati on>
Extended |118n attribute
</ xs: docunent ati on>
</ xs: annot at i on>
</xs:attributeG oup>

-64 -

XHTML™ Modularization 1.1 B.4.4. Creating a the new Document Type

<xs:attributeGoup nane="xhtm .Core.extra.attrib">
<xs:annot ati on>
<xs: docurent ati on>
Ext ended Core Attributes
</ xs: docunent ati on>
</ xs: annot ati on>
</ xs:attributeG oup>

<xs:attributeG oup nane="xhtm . Conmon. extra">
<xs:annot ati on>
<xs: docunent ati on>
Ext ended Commobn Attri butes
</ xs: docunent ati on>
</ xs: annot at i on>
</xs:attributeG oup>

<xs:attributeGoup nane="xhtm .d obal .core.extra.attrib">
<xs:annot ati on>
<xs: docunent ati on>
Ext ended d obal Core Attributes
</ xs: docunent ati on>
</ xs: annot ati on>
</xs:attributeG oup>

<xs:attributeGoup name="xhtm .d obal .|18n.extra.attrib">
<Xs:annot ati on>
<xs: docunent ati on>
Ext ended d obal 118n attributes
</ xs: docunent ati on>
</ xs: annot at i on>
</xs:attributeG oup>

<xs:attributeGoup nane="xhtnl . d obal . Cormon. extra">
<xs:annot ati on>
<xs: docunent ati on>
Ext ended d obal Conmon Attri butes
</ xs: docunent ati on>
</ xs: annot at i on>
</ xs:attributeG oup>

<xs:group nanme="xhtm . HeadOpts. m x" >
<xs: choi ce>
<xs:elenment ref="neta"/>
<xs:elenment ref="1ink"/>
<xs:el ement ref="object"/>
</ xs: choi ce>
</ xs: group>

<l--
These el ements are neither block nor inline, and can
essentially be used anywhere in the docunent body.
-->
<xs:group nanme="xhtm .M sc. cl ass">
<xs: choi ce>
<xs:elenent ref="nym : nyel ement”/>
</ xs: choi ce>
</ xs: group>

-65-

B.4.4. Creating a the new Document Type XHTML™ Modularization 1.1

<l-- Inline Elements -->
<xs: group name="xhtm .Inl Struct.class">
<xs: choi ce>
<xs:element ref="br"/>
<xs: el enment ref="span"/>
</ xs: choi ce>
</ xs: group>

<xs: group narme="xhtnl . Inl Phras. cl ass">
<xs: choi ce>
<xs:elenent ref="enl/>
<xs: el enent ref="strong"/>
<xs:elenment ref="dfn"/>
<xs: el enment ref="code"/>
<xs:el ement ref="samp"/>
<xs: el ement ref="kbd"/>
<xs:elenment ref="var"/>
<xs:elenment ref="cite"/>
<xs: el ement ref="abbr"/>
<xs: el enent ref="acronyni/>
<xs:elenent ref="q"/>
</ xs: choi ce>
</ xs: group>

<xs:group name="xhtm .Inl Pres.cl ass">
<xs: choi ce/ >
</ Xxs: group>

<xs:group name="xhtm .|18n. cl ass">
<xs: sequence/ >
</ xs: group>

<xs: group name="xhtm . Anchor. cl ass" >
<Xs:sequence>
<xs:element ref="a"/>
</ xs: sequence>
</ xs: group>

<xs: group name="xhtnl .| nl Speci al .cl ass">
<xs: choi ce>
<xs:elenment ref="inmg"/>
<xs: el enent ref="object"/>
</ xs: choi ce>
</ xs: group>

<xs:group nanme="xhtm .Inl Form cl ass">
<xs: choi ce>
<xs:elenent ref="input"/>
<xs:elenment ref="select"/>
<xs:elenment ref="textarea"/>
<xs:elenment ref="label"/>
</ xs: choi ce>
</ Xs: group>

<xs:group name="xhtm .Inline.extra">

<xs: choi ce/ >
</ xs: group>

- 66 -

XHTML™ Modularization 1.1 B.4.4. Creating a the new Document Type

<l--xs:group name="Ruby. cl ass">
<xs: sequence/ >
</ xs: group-->

<l--
Inline.class includes all inline elenents
used as a conponent in mxes

-->

<xs: group name="xhtm .Inline.class">
<xs: choi ce>
<xs:group ref="xhtm .InlStruct.class"/>
<xs:group ref="xhtn .Inl Phras.class"/>
<xs:group ref="xhtm . Anchor. cl ass"/>
<xs:group ref="xhtm .Inl Speci al . cl ass"/>
<xs:group ref="xhtm .Inl Formclass"/>
<xs:group ref="xhtm .Inline. extra"/>
</ xs: choi ce>
</ xs: group>

<l--
InlinePre.cl ass
Used as a component in pre node
-->
<xs: group name="xhtm . InlinePre.mx">
<xs: choi ce>
<xs:group ref="xhtm .Inl Struct.class"/>
<xs:group ref="xhtnl .InlPhras.class"/>
<xs:group ref="xhtm . Anchor. cl ass"/>
<xs:group ref="xhtm .Inline. extra"/>
</ xs: choi ce>
</ xs: group>

<l--
I nl NoAnchor. cl ass includes all non-anchor inlines
used as a conponent in mxes
-->
<xs: group name="xhtmnl .| nl NoAnchor. cl ass">
<xs: choi ce>
<xs:group ref="xhtm .Inl Struct.class"/>
<xs:group ref="xhtm .InlPhras.class"/>
<xs:group ref="xhtm .Inl Speci al . cl ass"/>
<xs:group ref="xhtm .Inl Formclass"/>
<xs:group ref="xhtm .Inline. extra"/>
</ xs: choi ce>
</ xs: group>

<l--
I nl NoAnchor. m x includes all non-anchor inlines
-->
<xs: group nanme="xhtm .| nl NoAnchor. m x">
<xs: choi ce>
<xs:group ref="xhtm .Inl NoAnchor. cl ass"/ >
<xs:group ref="xhtm .M sc.class"/>
</ xs: choi ce>
</ xs: group>

<l -

-67 -

B.4.4. Creating a the new Document Type XHTML™ Modularization 1.1

Inline.mx includes all inline elements, including Msc.class
-->
<xs: group name="xhtm .Inline.mx">
<xs: choi ce>
<xs:group ref="xhtm .Inline.class"/>
<xs:group ref="xhtm .M sc.class"/>
</ xs: choi ce>
</ xs: group>

<l--
In the HTML 4 DTD, heading and list elenents were included
in the block group. The Headi ng. cl ass and
Li st.class groups nust now be included explicitly
on el enent decl arations where desired.
-->
<xs:group name="xhtm . Headi ng. cl ass">
<xs: choi ce>
<xs:elenment ref="hl"/>
<xs:elenment ref="h2"/>
<xs:element ref="h3"/>
<xs:elenent ref="h4"/>
<xs:element ref="h5"/>
<xs:elenent ref="h6"/>
</ xs: choi ce>
</ xs: group>

<xs: group name="xhtmnl . List.class">
<xs: choi ce>
<xs:elenment ref="ul"/>
<xs:elenment ref="ol"/>
<xs:elenment ref="dl"/>
</ xs: choi ce>
</ xs: group>

<xs:group name="xhtmnl . Tabl e. cl ass">
<xs: choi ce>
<xs:elenent ref="table"/>
</ xs: choi ce>
</ xs: group>

<xs:group name="xhtm . Form cl ass">
<xs: choi ce>
<xs:elenment ref="form'/>
</ xs: choi ce>
</ xs: group>

<xs: group nanme="xhtm . Bl kStruct. cl ass">
<xs: choi ce>
<xs:elenent ref="p"/>
<xs:element ref="div"/>
</ xs: choi ce>
</ xs: group>

<xs:group nanme="xhtm . Bl kPhras. cl ass">
<xs: choi ce>
<xs:elenment ref="pre"/>
<xs: el enent ref="bl ockquote"/>
<xs: el enent ref="address"/>

-68 -

XHTML™ Modularization 1.1 B.4.4. Creating a the new Document Type

</ xs: choi ce>
</ xs: group>

<xs:group name="xhtm . Bl kPres. cl ass">
<xs: choi ce/ >
</ xs: group>

<xs: group name="xhtnl . Bl kSpeci al . cl ass">
<xs: choi ce>
<xs:group ref="xhtm . Tabl e. cl ass"/>
<xs:group ref="xhtm .Formclass"/>
</ xs: choi ce>
</ xs: group>

<xs:group name="xhtm . Bl ock. extra">
<xs: choi ce/ >
</ xs: group>

<l--
Bl ock. cl ass includes all block el enents,
used as an conponent in mxes
-->
<xs: group name="xhtnl . Bl ock. cl ass">
<xs: choi ce>
<xs:group ref="xhtm .Bl kStruct.class"/>
<xs:group ref="xhtm . Bl kPhras. cl ass"/>
<xs:group ref="xhtm . Bl kSpeci al . cl ass"/>
<xs:group ref="xhtm . Bl ock.extra"/>
</ xs: choi ce>
</ Xxs: group>

<l--
Bl ock. mi x includes all block el enments plus %M sc. cl ass;
-->
<xs:group nanme="xhtm . Bl ock. m x">
<xs: choi ce>
<xs:group ref="xhtnl . Heading.class"/>
<xs:group ref="xhtm .List.class"/>
<xs:group ref="xhtm . Bl ock.class"/>
<xs:group ref="xhtm .M sc.class"/>
</ xs: choi ce>
</ xs: group>

<l--
Al Content Elenents

Flow. nm x includes all text content, block and inline
Note that the "any" el enent included here allows us
to add data from any other namespace, a necessity
for conmpound docunent creation

Not e however that it is not possible to add

to any head | evel elenent w thout further

nodi fication. To add RDF netadata to the head

of a docunent, nodify the structure nodul e
-->
<xs:group name="xhtm . Fl ow. m x">

<xs: choi ce>

<xs:group ref="xhtnl . Heading.class"/>

-69 -

B.4.4. Creating a the new Document Type

<xs:group ref="xhtn .
<xs:group ref="xhtnl .
<xs:group ref="xhtn .
<xs:group ref="xhtm .

</ xs: choi ce>
</ xs: group>

Li st.class"/>

Bl ock. cl ass"/ >
Inline.class"/>
M sc. cl ass"/ >

<xs: group narme="xhtn . Fl owNoTabl e. m x">

<xs: choi ce>

<xs:group ref="xhtm .
<xs:group ref="xhtnl .
<xs:group ref="xhtm .
<xs:group ref="xhtn .
<xs:group ref="xhtm .
<xs:group ref="xhtm .
<xs:group ref="xhtm .

</ xs: choi ce>
</ xs: group>

<l -

Headi ng. cl ass"/ >
List.class"/>

Bl kStruct.cl ass"/>
Bl kPhr as. cl ass"/ >
Form cl ass"/ >
Inline.class"/>

M sc. cl ass"/>

Bl kNoForm mi x i ncludes all non-form bl ock el enents,

plus M sc. cl ass
-->

<xs:group name="xhtm . Bl kNoFor m nmi x" >

<xs: choi ce>

<xs:group ref="xhtnl .
<xs:group ref="xhtn .
<xs:group ref="xhtm .
<xs:group ref="xhtn .
<xs:group ref="xhtm .
<xs:group ref="xhtm .
<xs:group ref="xhtnl.

</ xs: choi ce>
</ xs: group>

Headi ng. cl ass"/ >
List.class"/>

Bl kStruct.cl ass"/>
Bl kPhr as. cl ass"/ >
Bl kPres. cl ass"/ >
Tabl e. cl ass"/ >

M sc. cl ass"/>

<xs: el ement nane="htm " type="xhtm .htm.type"/>

</ xs: schema>

XHTML™ Modularization 1.1

Finally, build a driver schema. For ease of extensibility this driver schema is split into two XML
Schema files. The first file of driver schema collects (includes) all the modules needed for the
new document type. This schema also provides the required redefinitions of schema
components in included modules.(Note: in XML Schema r edef i ne includes the schema

referenced.

<?xml version="1.0" encodi ng="UTF-8"?>

<xs:schena target Nanespace="http://wwmv. w3. or g/ 1999/ xht ni "
xm ns: xs="http://ww. w3. or g/ 2001/ XM_Scherma"
xm ns="http://ww. w3. org/ 1999/ xht m "
xm ns: mym ="http://ww. exanpl e. cond xm ns/ mym "

bl ockDef aul t ="#al | " >

<xs:annotation>
<xs: docunent ati on>

This schenma includes all nmodules for XHTM. Basic 1.0 + MyM_

Docunent Type.

$1d: nynl-nodul es-1. xsd,v 1.3 2004/01/15 06: 01: 40 speruvem Exp $

</ xs: document ati on>

<xs: docunent ati on source="http://ww. w3. or g/ Mar kUp/ SCHEMA/ xht m - copyri ght - 1. xsd"/ >

</ xs:annot ati on>

<xs:annot ati on>

-70-

XHTML™ Modularization 1.1 B.4.4. Creating a the new Document Type

<xs:docunent at i on>
This schenm includes (with conponent redefinitions as required) all
modul es for XHTM. Basic 1.0 + MyM. Docunent Type
This Docunent Type includes the follow ng Mdul es

XHTM. Core nodul es (Required for XHTM. Fami |y Conformance)
text

hyper t ext

lists

structure

+ o+ + +

Gt her XHTML nodul es
Li nk

Met a

Base

| mage

oj ect

Par am

Basic forms
Basic tables

4+t

Ot her Modul es
+ MyM. Modul e
</ xs: docunent ati on>
</ xs:annot ati on>

<xs:include schemalLocation="http://ww. w3. or g/ Mar kUp/ SCHEMA xht mi - f r anewor k- 1. xsd" >
<xs:annot ati on>
<xs: docunent ati on>
Schema Franmewor k Conponent Mbdul es:
+ notations
+ datatypes
+ common attributes
+ character entities
</ xs: docunent ati on>
<xs: docunentation
source="http://ww. w3. org/ TR/ xht m - nodul ari zat i on/ abst ract _npdul es. ht M #s_commonatts"/>
</ xs: annot ati on>
</ xs:include>

<xs:include schemalLocation="http://ww.w3. org/ Mar kUp/ SCHEMA/ xht m -t ext- 1. xsd" >
<xs:annot ati on>
<xs: docunent ati on>
Text nodul e

The Text nodul e includes declarations for all core
text container elenents and their attributes.

bl ock phrasal

bl ock structural
inline phrasal
inline structural

+ o+ + o+

El ements defined here:
* address, blockquote, pre, hl, h2, h3, h4, h5, hé

* div, p
* abbr, acronym cite, code, dfn, em kbd, g, sanp, strong, var
* br, span

</ xs: docunent ati on>
<xs: docunentati on
source="http://ww. w3. or g/ TR/ 2001/ REC- xht il - npdul ari zat i on- 20010410/ abst r act _nodul es. ht nl #s_t ext nodul e"/ >
</ xs:annot ati on>
</ xs:incl ude>

<xs:include schemalLocation="http://ww. w3. or g/ Mar kUp/ SCHEMA xht nl - hyper t ext - 1. xsd" >
<xs:annot ati on>
<xs: docunent ati on>
Hypertext nodul e

El ements defined here:
* a
</ xs: docunent ati on>
<xs: docunentation
source="http://ww. w3. or g/ TR/ 2001/ REC- xht ml - npdul ari zat i on- 20010410/ abst r act _nodul es. ht ml #s_hyper t ext nodul e"/ >
</ xs:annot ati on>
</ xs:incl ude>

<xs:include schemalLocation="http://wwmv. w3. or g/ Mar kUp/ SCHEMA/ xht m - | i st- 1. xsd" >

<xs:annot ati on>
<xs: docunent ati on>

-71-

B.4.4. Creating a the new Document Type

Li sts nodul e

El ements defined here:
* dt, dd, dl, ol, ul, Ii
</ xs: document ati on>
<xs: docunent ati on

XHTML™ Modularization 1.1

source="http://ww. w3. or g/ TR/ 2001/ REC- xht ml - npdul ari zat i on- 20010410/ abst r act _nodul es. ht i #s_| i st nodul e"/ >

</ xs:annot ati on>
</ xs:incl ude>

<xs:redefine schemaLocation="http://ww.w3. or g/ Mar kUp/ SCHEMA/ xht i - struct - 1. xsd" >
<xs:annot ati on>
<xs: docunent ati on>
Structural nodul e

El ements defined here:
* title, head, body, htn
</ xs: docurent ati on>
<xs: docunent ati on

source="http://ww. w3. or g/ TR/ 2001/ REC- xht ml - npdul ari zat i on- 20010410/ abst r act _nodul es. ht ml #s_st ruct ur enodul e"/ >

</ xs:annot ati on>
<xs: group nane="head. content">
<xs:annotation>
<xs: docunent ati on>
Redefinition by Base nodul e
</ xs: docunent ati on>
</ xs:annot ati on>
<xs:sequence>
<xs:group ref="HeadOpts. m x" m nCccurs="0" maxCccurs="unbounded"/>
<xs: choi ce>
<xs:sequence>
<xs:group ref="head. content"/>
<xs:group ref="HeadOpts. m x" m nCccurs="0" maxQccur s="unbounded"/>
<xs:sequence m nCQccurs="0">
<xs: el enent ref="base"/>
<xs:group ref="HeadOpts. m x" m nCccurs="0" nmaxQccur s="unbounded"/>
</ xs: sequence>
</ xs: sequence>
<xs: sequence>
<xs: el ement ref="base"/>
<xs:group ref="HeadOpts. m x" m nQccurs="0" maxQccur s="unbounded"/>
<xs:element ref="title"/>
<xs:group ref="HeadOpts.m x" m nQccurs="0" maxQccur s="unbounded"/>
</ xs: sequence>
</ xs: choi ce>
</ xs: sequence>
</ xs: group>

<xs:attributeG oup nanme="version.attrib">
<xs:annotation>
<xs: docunentati on>
Redefinition by the XHTM.11 Markup (for value of version attr)
</ xs: document ati on>
</ xs:annot ati on>

<xs:attribute name="version" type="FPI" fixed="-//WBC//DID XHTM. Basic 1.0 + MyM.//EN'/>

</ xs:attribut eG oup>
</ xs: redefine>

<xs:include schemaLocation="http://ww.w3. or g/ Mar kUp/ SCHEMA/ xht m - 1 i nk- 1. xsd" >
<xs:annot ation>
<xs: docunent ati on>
Li nk nodul e

El ements defined here:
* |ink
</ xs: docurent ati on>
<xs: docunent ati on

source="http://ww. w3. or g/ TR/ xht ni - nodul ari zati on/ abstract _nodul es. ht M #s_| i nknodul e"/ >

</ xs:annot ati on>
</ xs:include>

<xs:include schemalLocation="http://ww.w3. or g/ Mar kUp/ SCHEMA/ xht m - net a- 1. xsd" >
<xs:annot ati on>
<xs: docunent ati on>
Meta nodul e

El ements defined here:
* meta

</ xs: docurent ati on>

<xs: docunent ati on

-72-

XHTML™ Modularization 1.1 B.4.4. Creating a the new Document Type

source="http://ww. w3. org/ TR/ xht m - nodul ari zati on/ abst ract _nodul es. ht M #s_net anodul e"/ >

</ xs:annot ati on>
</ xs:include>

<xs:include schemalLocation="http://wwmv. w3. or g/ Mar kUp/ SCHEMA/ xht m - base- 1. xsd" >
<xs:annot ati on>
<xs: docunent ati on>
Base nodul e

El ements defined here:
* base
</ xs: docunent ati on>
<xs: docunentation
source="http://ww. w3. org/ TR/ xht m - nodul ari zati on/ abst ract _nodul es. ht M #s_basenodul e"/ >
</ xs: annot ati on>
</ xs:incl ude>

<xs:redefine schemaLocation="http://ww.w3. or g/ Mar kUp/ SCHEMA/ xht nl - i mage- 1. xsd" >
<xs:annot ati on>
<xs: docunent ati on>
| mage nodul e

El ements defined here:
* ing
</ xs: docunent ati on>
<xs: docunentation
source="http://ww. w3. org/ TR/ xht m - nodul ari zati on/ abst ract _nodul es. ht nl #s_i nagenodul e"/ >
</ xs:annot ati on>
<xs:attributeGoup name="ing.attlist">
<xs:attributeGoup ref="ing.attlist"/>
<xs:attribute ref="nynm :nyattr"/>
</xs:attribut eG oup>
</ xs:redefine>

<xs:include schemalLocation="http://wwmv. w3. or g/ Mar kUp/ SCHEMA/ xht m - obj ect - 1. xsd" >
<xs:annotation>
<xs: docunentati on>
Obj ect nodul e

El ements defined here:
* obj ect
</ xs: docurent ati on>
<xs: docunent ati on
source="http://ww. w3. or g/ TR/ xht m - nodul ari zati on/ abst r act _nodul es. ht nl #s_obj ect nodul e"/ >
</ xs:annot ati on>
</ xs:incl ude>

<xs:include schemalLocation="http://ww. w3. or g/ Mar kUp/ SCHEMA xht nf - param 1. xsd" >
<xs:annotation>
<xs: docunentati on>
Par am nodul e

El ements defined here:
* param
</ xs: docurent ati on>
</ xs:annot ati on>
</ xs:include>

<xs:include schenaLocation="http://ww.w3. org/ Mar kUp/ SCHEMA/ xht nl - basi c-form 1. xsd" >
<xs:annot ati on>
<xs: docunent ati on>
Basi ¢ Forms nodul e

Note that this mobdule is not used in XHTM. 1.1. It is designed
for use with XHTM. Basic

El ements defined here:
* form label, input, select, option, textarea

</ xs: docunent ati on>

<xs:docunentation
source="http://ww. w3. org/ TR/ xht m - nodul ari zat i on/ abst ract _npdul es. ht m #s_sf or msnodul e"/ >

</ xs:annot ati on>
</ xs:incl ude>

<xs:include schemalLocation="http://ww.w3. org/ Mar kUp/ SCHEMA/ xht nl - basi c-t abl e- 1. xsd" >

<xs:annot ati on>
<xs: docunentati on>
Basi ¢ Tabl es nmodul e

-73-

B.4.4. Creating a the new Document Type XHTML™ Modularization 1.1

Note that this module is not used in XHTM. It is designed
for use with XHTM. Basic

El ements defined here:
* table, caption, tr, th, td
</ xs: docurent ati on>
<xs: docunentation
source="http://ww. w3. or g/ TR/ xht nl - nrodul ari zati on/ abst ract _nodul es. ht nl #s_si npl et abl enodul e"/ >
</ xs:annot ati on>
</ xs:incl ude>

<xs:import nanespace="http://wwm. exanpl e. com’ xm ns/ nmyni "
schenaLocat i on="nyni - rodul e- 1. xsd" >
<xs:annot ati on>
<xs: docunent ati on>
M/M. Modul e

El ements defined here:
* nyel ement, nyot herel enent
</ xs: docunent ati on>
</ xs:annot ati on>
</ xs:inport>

</ xs: schena>

The second file of the driver schema builds new document type based the content model and
modules. Also this schema provides the schemalLocation for all imported namespaces
(namespaces imported by the included modules)

<?xm version="1.0" encodi ng="UTF-8"?>

<xs:schemra target Namespace="http://ww. w3. or g/ 1999/ xht m "
xm ns: xs="http://ww. w3. org/ 2001/ XM_Schema"
xm ns="http://ww. w3. org/ 1999/ xht m "
bl ockDef aul t ="#al | ">

<xs:annot ati on>
<xs: docunent ati on>
This is the XM. Schema driver for XHTM. Basic 1.0.
Pl ease use this nanespace for XHTM. el enents:
"http://ww. w3. org/ 1999/ xht m "

$ld: mym -1_0.xsd,v 1.5 2005/ 04/25 18:53: 05 ahby Exp $
</ xs: docunent ati on>
</ xs: annot ati on>

<xXs:annot ati on>
<xs:docunent ati on>

This is XHTM., a reformulation of HTM. as a nodul ar XM. application
The Extensi bl e Hyper Text Markup Language (XHTM.)
Copyright © 1998-2004 World Wde Wb Consortium
(Massachusetts Institute of Technol ogy, Institut National de
Recherche en Informatique et en Autonatique, Keio University).
Al Rights Reserved.

Perm ssion to use, copy, nodify and distribute the XHTM. Schena

nmodul es and their acconpanyi ng xs: docunentation for any purpose

and without fee is hereby granted in perpetuity, provided that the above
copyright notice and this paragraph appear in all copies.

The copyright hol ders nmake no representation about the suitability of
these XML Schema nodul es for any purpose

They are provided "as is" without expressed or inplied warranty.
</ xs: docunent ati on>

-74 -

XHTML™ Modularization 1.1 B.4.4. Creating a the new Document Type

</ xs: annot at i on>

<xs:annot ati on>
<xs: docunent ati on>
This is the Schema Driver file for
XHTML Basic 1.0 + MyM. Docunent Type

Thi s schena incl udes
+ inports external schemas (xmnl.xsd)
+ refedines (and include)s schema nodul es for XHTM
Basic 1.0 + MyM. Docunent Type.
+ includes Schenma for Naned content nodel for the
XHTML Basic 1.0 + MyM. Docunent Type

Thi s Document Type includes the follow ng Mdul es

XHTM. Core nodul es (Required for XHTML Fanily Conformance)
t ext

hypert ext

lists

structure

+ + + +

Q her XHTM. nodul es
Li nk

Met a

Base

| mage

hj ect

Par am

Basic forns
Basi c tabl es

+ + + 4+ + + + 4+

Q her Mdul es
+ MyML Modul e

</ xs: docunent ati on>
</ xs: annot at i on>

<xs:inport nanespace="http://ww. w3. or g/ XM./ 1998/ nanespace"
schemalLocation="http://ww. w3. org/ 2001/ xm . xsd" >
<XS:annot ati on>
<xs: docunent ati on>
This import brings in the XML nanespace attributes
The XML attributes are used by various nodul es
</ xs: