
 [p. ??]

Cascading Style Sheets Level 2 Revision 1
(CSS 2.1) Specification

W3C Candidate Recommendation 23 April 2009
This version:

http://www.w3.org/TR/2009/CR-CSS2-20090423 [p. ??]
Latest version:

http://www.w3.org/TR/CSS2 [p. ??]
Previous versions:

http://www.w3.org/TR/2007/CR-CSS21-20070719 [p. ??]
http://www.w3.org/TR/2008/REC-CSS2-20080411/ [p. ??]

Editors:
Bert Bos [p. ??] <bert @w3.org>
Tantek Çelik [p. ??] <tantek @cs.stanford.edu>
Ian Hickson [p. ??] <ian @hixie.ch>
Håkon Wium Lie [p. ??] <howcome @opera.com>

Please refer to the errata [p. ??] for this document.

This document is also available in these non-normative formats: plain text [p. ??] ,
gzip’ed tar file [p. ??] , zip file [p. ??] , gzip’ed PostScript [p. ??] , PDF [p. ??] . See
also translations [p. ??] .

Copyright [p. ??] © 2009 W3C [p. ??] ® (MIT [p. ??] , ERCIM [p. ??] , Keio [p. ??]
), All Rights Reserved. W3C liability [p. ??] , trademark [p. ??] and document use
[p. ??] rules apply.

Abstract
This specification defines Cascading Style Sheets, level 2 revision 1 (CSS 2.1).
CSS 2.1 is a style sheet language that allows authors and users to attach style (e.g.,
fonts and spacing) to structured documents (e.g., HTML documents and XML
applications). By separating the presentation style of documents from the content of
documents, CSS 2.1 simplifies Web authoring and site maintenance.

CSS 2.1 builds on CSS2 [CSS2] which builds on CSS1 [CSS1]. It supports
media-specific style sheets so that authors may tailor the presentation of their
documents to visual browsers, aural devices, printers, braille devices, handheld
devices, etc. It also supports content positioning, table layout, features for
internationalization and some properties related to user interface.

123 Apr 2009 15:57

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

CSS 2.1 corrects a few errors in CSS2 (the most important being a new definition
of the height/width of absolutely positioned elements, more influence for HTML’s
"style" attribute and a new calculation of the ’clip’ property), and adds a few highly
requested features which have already been widely implemented. But most of all
CSS 2.1 represents a "snapshot" of CSS usage: it consists of all CSS features that
are implemented interoperably at the date of publication of the Recommendation.

CSS 2.1 is derived from and is intended to replace CSS2. Some parts of CSS2
are unchanged in CSS 2.1, some parts have been altered, and some parts removed.
The removed portions may be used in a future CSS3 specification. Future specs
should refer to CSS 2.1 (unless they need features from CSS2 which have been
dropped in CSS 2.1, and then they should only reference CSS2 for those features,
or preferably reference such feature(s) in the respective CSS3 Module that includes
those feature(s)).

Status of this document
This section describes the status of this document at the time of its publication.
Other documents may supersede this document. A list of current W3C publications
and the latest revision of this technical report can be found in the W3C technical
reports index at http://www.w3.org/TR/ [p. ??] .

This is a W3C Candidate Recommendation, which means the specification has
been widely reviewed and W3C recommends that it be implemented. It will remain
Candidate Recommendation at least until 23 July 2009. [p. 3] A test suite and an
implementations report will be provided before the document becomes a Proposed
Recommendation.

Publication as a Candidate Recommendation does not imply endorsement by the
W3C Membership. This is a draft document and may be updated, replaced or
obsoleted by other documents at any time. It is inappropriate to cite this document
as other than work in progress.

The (archived [p. ??]) public mailing list www-style@w3.org [p. ??] (see
instructions [p. ??]) is preferred for discussion of this specification. When sending
e-mail, please put the text “[CSS21]” in the subject, preferably like this: “[CSS21]
…summary of comment…”

This document incorporates errata [p. ??] resulting from implementation
experience since the previous publication. Some of the corrections remove
ambiguities or change the behavior in edge cases, and therefore it is expected that
another Working Draft will (briefly) precede the Proposed Recommendation, in order
to invite more review.

This document was produced by the CSS Working Group [p. ??] (part of the Style
Activity [p. ??]).

This document was produced by a group operating under the 5 February 2004
W3C Patent Policy [p. ??] . W3C maintains a public list of any patent disclosures
[p. ??] made in connection with the deliverables of the group; that page also includes

23 Apr 2009 15:572

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

instructions for disclosing a patent. An individual who has actual knowledge of a
patent which the individual believes contains Essential Claim(s) [p. ??] must disclose
the information in accordance with section 6 of the W3C Patent Policy [p. ??] .

Candidate Recommendation Exit Criteria
For this specification to exit the CR stage, the following conditions must be met:

1. There must be at least two interoperable implementations for every feature. For
the purposes of this criterion, we define the following terms:

feature

A section or subsection of the specification.

interoperable

passing the respective test cases in the test suite, or, if the
implementation is not a web browser, equivalent tests. Every relevant test
in the test suite should have an equivalent test created if such a UA is to be
used to claim interoperability. In addition if such a UA is to be used to claim
interoperability, then there must one or more additional UAs which can also
pass those equivalent tests in the same way for the purpose of
interoperability. The equivalent tests must be made publicly available for
the purposes of peer review.

implementation

a user agent which:

1. implements the feature.
2. is available (i.e. publicly downloadable or available through some other

public point of sale mechanism). This is the "show me" requirement.
3. is shipping (i.e. development, private or unofficial versions are

insufficient).
4. is not experimental (i.e. is intended for a wide audience and could be

used on a daily basis).

2. A minimum of six months of the CR period must have elapsed. This is to ensure
that enough time is given for any remaining major errors to be caught.

3. The CR period will be extended if implementations are slow to appear.

4. Features that were not in CSS1 will be dropped (thus reducing the list of "all"
features mentioned above) if two or more interoperable implementations of
those features are not found by the end of the CR period.

5. Features will also be dropped if sufficient and adequate tests (by judgment of
the working group) have not been produced for those features by the end of the
CR period.

323 Apr 2009 15:57

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

Features at risk
The working group has identified the following features as being currently poorly
implemented by UAs. They are therefore most at risk of being removed from
CSS 2.1 when exiting CR. (Any changes of this nature will still result in the
specification being returned to last call.) Implementors are urged to implement these
features, or correct bugs in their implementations, if they wish to see these features
remain in this specification.

New ’list-style-type’ values
’armenian’
’georgian’
’lower-greek’

Implementors are advised to look at CSS3 Lists instead, where these and
many other new values not found in CSS1 are defined in detail. [CSS3LIST]

Support for multiple ID attributes for the ID selector

Because implementations are not expected to support multiple IDs per
element soon, this feature may be made informative. The W3C Selectors
specification will continue to have this feature normatively. (Section 5.9. [p. 80])

Automatic table layout algorithm

The input to the suggested (non-normative) automatic layout algorithm for
tables is restricted to (1) the containing block width and (2) the content and
properties of the table and its children. This restriction may be lifted.

Quotes

The ’quotes’ property and the ’open-quote’, ’close-quote’, ’no-open-quote’ and
’no-close-quote’ keywords may be dropped.

BODY element in XHTML

The effect of ’overflow’ [p. 187] and ’background’ [p. 223] is different on BODY
elements in HTML than on other elements. It may be that the exceptional
handling of BODY in HTML is extended to BODY in XHTML1.

23 Apr 2009 15:574

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

Quick Table of Contents
........... 231 About the CSS 2.1 Specification
............. 312 Introduction to CSS 2.1
...... 393 Conformance: Requirements and Recommendations
............ 454 Syntax and basic data types
................. 715 Selectors
...... 936 Assigning property values, Cascading, and Inheritance
................ 1017 Media types
................ 1058 Box model
............. 1219 Visual formatting model
........... 16310 Visual formatting model details
............... 18711 Visual effects
...... 19512 Generated content, automatic numbering, and lists
............... 21313 Paged media
............. 22314 Colors and Backgrounds
................. 23315 Fonts
.................. 24716 Text
................. 25717 Tables
............... 28318 User interface
............ 291Appendix A. Aural style sheets
............. 311Appendix B. Bibliography
.............. 315Appendix C. Changes
......... 389Appendix D. Default style sheet for HTML 4
...... 391Appendix E. Elaborate description of Stacking Contexts
............ 395Appendix F. Full property table
........... 403Appendix G. Grammar of CSS 2.1
............... 411Appendix I. Index

523 Apr 2009 15:57

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

Full Table of Contents
........... 231 About the CSS 2.1 Specification
............. 231.1 CSS 2.1 vs CSS 2
........... 241.2 Reading the specification
......... 241.3 How the specification is organized
.............. 251.4 Conventions
..... 251.4.1 Document language elements and attributes
.......... 251.4.2 CSS property definitions
............. 251.4.2.1 Value
............. 271.4.2.2 Initial
............ 271.4.2.3 Applies to
............ 271.4.2.4 Inherited
.......... 271.4.2.5 Percentage values
........... 271.4.2.6 Media groups
.......... 281.4.2.7 Computed value
........... 281.4.3 Shorthand properties
........... 281.4.4 Notes and examples
......... 291.4.5 Images and long descriptions
............. 291.5 Acknowledgments
............. 312 Introduction to CSS 2.1
......... 312.1 A brief CSS 2.1 tutorial for HTML
.......... 342.2 A brief CSS 2.1 tutorial for XML
.......... 352.3 The CSS 2.1 processing model
............. 362.3.1 The canvas
......... 362.3.2 CSS 2.1 addressing model
............ 372.4 CSS design principles
...... 393 Conformance: Requirements and Recommendations
............... 393.1 Definitions
............. 433.2 UA Conformance
.............. 443.3 Error conditions
........... 443.4 The text/css content type
............ 454 Syntax and basic data types
................ 454.1 Syntax
............. 464.1.1 Tokenization
............. 494.1.2 Keywords
........ 494.1.2.1 Vendor-specific extensions
........ 504.1.2.2 Informative Historical Notes
........... 504.1.3 Characters and case
............. 524.1.4 Statements
.............. 524.1.5 At-rules
.............. 534.1.6 Blocks
..... 534.1.7 Rule sets, declaration blocks, and selectors

23 Apr 2009 15:576

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

......... 544.1.8 Declarations and properties

............. 554.1.9 Comments

......... 554.2 Rules for handling parsing errors

................ 584.3 Values

......... 584.3.1 Integers and real numbers

.............. 584.3.2 Lengths

............. 614.3.3 Percentages

............ 614.3.4 URLs and URIs

.............. 624.3.5 Counters

.............. 634.3.6 Colors

.............. 654.3.7 Strings

........... 654.3.8 Unsupported Values

.......... 654.4 CSS style sheet representation
694.4.1 Referring to characters not represented in a character encoding
................. 715 Selectors
............. 715.1 Pattern matching
.............. 735.2 Selector syntax
.............. 735.2.1 Grouping
............. 745.3 Universal selector
.............. 745.4 Type selectors
............ 745.5 Descendant selectors
.............. 755.6 Child selectors
........... 755.7 Adjacent sibling selectors
............. 765.8 Attribute selectors
...... 765.8.1 Matching attributes and attribute values
........ 785.8.2 Default attribute values in DTDs
............ 795.8.3 Class selectors
............... 805.9 ID selectors
........ 815.10 Pseudo-elements and pseudo-classes
............. 825.11 Pseudo-classes
.......... 825.11.1 :first-child pseudo-class
..... 835.11.2 The link pseudo-classes: :link and :visited
.. 835.11.3 The dynamic pseudo-classes: :hover, :active, and :focus
....... 855.11.4 The language pseudo-class: :lang
............. 865.12 Pseudo-elements
........ 865.12.1 The :first-line pseudo-element
........ 885.12.2 The :first-letter pseudo-element
...... 915.12.3 The :before and :after pseudo-elements
...... 936 Assigning property values, Cascading, and Inheritance
........ 936.1 Specified, computed, and actual values
............ 936.1.1 Specified values
............ 946.1.2 Computed values
............. 946.1.3 Used values

723 Apr 2009 15:57

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

............. 946.1.4 Actual values

............... 946.2 Inheritance

............ 956.2.1 The ’inherit’ value

............. 966.3 The @import rule

.............. 966.4 The cascade

............ 976.4.1 Cascading order

............ 986.4.2 !important rules

........ 986.4.3 Calculating a selector’s specificity

..... 996.4.4 Precedence of non-CSS presentational hints

................ 1017 Media types

........... 1017.1 Introduction to media types

....... 1017.2 Specifying media-dependent style sheets

............ 1027.2.1 The @media rule

........... 1027.3 Recognized media types

............. 1047.3.1 Media groups

................ 1058 Box model

.............. 1058.1 Box dimensions

....... 1078.2 Example of margins, padding, and borders
8.3 Margin properties: ’margin-top’, ’margin-right’, ’margin-bottom’,

............ 109’margin-left’, and ’margin’

........... 1118.3.1 Collapsing margins
8.4 Padding properties: ’padding-top’, ’padding-right’, ’padding-bottom’,

............ 112’padding-left’, and ’padding’

............. 1148.5 Border properties
8.5.1 Border width: ’border-top-width’, ’border-right-width’,

... 114’border-bottom-width’, ’border-left-width’, and ’border-width’
8.5.2 Border color: ’border-top-color’, ’border-right-color’,

... 115’border-bottom-color’, ’border-left-color’, and ’border-color’
8.5.3 Border style: ’border-top-style’, ’border-right-style’,

... 116’border-bottom-style’, ’border-left-style’, and ’border-style’
8.5.4 Border shorthand properties: ’border-top’, ’border-right’,

....... 118’border-bottom’, ’border-left’, and ’border’

.... 1208.6 The box model for inline elements in bidirection context

............. 1219 Visual formatting model

....... 1219.1 Introduction to the visual formatting model

............. 1229.1.1 The viewport

............ 1229.1.2 Containing blocks

........... 1239.2 Controlling box generation

....... 1239.2.1 Block-level elements and block boxes

........ 1239.2.1.1 Anonymous block boxes

....... 1259.2.2 Inline-level elements and inline boxes

........ 1259.2.2.1 Anonymous inline boxes

............. 1269.2.3 Run-in boxes

........... 1269.2.4 The ’display’ property

23 Apr 2009 15:578

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

............ 1289.3 Positioning schemes

.... 1289.3.1 Choosing a positioning scheme: ’position’ property

....... 1309.3.2 Box offsets: ’top’, ’right’, ’bottom’, ’left’

............... 1329.4 Normal flow

.......... 1329.4.1 Block formatting contexts

.......... 1339.4.2 Inline formatting context

........... 1359.4.3 Relative positioning

................ 1369.5 Floats

...... 1419.5.1 Positioning the float: the ’float’ property

.... 1429.5.2 Controlling flow next to floats: the ’clear’ property

............. 1449.6 Absolute positioning

............ 1459.6.1 Fixed positioning

..... 1469.7 Relationships between ’display’, ’position’, and ’float’

... 1479.8 Comparison of normal flow, floats, and absolute positioning

............. 1489.8.1 Normal flow

........... 1489.8.2 Relative positioning

............ 1499.8.3 Floating a box

........... 1529.8.4 Absolute positioning

............ 1569.9 Layered presentation

.... 1569.9.1 Specifying the stack level: the ’z-index’ property

... 1589.10 Text direction: the ’direction’ and ’unicode-bidi’ properties

........... 16310 Visual formatting model details

.......... 16310.1 Definition of "containing block"

......... 16610.2 Content width: the ’width’ property

.......... 16710.3 Calculating widths and margins

........ 16810.3.1 Inline, non-replaced elements

......... 16810.3.2 Inline, replaced elements

... 16810.3.3 Block-level, non-replaced elements in normal flow

..... 16910.3.4 Block-level, replaced elements in normal flow

........ 16910.3.5 Floating, non-replaced elements

......... 16910.3.6 Floating, replaced elements

.... 16910.3.7 Absolutely positioned, non-replaced elements

...... 17110.3.8 Absolutely positioned, replaced elements

... 17210.3.9 ’Inline-block’, non-replaced elements in normal flow

.... 17210.3.10 ’Inline-block’, replaced elements in normal flow

... 17210.4 Minimum and maximum widths: ’min-width’ and ’max-width’

........ 17410.5 Content height: the ’height’ property

......... 17610.6 Calculating heights and margins

........ 17610.6.1 Inline, non-replaced elements
10.6.2 Inline replaced elements, block-level replaced elements in
normal flow, ’inline-block’ replaced elements in normal flow and floating

............. 177replaced elements
10.6.3 Block-level non-replaced elements in normal flow when

923 Apr 2009 15:57

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

.......... 177’overflow’ computes to ’visible’

.... 17810.6.4 Absolutely positioned, non-replaced elements

...... 17910.6.5 Absolutely positioned, replaced elements

........... 17910.6.6 Complicated cases

.... 18010.6.7 ’Auto’ heights for block formatting context roots

.. 18010.7 Minimum and maximum heights: ’min-height’ and ’max-height’
18210.8 Line height calculations: the ’line-height’ and ’vertical-align’ properties

.......... 18210.8.1 Leading and half-leading

............... 18711 Visual effects

............ 18711.1 Overflow and clipping

........ 18711.1.1 Overflow: the ’overflow’ property

......... 19011.1.2 Clipping: the ’clip’ property

.......... 19211.2 Visibility: the ’visibility’ property

...... 19512 Generated content, automatic numbering, and lists

....... 19512.1 The :before and :after pseudo-elements

............ 19712.2 The ’content’ property

............. 19912.3 Quotation marks

..... 19912.3.1 Specifying quotes with the ’quotes’ property

..... 20112.3.2 Inserting quotes with the ’content’ property

......... 20212.4 Automatic counters and numbering

......... 20412.4.1 Nested counters and scope

............ 20612.4.2 Counter styles

...... 20612.4.3 Counters in elements with ’display: none’

................ 20612.5 Lists
12.5.1 Lists: the ’list-style-type’, ’list-style-image’, ’list-style-position’,

........... 207and ’list-style’ properties

............... 21313 Paged media

.......... 21313.1 Introduction to paged media

.......... 21413.2 Page boxes: the @page rule

............ 21413.2.1 Page margins

... 21613.2.2 Page selectors: selecting left, right, and first pages

........ 21613.2.3 Content outside the page box

.............. 21713.3 Page breaks
13.3.1 Page break properties: ’page-break-before’, ’page-break-after’,

............. 217’page-break-inside’

..... 21813.3.2 Breaks inside elements: ’orphans’, ’widows’

.......... 21913.3.3 Allowed page breaks

........... 22013.3.4 Forced page breaks

........... 22013.3.5 "Best" page breaks

.......... 22113.4 Cascading in the page context

............. 22314 Colors and Backgrounds

........ 22314.1 Foreground color: the ’color’ property

............. 22314.2 The background

23 Apr 2009 15:5710

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

14.2.1 Background properties: ’background-color’, ’background-image’,
’background-repeat’, ’background-attachment’, ’background-position’,

............. 224and ’background’

............. 23014.3 Gamma correction

................. 23315 Fonts

.............. 23315.1 Introduction

........... 23315.2 Font matching algorithm

........ 23415.3 Font family: the ’font-family’ property

........... 23615.3.1 Generic font families

............. 23615.3.1.1 serif

............ 23715.3.1.2 sans-serif

............ 23815.3.1.3 cursive

............ 23815.3.1.4 fantasy

........... 23815.3.1.5 monospace

........ 23915.4 Font styling: the ’font-style’ property

........ 23915.5 Small-caps: the ’font-variant’ property

....... 24015.6 Font boldness: the ’font-weight’ property

......... 24215.7 Font size: the ’font-size’ property

....... 24415.8 Shorthand font property: the ’font’ property

.................. 24716 Text

........ 24716.1 Indentation: the ’text-indent’ property

......... 24816.2 Alignment: the ’text-align’ property

............... 24916.3 Decoration
16.3.1 Underlining, overlining, striking, and blinking: the

........... 249’text-decoration’ property
16.4 Letter and word spacing: the ’letter-spacing’ and ’word-spacing’

................ 251properties

....... 25316.5 Capitalization: the ’text-transform’ property

........ 25416.6 White space: the ’white-space’ property

....... 25516.6.1 The ’white-space’ processing model

.. 25616.6.2 Example of bidirectionality with white space collapsing

..... 25616.6.3 Control and combining characters’ details

................. 25717 Tables

............ 25717.1 Introduction to tables

............ 25917.2 The CSS table model

......... 26117.2.1 Anonymous table objects

............... 26217.3 Columns

........ 26317.4 Tables in the visual formatting model

........ 26417.4.1 Caption position and alignment

.......... 26517.5 Visual layout of table contents

........ 26617.5.1 Table layers and transparency

.... 26917.5.2 Table width algorithms: the ’table-layout’ property

.......... 27017.5.2.1 Fixed table layout

......... 27117.5.2.2 Automatic table layout

1123 Apr 2009 15:57

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

.......... 27217.5.3 Table height algorithms

........ 27417.5.4 Horizontal alignment in a column

........ 27417.5.5 Dynamic row and column effects

............... 27517.6 Borders

........ 27517.6.1 The separated borders model
17.6.1.1 Borders and Backgrounds around empty cells: the

........... 277’empty-cells’ property

......... 27817.6.2 The collapsing border model

........ 27917.6.2.1 Border conflict resolution

............ 28117.6.3 Border styles

............... 28318 User interface

.......... 28318.1 Cursors: the ’cursor’ property

.............. 28418.2 System Colors

........... 28618.3 User preferences for fonts

........ 28618.4 Dynamic outlines: the ’outline’ property

.......... 28818.4.1 Outlines and the focus

.............. 28918.5 Magnification

............ 291Appendix A. Aural style sheets

........ 291A.1 The media types ’aural’ and ’speech’

......... 292A.2 Introduction to aural style sheets

.............. 293A.2.1 Angles

.............. 293A.2.2 Times

............. 293A.2.3 Frequencies

........... 294A.3 Volume properties: ’volume’

.......... 295A.4 Speaking properties: ’speak’

... 296A.5 Pause properties: ’pause-before’, ’pause-after’, and ’pause’

..... 297A.6 Cue properties: ’cue-before’, ’cue-after’, and ’cue’

.......... 298A.7 Mixing properties: ’play-during’

....... 299A.8 Spatial properties: ’azimuth’ and ’elevation’
A.9 Voice characteristic properties: ’speech-rate’, ’voice-family’, ’pitch’,

.......... 302’pitch-range’, ’stress’, and ’richness’

.. 306A.10 Speech properties: ’speak-punctuation’ and ’speak-numeral’

........... 307A.11 Audio rendering of tables

.... 307A.11.1 Speaking headers: the ’speak-header’ property

.......... 310A.12 Sample style sheet for HTML

.............. 310A.13 Emacspeak

............. 311Appendix B. Bibliography

............ 311B.1 Normative references

............ 313B.2 Informative references

.............. 315Appendix C. Changes

........... 324C.1 Additional property values

........... 324C.1.1 Section 4.3.6 Colors

....... 324C.1.2 Section 9.2.4 The ’display’ property

23 Apr 2009 15:5712

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

....... 324C.1.3 Section 12.2 The ’content’ property

... 324C.1.4 Section 16.6 White space: the ’white-space’ property

..... 324C.1.5 Section 18.1 Cursors: the ’cursor’ property

............... 325C.2 Changes

........ 325C.2.1 Section 1.1 CSS 2.1 vs CSS 2

....... 325C.2.2 Section 1.2 Reading the specification

..... 325C.2.3 Section 1.3 How the specification is organized

........... 325C.2.4 Section 1.4.2.1 Value

......... 325C.2.5 Section 1.4.2.6 Media groups

........ 325C.2.6 Section 1.4.2.7 Computed value

....... 325C.2.7 Section 1.4.4 Notes and examples

........ 325C.2.8 Section 1.5 Acknowledgements

.......... 326C.2.9 Section 3.2 Conformance

......... 326C.2.10 Section 3.3 Error Conditions

......... 326C.2.11 Section 4.1.1 Tokenization

....... 326C.2.12 Section 4.1.3 Characters and case

..... 327C.2.13 Section 4.2 Rules for handling parsing errors

........... 327C.2.14 Section 4.3 Values

.......... 327C.2.15 Section 4.3.2 Lengths

........ 327C.2.16 Section 4.3.4 URLs and URIs

.......... 327C.2.17 Section 4.3.5 Counters

........... 327C.2.18 Section 4.3.6 Colors

....... 327C.2.19 Section 4.3.8 Unsupported Values

..... 327C.2.20 Section 4.4 CSS style sheet representation

.. 328C.2.21 Section 5.8.1 Matching attributes and attribute values

........ 328C.2.22 Section 5.8.3 Class selectors

.......... 328C.2.23 Section 5.9 ID selectors

... 328C.2.24 Section 5.10 Pseudo-elements and pseudo-classes

.. 328C.2.25 Section 5.11.2 The link pseudo-classes: :link and :visited

... 328C.2.26 Section 5.11.4 The language pseudo-class: :lang

.... 329C.2.27 Section 5.12.1 The :first-line pseudo-element

.... 329C.2.28 Section 5.12.2 The :first-letter pseudo-element

... 329C.2.29 Section 6.1 Specified, computed, and actual values

........ 329C.2.30 Section 6.4.1 Cascading order

.... 330C.2.31 Section 6.4.3 Calculating a selector’s specificity

.330C.2.32 Section 6.4.4 Precedence of non-CSS presentational hints

...... 330C.2.33 Section 7.3 Recognized Media Types

......... 330C.2.34 Section 7.3.1 Media Groups

........ 330C.2.35 Section 8.3 Margin properties

....... 330C.2.36 Section 8.3.1 Collapsing margins

........ 331C.2.37 Section 8.4 Padding properties

......... 331C.2.38 Section 8.5.2 Border color

......... 331C.2.39 Section 8.5.3 Border style

1323 Apr 2009 15:57

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

C.2.40 Section 8.6 The box model for inline elements in bidirection
................ 331context
........ 331C.2.41 Section 9.1.2 Containing blocks
...... 331C.2.42 Section 9.2.1.1 Anonymous block boxes
...... 331C.2.43 Section 9.2.2.1 Anonymous inline boxes
......... 331C.2.44 Section 9.2.3 Run-in boxes
....... 331C.2.45 Section 9.2.4 The ’display’ property
.... 332C.2.46 Section 9.3.1 Choosing a positioning scheme
......... 332C.2.47 Section 9.3.2 Box offsets
...... 332C.2.48 Section 9.4.1 Block formatting contexts
...... 332C.2.49 Section 9.4.2 Inline formatting context
....... 333C.2.50 Section 9.4.3 Relative positioning
........... 333C.2.51 Section 9.5 Floats
....... 333C.2.52 Section 9.5.1 Positioning the float
..... 333C.2.53 Section 9.5.2 Controlling flow next to floats

C.2.54 Section 9.7 Relationships between ’display’, ’position’, and
................ 333’float’
....... 334C.2.55 Section 9.9 Layered presentation
......... 334C.2.56 Section 9.10 Text direction
..... 334C.2.57 Chapter 10 Visual formatting model details
..... 334C.2.58 Section 10.1 Definition of "containing block"
......... 335C.2.59 Section 10.2 Content width
..... 335C.2.60 Section 10.3 Calculating widths and margins
...... 335C.2.61 Section 10.3.2 Inline, replaced elements

C.2.62 Section 10.3.3 Block-level, non-replaced elements in normal
................ 335flow
.335C.2.63 Section 10.3.4 Block-level, replaced elements in normal flow
.... 335C.2.64 Section 10.3.5 Floating, non-replaced elements
..... 335C.2.65 Section 10.3.6 Floating, replaced elements
.336C.2.66 Section 10.3.7 Absolutely positioned, non-replaced elements
.. 336C.2.67 Section 10.3.8 Absolutely positioned, replaced elements
..... 336C.2.68 Section 10.4 Minimum and maximum widths
......... 336C.2.69 Section 10.5 Content height
.... 337C.2.70 Section 10.6 Calculating heights and margins
..... 337C.2.71 Section 10.6.1 Inline, non-replaced elements

C.2.72 Section 10.6.2 Inline replaced elements, block-level replaced
elements in normal flow, ’inline-block’ replaced elements in normal flow

.......... 337and floating replaced elements
C.2.73 Section 10.6.3 Block-level non-replaced elements in normal

....... 337flow when ’overflow’ computes to ’visible’

.337C.2.74 Section 10.6.4 Absolutely positioned, non-replaced elements

.. 338C.2.75 Section 10.6.5 Absolutely positioned, replaced elements

.... 338C.2.76 Section 10.7 Minimum and maximum heights

....... 338C.2.77 Section 10.8 Line height calculations

23 Apr 2009 15:5714

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

...... 338C.2.78 Section 10.8.1 Leading and half-leading

....... 338C.2.79 Section 11.1 Overflow and clipping

.......... 338C.2.80 Section 11.1.1 Overflow

..... 339C.2.81 Section 11.1.2 Clipping: the ’clip’ property

.......... 339C.2.82 Section 11.2 Visibility
339C.2.83 Chapter 12 Generated content, automatic numbering, and lists

... 339C.2.84 Section 12.1 The :before and :after pseudo-elements

....... 339C.2.85 Section 12.2 The ’content’ property

.340C.2.86 Section 12.3.2 Inserting quotes with the ’content’ property

.... 340C.2.87 Section 12.4 Automatic counters and numbering

..... 340C.2.88 Section 12.4.1 Nested counters and scope

........... 340C.2.89 Section 12.5 Lists

........... 340C.2.90 Section 12.5.1 Lists

......... 341C.2.91 Chapter 13 Paged media

........ 341C.2.92 Section 13.2.2 Page selectors

...... 341C.2.93 Section 13.3.1 Page break properties

....... 341C.2.94 Section 13.3.3 Allowed page breaks

...... 341C.2.95 Section 14.2.1 Background properties

........ 341C.2.96 Section 14.3 Gamma correction

........... 342C.2.97 Chapter 15 Fonts

...... 342C.2.98 Section 15.2 Font matching algorithm

......... 342C.2.99 Section 15.2.2 Font family

......... 342C.2.100 Section 15.5 Small-caps

........ 342C.2.101 Section 15.6 Font boldness

.......... 342C.2.102 Section 15.7 Font size

........... 342C.2.103 Chapter 16 Text

.......... 343C.2.104 Section 16.2 Alignment

.343C.2.105 Section 16.3.1 Underlining, over lining, striking, and blinking

...... 343C.2.106 Section 16.4 Letter and word spacing

......... 343C.2.107 Section 16.5 Capitalization

......... 343C.2.108 Section 16.6 White space

........... 344C.2.109 Chapter 17 Tables

....... 344C.2.110 Section 17.2 The CSS table model

..... 344C.2.111 Section 17.2.1 Anonymous table objects

... 344C.2.112 Section 17.4 Tables in the visual formatting model

.... 345C.2.113 Section 17.4.1 Caption position and alignment

..... 345C.2.114 Section 17.5 Visual layout of table contents

.... 345C.2.115 Section 17.5.1 Table layers and transparency

....... 345C.2.116 Section 17.5.2.1 Fixed table layout

...... 345C.2.117 Section 17.5.2.2 Automatic table layout

...... 345C.2.118 Section 17.5.3 Table height algorithms

... 345C.2.119 Section 17.5.4 Horizontal alignment in a column

.......... 346C.2.120 Section 17.6 Borders

1523 Apr 2009 15:57

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

.... 346C.2.121 Section 17.6.1 The separated borders model
346C.2.122 Section 17.6.1.1 Borders and Backgrounds around empty cells

..... 346C.2.123 Section 17.6.2 The collapsing border model

..... 346C.2.124 Section 17.6.2.1 Border conflict resolution

..... 346C.2.125 Section 18.1 Cursors: the ’cursor’ property

........ 346C.2.126 Section 18.4 Dynamic outlines
347C.2.127 Chapter 12 Generated content, automatic numbering, and lists

........ 347C.2.128 Appendix A. Aural style sheets

...... 347C.2.129 Appendix A Section 5 Pause properties

...... 347C.2.130 Appendix A Section 6 Cue properties

...... 347C.2.131 Appendix A Section 7 Mixing properties

......... 347C.2.132 Appendix B Bibliography

.............. 348C.2.133 Other

................ 348C.3 Errors

........... 348C.3.1 Shorthand properties

............. 348C.3.2 Applies to

.......... 348C.3.3 Section 4.1.1 (and G2)

....... 349C.3.4 Section 4.1.3 Characters and case

....... 349C.3.5 Section 4.3 (Double sign problem)

.......... 349C.3.6 Section 4.3.2 Lengths

......... 349C.3.7 Section 4.3.3 Percentages

......... 349C.3.8 Section 4.3.4 URLs and URIs

.......... 349C.3.9 Section 4.3.5 Counters

........... 349C.3.10 Section 4.3.6 Colors

.......... 350C.3.11 Section 4.3.7 Strings

... 350C.3.12 Section 5.10 Pseudo-elements and pseudo-classes

......... 350C.3.13 Section 6.4 The cascade

......... 350C.3.14 Section 8.1 Box Dimensions

.. 350C.3.15 Section 8.2 Example of margins, padding, and borders

..... 350C.3.16 Section 8.5.4 Border shorthand properties

... 350C.3.17 Section 9.2.1 Block-level elements and block boxes

.... 350C.3.18 Section 9.3.1 Choosing a positioning scheme

......... 351C.3.19 Section 9.3.2 Box offsets

...... 351C.3.20 Section 9.4.1 Block formatting contexts

...... 351C.3.21 Section 9.4.2 Inline formatting context

....... 351C.3.22 Section 9.4.3 Relative positioning

........... 351C.3.23 Section 9.5 Floats

....... 351C.3.24 Section 9.5.1 Positioning the float

..... 351C.3.25 Section 9.5.2 Controlling flow next to floats

........ 352C.3.26 Section 9.6 Absolute positioning
C.3.27 Section 9.7 Relationships between ’display’, ’position’, and

................ 352’float’

......... 352C.3.28 Section 9.10 Text direction

23 Apr 2009 15:5716

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

..... 352C.3.29 Section 10.1 Definition of "containing block"
C.3.30 Section 10.3.3 Block-level, non-replaced elements in normal

................ 352flow

..... 352C.3.31 Section 10.4 Minimum and maximum widths
C.3.32 Section 10.6.3 Block-level non-replaced elements in normal

....... 352flow when ’overflow’ computes to ’visible’

.... 353C.3.33 Section 10.7 Minimum and maximum heights

.......... 353C.3.34 Section 11.1.1 Overflow

..... 353C.3.35 Section 11.1.2 Clipping: the ’clip’ property

.......... 353C.3.36 Section 11.2 Visibility

........ 353C.3.37 Section 12.4.2 Counter styles

........... 353C.3.38 Section 12.6.2 Lists

........ 354C.3.39 Section 14.2 The background

...... 354C.3.40 Section 14.2.1 Background properties

...... 354C.3.41 Section 15.2 Font matching algorithm

.......... 354C.3.42 Section 15.7 Font size

.......... 354C.3.43 Section 16.1 Indentation

.......... 354C.3.44 Section 16.2 Alignment

....... 355C.3.45 Section 17.2 The CSS table model

...... 355C.3.46 Section 17.2.1 Anonymous table objects

... 355C.3.47 Section 17.4 Tables in the visual formatting model

..... 355C.3.48 Section 17.5 Visual layout of table contents

.... 356C.3.49 Section 17.5.1 Table layers and transparency

..... 356C.3.50 Section 17.6.1 The separated borders model

......... 356C.3.51 Section 18.2 System Colors

......... 356C.3.52 Section E.2 Painting order

.............. 356C.4 Clarifications

..... 356C.4.1 Section 2.1 A brief CSS 2.1 tutorial for HTML

..... 356C.4.2 Section 2.2 A brief CSS 2.1 tutorial for XML

..... 357C.4.3 Section 2.3 The CSS 2.1 processing model

.......... 357C.4.4 Section 3.1 Definitions

........... 357C.4.5 Section 4.1 Syntax

......... 357C.4.6 Section 4.1.1 Tokenization

....... 357C.4.7 Section 4.1.3 Characters and case

.. 358C.4.8 Section 4.1.7 Rule sets, declaration blocks, and selectors

..... 358C.4.9 Section 4.2 Rules for handling parsing errors

...... 358C.4.10 Section 4.3.1 Integers and real numbers

.......... 358C.4.11 Section 4.3.2 Lengths

........ 358C.4.12 Section 4.3.4 URLs and URIs

........ 358C.4.13 Section 5.1 Pattern matching

...... 358C.4.14 Section 5.7 Adjacent sibling selectors

.. 358C.4.15 Section 5.8.1 Matching attributes and attribute values

.... 358C.4.16 Section 5.8.2 Default attribute values in DTDs

1723 Apr 2009 15:57

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

.......... 359C.4.17 Section 5.9 ID selectors
C.4.18 Section 5.11.3 The dynamic pseudo-classes: :hover, :active,

............... 359and :focus

... 359C.4.19 Section 5.11.4 The language pseudo-class: :lang

.... 359C.4.20 Section 5.12.2 The :first-letter pseudo-element

.......... 359C.4.21 Section 6.2 Inheritance

........ 359C.4.22 Section 6.2.1 The ’inherit’ value

........ 359C.4.23 Section 6.3 The @import rule

......... 359C.4.24 Section 6.4 The Cascade

........ 359C.4.25 Section 6.4.1 Cascading order

.... 360C.4.26 Section 6.4.3 Calculating a selector’s specificity

........ 360C.4.27 Section 7.2.1 The @media rule

....... 360C.4.28 Section 7.3 Recognized media types

......... 360C.4.29 Section 7.3.1 Media groups

......... 360C.4.30 Section 8.1 Box dimensions

........ 360C.4.31 Section 8.3 Margin properties

....... 360C.4.32 Section 8.3.1 Collapsing margins

......... 361C.4.33 Section 8.5.3 Border style

......... 361C.4.34 Section 9.1.1 The viewport

....... 361C.4.35 Section 9.2.4 The ’display’ property

.... 361C.4.36 Section 9.3.1 Choosing a positioning scheme

......... 361C.4.37 Section 9.3.2 Box offsets

...... 361C.4.38 Section 9.4.2 Inline formatting context

....... 362C.4.39 Section 9.4.3 Relative positioning

........... 362C.4.40 Section 9.5 Floats

....... 362C.4.41 Section 9.5.1 Positioning the float

..... 362C.4.42 Section 9.5.2 Controlling flow next to floats
C.4.43 Section 9.8 Comparison of normal flow, floats, and absolute

............... 362positioning

..... 363C.4.44 Section 10.1 Definition of "containing block"

......... 363C.4.45 Section 10.2 Content width
C.4.46 Section 10.3.3 Block-level, non-replaced elements in normal

................ 363flow

.. 363C.4.47 Section 10.3.8 Absolutely positioning, replaced elements

..... 363C.4.48 Section 10.4 Minimum and maximum widths

.... 363C.4.49 Section 10.6 Calculating heights and margins

.... 363C.4.50 Section 10.7 Minimum and maximum heights

....... 363C.4.51 Section 10.8 Line height calculations

...... 363C.4.52 Section 10.8.1 Leading and half-leading

....... 364C.4.53 Section 11.1 Overflow and clipping

.......... 364C.4.54 Section 11.1.1 Overflow

.......... 364C.4.55 Section 11.1.2 Clipping

.......... 364C.4.56 Section 11.2 Visibility

23 Apr 2009 15:5718

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

... 364C.4.57 Section 12.1 The :before and :after pseudo-elements

....... 364C.4.58 Section 12.2 The ’content’ property

.365C.4.59 Section 12.3.2 Inserting quotes with the ’content’ property

.... 365C.4.60 Section 12.4 Automatic counters and numbering

.. 365C.4.61 Section 12.4.3 Counters in elements with ’display: none’

........ 365C.4.62 Section 14.2 The background

........ 366C.4.63 Section 15.1 Fonts Introduction

...... 366C.4.64 Section 15.2 Font matching algorithm

......... 366C.4.65 Section 15.2.2 Font family

....... 366C.4.66 Section 15.3.1 Generic font families

......... 366C.4.67 Section 15.4 Font styling

.......... 366C.4.68 Section 15.5 Small-caps

......... 366C.4.69 Section 15.6 Font boldness

.......... 367C.4.70 Section 15.7 Font size

.......... 367C.4.71 Section 16.1 Indentation

.......... 367C.4.72 Section 16.2 Alignment

.367C.4.73 Section 16.3.1 Underlining, over lining, striking, and blinking

......... 367C.4.74 Section 16.5 Capitalization

......... 367C.4.75 Section 16.6 White space

....... 367C.4.76 Section 17.1 Introduction to tables

....... 367C.4.77 Section 17.2 The CSS table model

...... 368C.4.78 Section 17.2.1 Anonymous table objects

... 368C.4.79 Section 17.4 Tables in the visual formatting model

..... 368C.4.80 Section 17.5 Visual layout of table contents

.... 368C.4.81 Section 17.5.1 Table layers and transparency

...... 368C.4.82 Section 17.5.2 Table width algorithms

....... 369C.4.83 Section 17.5.2.1 Fixed table layout

...... 369C.4.84 Section 17.5.2.2 Automatic table layout

.... 369C.4.85 Section 17.5.4 Horizontal alignment in a column

.... 369C.4.86 Section 17.5.5 Dynamic row and column effects

..... 369C.4.87 Section 17.6.1 The separated borders model

..... 369C.4.88 Section 17.6.2 The collapsing borders model

......... 369C.4.89 Section 18.2 System Colors

........ 370C.4.90 Section 18.4 Dynamic outlines

...... 370C.4.91 Section 18.4.1 Outlines and the focus

..... 370C.4.92 Appendix D Default style sheet for HTML 4

... 370C.5 Errata since the Candidate Recommendation of July 2007

........... 370C.5.1 Section 1.4.2.1 Value

..... 370C.5.2 Section 2.3 The CSS 2.1 processing model

.......... 370C.5.3 Section 3.1 Definitions

......... 370C.5.4 Section 4.1.1 Tokenization

..... 371C.5.5 Section 4.1.2.2 Informative Historical Notes

....... 371C.5.6 Section 4.1.3 Characters and case

1923 Apr 2009 15:57

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

....... 371C.5.7 Section 4.1.3 Characters and case

....... 371C.5.8 Section 4.1.3 Characters and case

....... 371C.5.9 Section 4.1.3 Characters and case

.......... 371C.5.10 Section 4.1.5 At-rules

.372C.5.11 Section 4.1.7 Rule sets, declaration blocks, and selectors

..... 372C.5.12 Section 4.2 Rules for handling parsing errors

..... 372C.5.13 Section 4.2 Rules for handling parsing errors

.......... 372C.5.14 Section 4.3.2 Lengths

.......... 373C.5.15 Section 4.3.5 Counters

.. 373C.5.16 Section 5.8.1 Matching attributes and attribute values

.... 373C.5.17 Section 5.8.2 Default attribute values in DTDs

... 373C.5.18 Section 5.11.4 The language pseudo-class: :lang

.. 373C.5.19 Section 5.12.3 The :before and :after pseudo-elements

........ 373C.5.20 Section 6.3 The @import rule

........ 373C.5.21 Section 6.3 The @import rule

........ 374C.5.22 Section 6.4.1 Cascading order

........ 374C.5.23 Section 6.4.1 Cascading order

........ 374C.5.24 Section 7.2.1 The @media rule

....... 374C.5.25 Section 8.3.1 Collapsing margins

....... 374C.5.26 Section 8.3.1 Collapsing margins

....... 375C.5.27 Section 8.3.1 Collapsing margins

... 375C.5.28 Section 9.2.2 Inline-level elements and inline boxes

....... 375C.5.29 Section 9.2.4 The ’display’ property

... 375C.5.30 Section 9.3.2 Box offsets: ’top’, ’right’, ’bottom’, ’left’

........... 375C.5.31 Section 9.5 Floats

........... 375C.5.32 Section 9.5 Floats
376C.5.33 Section 9.5.2 Controlling flow next to floats: the ’clear’ property

........ 376C.5.34 Section 9.6.1 Fixed positioning
376C.5.35 Section 9.9.1 Specifying the stack level: the ’z-index’ property

..... 376C.5.36 Section 10.1 Definition of "containing block"

..... 377C.5.37 Section 10.3 Calculating widths and margins

..... 377C.5.38 Section 10.3.1 Inline, non-replaced elements

...... 377C.5.39 Section 10.3.2 Inline, replaced elements

...... 377C.5.40 Section 10.3.2 Inline, replaced elements
C.5.41 Section 10.3.3 Block-level, non-replaced elements in normal

................ 377flow

.378C.5.42 Section 10.3.7 Absolutely positioned, non-replaced elements

.378C.5.43 Section 10.3.7 Absolutely positioned, non-replaced elements

.. 379C.5.44 Section 10.3.8 Absolutely positioned, replaced elements

.. 379C.5.45 Section 10.3.8 Absolutely positioned, replaced elements

.. 379C.5.46 Section 10.3.8 Absolutely positioned, replaced elements

... 379C.5.47 Section 10.5 Content height: the ’height’ property

..... 379C.5.48 Section 10.6.2 Inline replaced elements […]

23 Apr 2009 15:5720

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

.379C.5.49 Section 10.6.4 Absolutely positioned, non-replaced elements

.. 380C.5.50 Section 10.6.5 Absolutely positioned, replaced elements

...... 380C.5.51 Section 10.8.1 Leading and half-leading

.... 380C.5.52 Section 11.1.1 Overflow: the ’overflow’ property

..... 380C.5.53 Section 11.1.2 Clipping: the ’clip’ property

....... 380C.5.54 Section 12.2 The ’content’ property

........ 381C.5.55 Section 12.4.2 Counter styles

........... 381C.5.56 Section 12.5 Lists
C.5.57 Section 12.5.1 Lists: the ’list-style-type’, ’list-style-image’,

....... 381’list-style-position’, and ’list-style’ properties
C.5.58 Section 12.5.1 Lists: the ’list-style-type’, ’list-style-image’,

....... 381’list-style-position’, and ’list-style’ properties
C.5.59 Section 12.5.1 Lists: the ’list-style-type’, ’list-style-image’,

....... 381’list-style-position’, and ’list-style’ properties

..... 382C.5.60 Section 13.2 Page boxes: the @page rule
C.5.61 Section 13.2.1.1 Rendering page boxes that do not fit a target

................ 382sheet

..... 382C.5.62 Section 13.2.3 Content outside the page box
C.5.63 Section 13.3.1 Page break properties: ’page-break-before’,

........ 382’page-break-after’, ’page-break-inside’
C.5.64 Section 13.3.1 Page break properties: ’page-break-before’,

........ 382’page-break-after’, ’page-break-inside’

.382C.5.65 Section 13.3.2 Breaks inside elements: ’orphans’, ’widows’

.383C.5.66 Section 13.3.2 Breaks inside elements: ’orphans’, ’widows’

....... 383C.5.67 Section 13.3.3 Allowed page breaks

....... 383C.5.68 Section 13.3.3 Allowed page breaks

....... 383C.5.69 Section 13.3.3 Allowed page breaks

....... 383C.5.70 Section 13.3.5 "Best" page breaks

........ 383C.5.71 Section 14.2 The background

........ 384C.5.72 Section 14.2 The background
C.5.73 Section 14.2.1 Background properties: ’background-color’,
’background-image’, ’background-repeat’, ’background-attachment’,

........ 384’background-position’, and ’background’

.. 384C.5.74 Section 15.6 Font boldness: the ’font-weight’ property

... 385C.5.75 Section 16.6 Whitespace: the ’white-space’ property

... 385C.5.76 Section 16.6.1 The ’white-space’ processing model

...... 385C.5.77 Section 17.2.1 Anonymous table objects

...... 385C.5.78 Section 17.2.1 Anonymous table objects

... 385C.5.79 Section 17.4 Tables in the visual formatting model

.... 386C.5.80 Section 17.5.4 Horizontal alignment in a column

..... 386C.5.81 Section 18.1 Cursors: the ’cursor’ property

....... 386C.5.82 Section B.2 Informative references

..... 386C.5.83 Appendix D. Default style sheet for HTML 4

..... 386C.5.84 Appendix D. Default style sheet for HTML 4

2123 Apr 2009 15:57

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

......... 386C.5.85 Section E.2 Painting order

....... 386C.5.86 Appendix G. Grammar of CSS 2.1

.......... 387C.5.87 Section G.1 Grammar

......... 387C.5.88 Section G.2 Lexical scanner

......... 387C.5.89 Section G.2 Lexical scanner

......... 387C.5.90 Section G.2 Lexical scanner

......... 387C.5.91 Section G.2 Lexical scanner

........... 388C.5.92 Appendix I. Index

......... 389Appendix D. Default style sheet for HTML 4

...... 391Appendix E. Elaborate description of Stacking Contexts

............... 391E.1 Definitions

.............. 391E.2 Painting order

................ 394E.3 Notes

............ 395Appendix F. Full property table

........... 403Appendix G. Grammar of CSS 2.1

............... 403G.1 Grammar

.............. 405G.2 Lexical scanner

..... 407G.3 Comparison of tokenization in CSS 2.1 and CSS1

............... 411Appendix I. Index

23 Apr 2009 15:5722

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

1 About the CSS 2.1 Specification
Contents

.............. 231.1 CSS 2.1 vs CSS 2

............ 241.2 Reading the specification

.......... 241.3 How the specification is organized

................ 251.4 Conventions

...... 251.4.1 Document language elements and attributes

........... 251.4.2 CSS property definitions

.............. 251.4.2.1 Value

.............. 271.4.2.2 Initial

............. 271.4.2.3 Applies to

............. 271.4.2.4 Inherited

........... 271.4.2.5 Percentage values

............ 271.4.2.6 Media groups

........... 281.4.2.7 Computed value

............ 281.4.3 Shorthand properties

............ 281.4.4 Notes and examples

.......... 291.4.5 Images and long descriptions

.............. 291.5 Acknowledgments

1.1 CSS 2.1 vs CSS 2
The CSS community has gained significant experience with the CSS2 specification
since it became a recommendation in 1998. Errors in the CSS2 specification have
subsequently been corrected via the publication of various errata, but there has not
yet been an opportunity for the specification to be changed based on experience
gained.

While many of these issues will be addressed by the upcoming CSS3
specifications, the current state of affairs hinders the implementation and
interoperability of CSS2. The CSS 2.1 specification attempts to address this situation
by:

Maintaining compatibility with those portions of CSS2 that are widely accepted
and implemented.
Incorporating all published CSS2 errata.
Where implementations overwhelmingly differ from the CSS2 specification,
modifying the specification to be in accordance with generally accepted practice.
Removing CSS2 features which, by virtue of not having been implemented,
have been rejected by the CSS community. CSS 2.1 aims to reflect what CSS
features are reasonably widely implemented for HTML and XML languages in
general (rather than only for a particular XML language, or only for HTML).

2323 Apr 2009 15:57

About the CSS 2.1 Specification

Removing CSS2 features that will be obsoleted by CSS3, thus encouraging
adoption of the proposed CSS3 features in their place.
Adding a (very) small number of new property values, [p. 324] when
implementation experience has shown that they are needed for implementing
CSS2.

Thus, while it is not the case that a CSS2 style sheet is necessarily
forwards-compatible with CSS 2.1, it is the case that a style sheet restricting itself to
CSS 2.1 features is more likely to find a compliant user agent today and to preserve
forwards compatibility in the future. While breaking forward compatibility is not
desirable, we believe the advantages to the revisions in CSS 2.1 are worthwhile.

CSS 2.1 is derived from and is intended to replace CSS2. Some parts of CSS2
are unchanged in CSS 2.1, some parts have been altered, and some parts removed.
The removed portions may be used in a future CSS3 specification. Future specs
should refer to CSS 2.1 (unless they need features from CSS2 which have been
dropped in CSS 2.1, and then they should only reference CSS2 for those features,
or preferably reference such feature(s) in the respective CSS3 Module that includes
those feature(s)).

1.2 Reading the specification
This section is non-normative.

This specification has been written with two types of readers in mind: CSS authors
and CSS implementors. We hope the specification will provide authors with the tools
they need to write efficient, attractive, and accessible documents, without
overexposing them to CSS’s implementation details. Implementors, however, should
find all they need to build conforming user agents [p. 43] . The specification begins
with a general presentation of CSS and becomes more and more technical and
specific towards the end. For quick access to information, a general table of
contents, specific tables of contents at the beginning of each section, and an index
provide easy navigation, in both the electronic and printed versions.

The specification has been written with two modes of presentation in mind:
electronic and printed. Although the two presentations will no doubt be similar,
readers will find some differences. For example, links will not work in the printed
version (obviously), and page numbers will not appear in the electronic version. In
case of a discrepancy, the electronic version is considered the authoritative version
of the document.

1.3 How the specification is organized
This section is non-normative.

The specification is organized into the following sections:

23 Apr 2009 15:5724

About the CSS 2.1 Specification

Section 2: An introduction to CSS 2.1
The introduction includes a brief tutorial on CSS 2.1 and a discussion of design
principles behind CSS 2.1.

Sections 3 - 18: CSS 2.1 reference manual.
The bulk of the reference manual consists of the CSS 2.1 language reference.
This reference defines what may go into a CSS 2.1 style sheet (syntax,
properties, property values) and how user agents must interpret these style
sheets in order to claim conformance [p. 43] .

Appendixes:
Appendixes contain information about aural properties [p. 291] (non-normative),
a sample style sheet for HTML 4 [p. 389] , changes from CSS2 [p. 315] , the
grammar of CSS 2.1 [p. 403] , a list of normative and informative references
[p. 311] , and two indexes: one for properties [p. 395] and one general index
[p. 411] .

1.4 Conventions

1.4.1 Document language elements and attributes

CSS property and pseudo-class names are delimited by single quotes.
CSS values are delimited by single quotes.
Document language attribute names are in lowercase letters and delimited by
double quotes.

1.4.2 CSS property definitions
Each CSS property definition begins with a summary of key information that
resembles the following:

’property-name’

Value: legal values & syntax
Initial: initial value
Applies to: elements this property applies to
Inherited: whether the property is inherited
Percentages: how percentage values are interpreted
Media: which media groups the property applies to
Computed value: how to compute the computed value

1.4.2.1 Value

This part specifies the set of valid values for the property whose name is
’property-name’. Value types may be designated in several ways:

2523 Apr 2009 15:57

About the CSS 2.1 Specification

1. keyword values (e.g., auto, disc, etc.)
2. basic data types, which appear between "<" and ">" (e.g., <length>,

<percentage>, etc.). In the electronic version of the document, each instance of
a basic data type links to its definition.

3. types that have the same range of values as a property bearing the same name
(e.g., <’border-width’> <’background-attachment’>, etc.). In this case, the type
name is the property name (complete with quotes) between "<" and ">" (e.g.,
<’border-width’>). Such a type does not include the value ’inherit’. In the
electronic version of the document, each instance of this type of non-terminal
links to the corresponding property definition.

4. non-terminals that do not share the same name as a property. In this case, the
non-terminal name appears between "<" and ">", as in <border-width>. Notice
the distinction between <border-width> and <’border-width’>; the latter is
defined in terms of the former. The definition of a non-terminal is located near its
first appearance in the specification. In the electronic version of the document,
each instance of this type of value links to the corresponding value definition.

Other words in these definitions are keywords that must appear literally, without
quotes (e.g., red). The slash (/) and the comma (,) must also appear literally.

Values may be arranged as follows:

Several juxtaposed words mean that all of them must occur, in the given order.
A bar (|) separates two or more alternatives: exactly one of them must occur.
A double bar (||) separates two or more options: one or more of them must
occur, in any order.
A double ampersand (&&) separates two or more values all of which must
occur, in any order.
Brackets ([]) are for grouping.

Juxtaposition is stronger than the double ampersand, the double ampersand is
stronger than the double bar, and the double bar is stronger than the bar. Thus, the
following lines are equivalent:

 a b | c || d && e f
 [a b] | [c || [d && [e f]]]

Every type, keyword, or bracketed group may be followed by one of the following
modifiers:

An asterisk (*) indicates that the preceding type, word, or group occurs zero or
more times.
A plus (+) indicates that the preceding type, word, or group occurs one or more
times.
A question mark (?) indicates that the preceding type, word, or group is optional.
A pair of numbers in curly braces ({A,B}) indicates that the preceding type, word,
or group occurs at least A and at most B times.

23 Apr 2009 15:5726

About the CSS 2.1 Specification

The following examples illustrate different value types:

Value: N | NW | NE
Value: [<length> | thick | thin]{1,4}
Value: [<family-name> ,]* <family-name>
Value: <uri>? <color> [/ <color>]?
Value: <uri> || <color>
Value: inset? && [<length>{2,4} && <color>?]

Value types are specified in terms of tokens, as described in Appendix G.2
[p. 405] . As the grammar allows spaces between tokens in the components of the
expr production, spaces may appear between tokens in values.

Note: In many cases, spaces will in fact be required between tokens in order to
distinguish them from each other. For example, the value ’1em2em’ would be parsed
as a single DIMEN token with the number ’1’ and the identifier ’em2em’, which is an
invalid unit. In this case, a space would be required before the ’2’ to get this parsed
as the two lengths ’1em’ and ’2em’.

1.4.2.2 Initial

This part specifies the property’s initial value. Please consult the section on the
cascade [p. 93] for information about the interaction between style sheet-specified,
inherited, and initial values.

1.4.2.3 Applies to

This part lists the elements to which the property applies. All elements are
considered to have all properties, but some properties have no rendering effect on
some types of elements. For example, the ’clear’ property only affects block-level
elements.

1.4.2.4 Inherited

This part indicates whether the value of the property is inherited from an ancestor
element. Please consult the section on the cascade [p. 93] for information about the
interaction between style sheet-specified, inherited, and initial values.

1.4.2.5 Percentage values

This part indicates how percentages should be interpreted, if they occur in the value
of the property. If "N/A" appears here, it means that the property does not accept
percentages as values.

1.4.2.6 Media groups

This part indicates the media groups [p. 104] to which the property applies.
Information about media groups is non-normative.

2723 Apr 2009 15:57

About the CSS 2.1 Specification

1.4.2.7 Computed value

This part describes the computed value for the property. See the section on
computed values [p. 94] for how this definition is used.

1.4.3 Shorthand properties
Some properties are shorthand properties, meaning that they allow authors to
specify the values of several properties with a single property.

For instance, the ’font’ property is a shorthand property for setting ’font-style’,
’font-variant’, ’font-weight’, ’font-size’, ’line-height’, and ’font-family’ all at once.

When values are omitted from a shorthand form, each "missing" property is
assigned its initial value (see the section on the cascade [p. 93]).

Example(s):

The multiple style rules of this example:

h1 {
 font-weight: bold;
 font-size: 12pt;
 line-height: 14pt;
 font-family: Helvetica;
 font-variant: normal;
 font-style: normal;
}

may be rewritten with a single shorthand property:

h1 { font: bold 12pt/14pt Helvetica }

In this example, ’font-variant’, and ’font-style’ take their initial values.

1.4.4 Notes and examples
All examples that illustrate illegal usage are clearly marked as "ILLEGAL
EXAMPLE".

HTML examples lacking DOCTYPE declarations are SGML Text Entities
conforming to the HTML 4.01 Strict DTD [HTML4]. Other HTML examples conform
to the DTDs given in the examples.

All notes are informative only.

Examples and notes are marked within the source HTML [p. 39] for the
specification and CSS user agents will render them specially.

23 Apr 2009 15:5728

About the CSS 2.1 Specification

1.4.5 Images and long descriptions
Most images in the electronic version of this specification are accompanied by "long
descriptions" of what they represent. A link to the long description is denoted by a
"[D]" after the image.

Images and long descriptions are informative only.

1.5 Acknowledgments
This section is non-normative.

CSS 2.1 is based on CSS2. See the acknowledgments section of CSS2 [p. ??] for
the people that contributed to CSS2.

We would like to thank the following people who, through their input and feedback
on the www-style mailing list, have helped us with the creation of this specification:
Andrew Clover, Bernd Mielke, C. Bottelier, Christian Roth, Christoph Päper, Claus
Färber, Coises, Craig Saila, Darren Ferguson, Dylan Schiemann, Etan Wexler,
George Lund, James Craig, Jan Eirik Olufsen, Jan Roland Eriksson, Joris Huizer,
Joshua Prowse, Kai Lahmann, Kevin Smith, Lachlan Cannon, Lars Knoll, Lauri
Raittila, Mark Gallagher, Michael Day, Peter Sheerin, Rijk van Geijtenbeek, Robin
Berjon, Scott Montgomery, Shelby Moore, Stuart Ballard, Tom Gilder, Vadim
Plessky, and the Open eBook Publication Structure Working Group Editors. We
would also like to thank Glenn Adams and Susan Lesch who helped proofread this
document.

In addition, we would like to extend special thanks to fantasai, Ada Chan and Boris
Zbarsky who have contributed significant time to CSS 2.1, and to Kimberly Blessing
for help with the editing.

2923 Apr 2009 15:57

About the CSS 2.1 Specification

23 Apr 2009 15:5730

About the CSS 2.1 Specification

2 Introduction to CSS 2.1
Contents

.......... 312.1 A brief CSS 2.1 tutorial for HTML

........... 342.2 A brief CSS 2.1 tutorial for XML

........... 352.3 The CSS 2.1 processing model

.............. 362.3.1 The canvas

.......... 362.3.2 CSS 2.1 addressing model

............. 372.4 CSS design principles

2.1 A brief CSS 2.1 tutorial for HTML
This section is non-normative.

In this tutorial, we show how easy it can be to design simple style sheets. For this
tutorial, you will need to know a little HTML (see [HTML4]) and some basic desktop
publishing terminology.

We begin with a small HTML document:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
 <HEAD>
 <TITLE>Bach’s home page</TITLE>
 </HEAD>
 <BODY>
 <H1>Bach’s home page</H1>
 <P>Johann Sebastian Bach was a prolific composer.
 </BODY>
</HTML>

To set the text color of the H1 elements to red, you can write the following CSS
rules:

 h1 { color: red }

A CSS rule consists of two main parts: selector [p. 71] (’h1’) and declaration
(’color: red’). In HTML, element names are case-insensitive so ’h1’ works just as well
as ’H1’. The declaration has two parts: property (’color’) and value (’red’). While the
example above tries to influence only one of the properties needed for rendering an
HTML document, it qualifies as a style sheet on its own. Combined with other style
sheets (one fundamental feature of CSS is that style sheets are combined) it will
determine the final presentation of the document.

The HTML 4 specification defines how style sheet rules may be specified for
HTML documents: either within the HTML document, or via an external style sheet.
To put the style sheet into the document, use the STYLE element:

3123 Apr 2009 15:57

Introduction to CSS 2.1

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
 <HEAD>
 <TITLE>Bach’s home page</TITLE>
 <STYLE type="text/css">
 h1 { color: red }
 </STYLE>
 </HEAD>
 <BODY>
 <H1>Bach’s home page</H1>
 <P>Johann Sebastian Bach was a prolific composer.
 </BODY>
</HTML>

For maximum flexibility, we recommend that authors specify external style sheets;
they may be changed without modifying the source HTML document, and they may
be shared among several documents. To link to an external style sheet, you can use
the LINK element:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
 <HEAD>
 <TITLE>Bach’s home page</TITLE>
 <LINK rel="stylesheet" href="bach.css" type="text/css">
 </HEAD>
 <BODY>
 <H1>Bach’s home page</H1>
 <P>Johann Sebastian Bach was a prolific composer.
 </BODY>
</HTML>

The LINK element specifies:

the type of link: to a "stylesheet".
the location of the style sheet via the "href" attribute.
the type of style sheet being linked: "text/css".

To show the close relationship between a style sheet and the structured markup,
we continue to use the STYLE element in this tutorial. Let’s add more colors:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
 <HEAD>
 <TITLE>Bach’s home page</TITLE>
 <STYLE type="text/css">
 body { color: black; background: white }
 h1 { color: red; background: white }
 </STYLE>
 </HEAD>
 <BODY>
 <H1>Bach’s home page</H1>
 <P>Johann Sebastian Bach was a prolific composer.
 </BODY>
</HTML>

23 Apr 2009 15:5732

Introduction to CSS 2.1

The style sheet now contains four rules: the first two set the color and background
of the BODY element (it’s a good idea to set the text color and background color
together), while the last two set the color and the background of the H1 element.
Since no color has been specified for the P element, it will inherit the color from its
parent element, namely BODY. The H1 element is also a child element of BODY but
the second rule overrides the inherited value. In CSS there are often such conflicts
between different values, and this specification describes how to resolve them.

CSS 2.1 has more than 90 properties, including ’color’. Let’s look at some of the
others:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
 <HEAD>
 <TITLE>Bach’s home page</TITLE>
 <STYLE type="text/css">
 body {
 font-family: "Gill Sans", sans-serif;
 font-size: 12pt;
 margin: 3em;
 }
 </STYLE>
 </HEAD>
 <BODY>
 <H1>Bach’s home page</H1>
 <P>Johann Sebastian Bach was a prolific composer.
 </BODY>
</HTML>

The first thing to notice is that several declarations are grouped within a block
enclosed by curly braces ({...}), and separated by semicolons, though the last
declaration may also be followed by a semicolon.

The first declaration on the BODY element sets the font family to "Gill Sans". If that
font isn’t available, the user agent (often referred to as a "browser") will use the
’sans-serif’ font family which is one of five generic font families which all users
agents know. Child elements of BODY will inherit the value of the ’font-family’
property.

The second declaration sets the font size of the BODY element to 12 points. The
"point" unit is commonly used in print-based typography to indicate font sizes and
other length values. It’s an example of an absolute unit which does not scale relative
to the environment.

The third declaration uses a relative unit which scales with regard to its
surroundings. The "em" unit refers to the font size of the element. In this case the
result is that the margins around the BODY element are three times wider than the
font size.

3323 Apr 2009 15:57

Introduction to CSS 2.1

2.2 A brief CSS 2.1 tutorial for XML
This section is non-normative.

CSS can be used with any structured document format, for example with
applications of the eXtensible Markup Language [XML10]. In fact, XML depends
more on style sheets than HTML, since authors can make up their own elements
that user agents don’t know how to display.

Here is a simple XML fragment:

<ARTICLE>
 <HEADLINE>Fredrick the Great meets Bach</HEADLINE>
 <AUTHOR>Johann Nikolaus Forkel</AUTHOR>
 <PARA>
 One evening, just as he was getting his
 <INSTRUMENT>flute</INSTRUMENT> ready and his
 musicians were assembled, an officer brought him a list of
 the strangers who had arrived.
 </PARA>
</ARTICLE>

To display this fragment in a document-like fashion, we must first declare which
elements are inline-level (i.e., do not cause line breaks) and which are block-level
(i.e., cause line breaks).

INSTRUMENT { display: inline }
ARTICLE, HEADLINE, AUTHOR, PARA { display: block }

The first rule declares INSTRUMENT to be inline and the second rule, with its
comma-separated list of selectors, declares all the other elements to be block-level.
Element names in XML are case-sensitive, so a selector written in lowercase (e.g.
’instrument’) is different from uppercase (e.g. ’INSTRUMENT’).

One way of linking a style sheet to an XML document is to use a processing
instruction:

<?xml-stylesheet type="text/css" href="bach.css"?>
<ARTICLE>
 <HEADLINE>Fredrick the Great meets Bach</HEADLINE>
 <AUTHOR>Johann Nikolaus Forkel</AUTHOR>
 <PARA>
 One evening, just as he was getting his
 <INSTRUMENT>flute</INSTRUMENT> ready and his
 musicians were assembled, an officer brought him a list of
 the strangers who had arrived.
 </PARA>
</ARTICLE>

A visual user agent could format the above example as:

23 Apr 2009 15:5734

Introduction to CSS 2.1

Fredrick the Great meets Bach
Johann Nikolaus Forkel
One evening, just as he was getting his flute ready and his
musicians were assembled, an officer brought him a list of
the strangers who had arrived.

Notice that the word "flute" remains within the paragraph since it is the content of
the inline element INSTRUMENT.

Still, the text isn’t formatted the way you would expect. For example, the headline
font size should be larger than then the rest of the text, and you may want to display
the author’s name in italic:

INSTRUMENT { display: inline }
ARTICLE, HEADLINE, AUTHOR, PARA { display: block }
HEADLINE { font-size: 1.3em }
AUTHOR { font-style: italic }
ARTICLE, HEADLINE, AUTHOR, PARA { margin: 0.5em }

A visual user agent could format the above example as:

Fredrick the Great meets Bach
Johann Nikolaus Forkel

One evening, just as he was getting his flute ready and his
musicians were assembled, an officer brought him a list of
the strangers who had arrived.

Adding more rules to the style sheet will allow you to further describe the
presentation of the document.

2.3 The CSS 2.1 processing model
This section up to but not including its subsections is non-normative.

This section presents one possible model of how user agents that support CSS
work. This is only a conceptual model; real implementations may vary.

In this model, a user agent processes a source by going through the following
steps:

1. Parse the source document and create a document tree [p. 41] .
2. Identify the target media type [p. 101] .
3. Retrieve all style sheets associated with the document that are specified for the

target media type [p. 101] .

3523 Apr 2009 15:57

Introduction to CSS 2.1

4. Annotate every element of the document tree by assigning a single value to
every property [p. 54] that is applicable to the target media type [p. 101] .
Properties are assigned values according to the mechanisms described in the
section on cascading and inheritance [p. 93] .

Part of the calculation of values depends on the formatting algorithm
appropriate for the target media type [p. 101] . For example, if the target
medium is the screen, user agents apply the visual formatting model [p. 121] .

5. From the annotated document tree, generate a formatting structure. Often, the
formatting structure closely resembles the document tree, but it may also differ
significantly, notably when authors make use of pseudo-elements and
generated content. First, the formatting structure need not be "tree-shaped" at
all -- the nature of the structure depends on the implementation. Second, the
formatting structure may contain more or less information than the document
tree. For instance, if an element in the document tree has a value of ’none’ for
the ’display’ property, that element will generate nothing in the formatting
structure. A list element, on the other hand, may generate more information in
the formatting structure: the list element’s content and list style information (e.g.,
a bullet image).

Note that the CSS user agent does not alter the document tree during this
phase. In particular, content generated due to style sheets is not fed back to the
document language processor (e.g., for reparsing).

6. Transfer the formatting structure to the target medium (e.g., print the results,
display them on the screen, render them as speech, etc.).

2.3.1 The canvas
For all media, the term canvas describes "the space where the formatting structure is
rendered." The canvas is infinite for each dimension of the space, but rendering
generally occurs within a finite region of the canvas, established by the user agent
according to the target medium. For instance, user agents rendering to a screen
generally impose a minimum width and choose an initial width based on the
dimensions of the viewport [p. 122] . User agents rendering to a page generally
impose width and height constraints. Aural user agents may impose limits in audio
space, but not in time.

2.3.2 CSS 2.1 addressing model
CSS 2.1 selectors [p. 71] and properties allow style sheets to refer to the following
parts of a document or user agent:

Elements in the document tree and certain relationships between them (see the
section on selectors [p. 71]).
Attributes of elements in the document tree, and values of those attributes (see
the section on attribute selectors [p. 76]).
Some parts of element content (see the :first-line [p. 88] and :first-letter [p. 88]
pseudo-elements).

23 Apr 2009 15:5736

Introduction to CSS 2.1

Elements of the document tree when they are in a certain state (see the section
on pseudo-classes [p. 81]).
Some aspects of the canvas [p. 36] where the document will be rendered.
Some system information (see the section on user interface [p. 283]).

2.4 CSS design principles
This section is non-normative.

CSS 2.1, as CSS2 and CSS1 before it, is based on a set of design principles:

Forward and backward compatibility . CSS 2.1 user agents will be able to
understand CSS1 style sheets. CSS1 user agents will be able to read CSS 2.1
style sheets and discard parts they don’t understand. Also, user agents with no
CSS support will be able to display style-enhanced documents. Of course, the
stylistic enhancements made possible by CSS will not be rendered, but all
content will be presented.

Complementary to structured documents . Style sheets complement
structured documents (e.g., HTML and XML applications), providing stylistic
information for the marked-up text. It should be easy to change the style sheet
with little or no impact on the markup.

Vendor, platform, and device independence . Style sheets enable documents
to remain vendor, platform, and device independent. Style sheets themselves
are also vendor and platform independent, but CSS 2.1 allows you to target a
style sheet for a group of devices (e.g., printers).

Maintainability . By pointing to style sheets from documents, webmasters can
simplify site maintenance and retain consistent look and feel throughout the site.
For example, if the organization’s background color changes, only one file
needs to be changed.

Simplicity . CSS is a simple style language which is human readable and
writable. The CSS properties are kept independent of each other to the largest
extent possible and there is generally only one way to achieve a certain effect.

Network performance . CSS provides for compact encodings of how to present
content. Compared to images or audio files, which are often used by authors to
achieve certain rendering effects, style sheets most often decrease the content
size. Also, fewer network connections have to be opened which further
increases network performance.

Flexibility . CSS can be applied to content in several ways. The key feature is
the ability to cascade style information specified in the default (user agent) style
sheet, user style sheets, linked style sheets, the document head, and in
attributes for the elements forming the document body.

Richness . Providing authors with a rich set of rendering effects increases the
richness of the Web as a medium of expression. Designers have been longing
for functionality commonly found in desktop publishing and slide-show

3723 Apr 2009 15:57

Introduction to CSS 2.1

applications. Some of the requested rendering effects conflict with device
independence, but CSS 2.1 goes a long way toward granting designers their
requests.

Alternative language bindings . The set of CSS properties described in this
specification form a consistent formatting model for visual and aural
presentations. This formatting model can be accessed through the CSS
language, but bindings to other languages are also possible. For example, a
JavaScript program may dynamically change the value of a certain element’s
’color’ property.

Accessibility . Several CSS features will make the Web more accessible to
users with disabilities:

Properties to control font appearance allow authors to eliminate
inaccessible bit-mapped text images.
Positioning properties allow authors to eliminate mark-up tricks (e.g.,
invisible images) to force layout.
The semantics of !important rules mean that users with particular
presentation requirements can override the author’s style sheets.
The ’inherit’ value for all properties improves cascading generality and
allows for easier and more consistent style tuning.
Improved media support, including media groups and the braille,
embossed, and tty media types, will allow users and authors to tailor pages
to those devices.

Note. For more information about designing accessible documents using CSS
and HTML, see [WAI-PAGEAUTH].

23 Apr 2009 15:5738

Introduction to CSS 2.1

3 Conformance: Requirements and
Recommendations
Contents

................ 393.1 Definitions

.............. 433.2 UA Conformance

............... 443.3 Error conditions

............ 443.4 The text/css content type

3.1 Definitions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 (see [RFC2119]).
However, for readability, these words do not appear in all uppercase letters in this
specification.

At times, this specification recommends good practice for authors and user
agents. These recommendations are not normative and conformance with this
specification does not depend on their realization. These recommendations contain
the expression "We recommend ...", "This specification recommends ...", or some
similar wording.

The fact that a feature is marked as deprecated (namely the ’aural’ [p. 291]
keyword) or going to be deprecated in CSS3 (namely the system colors [p. 284])
also has no influence on conformance. (For example, ’aural’ is marked as
non-normative, so UAs do not need to support it; the system colors are normative,
so UAs must support them.)

All sections of this specification, including appendices, are normative unless
otherwise noted.

Examples and notes [p. 28] are not normative.

Example(s):

Examples usually have the word "example" near their start ("Example:", "The
following example…," "For example," etc.) and are shown in the color maroon, like
this paragraph.

Notes start with the word "Note," are indented and shown in green, like this
paragraph.

Figures are for illustration only, they are not reference renderings, unless explicitly
stated.

3923 Apr 2009 15:57

Conformance: requirements and recommendations

Style sheet
A set of statements that specify presentation of a document.

Style sheets may have three different origins: author [p. 42] , user [p. 42] , and
user agent [p. 42] . The interaction of these sources is described in the section
on cascading and inheritance [p. 93] .

Valid style sheet
The validity of a style sheet depends on the level of CSS used for the style
sheet. All valid CSS1 style sheets are valid CSS 2.1 style sheets, but some
changes from CSS1 mean that a few CSS1 style sheets will have slightly
different semantics in CSS 2.1. Some features in CSS2 are not part of CSS 2.1,
so not all CSS2 style sheets are valid CSS 2.1 style sheets.

A valid CSS 2.1 style sheet must be written according to the grammar of
CSS 2.1 [p. 403] . Furthermore, it must contain only at-rules, property names,
and property values defined in this specification. An illegal (invalid) at-rule,
property name, or property value is one that is not valid.

Source document
The document to which one or more style sheets apply. This is encoded in
some language that represents the document as a tree of elements [p. 40] .
Each element consists of a name that identifies the type of element, optionally a
number of attributes [p. 41] , and a (possibly empty) content [p. 41] . For
example, the source document could be an XML or SGML instance.

Document language
The encoding language of the source document (e.g., HTML, XHTML or SVG).
CSS is used to describe the presentation of document languages and CSS does
not change the underlying semantics of the document languages.

Element
(An SGML term, see [ISO8879].) The primary syntactic constructs of the
document language. Most CSS style sheet rules use the names of these
elements (such as P, TABLE, and OL in HTML) to specify how the elements
should be rendered.

Replaced element

An element whose content is outside the scope of the CSS formatting model,
such as an image, embedded document, or applet. For example, the content of
the HTML IMG element is often replaced by the image that its "src" attribute
designates. Replaced elements often have intrinsic dimensions: an intrinsic
width, an intrinsic height, and an intrinsic ratio. For example, a bitmap image
has an intrinsic width and an intrinsic height specified in absolute units (from
which the intrinsic ratio can obviously be determined). On the other hand, other
documents may not have any intrinsic dimensions (for example a blank HTML
document).

User agents may consider a replaced element to not have any intrinsic
dimensions if it is believed that those dimensions could leak sensitive
information to a third party. For example, if an HTML document changed
intrinsic size depending on the user’s bank balance, then the UA might want to
act as if that resource had no intrinsic dimensions.

23 Apr 2009 15:5740

Conformance: requirements and recommendations

Intrinsic dimensions
The width and height as defined by the element itself, not imposed by the
surroundings. CSS does not define how the intrinsic dimensions are found. In
CSS 2.1 only replaced elements can come with intrinsic dimensions. For raster
images without reliable resolution information, a size of 1 px unit per image
source pixel must be assumed.

Attribute
A value associated with an element, consisting of a name, and an associated
(textual) value.

Content
The content associated with an element in the source document. Some
elements have no content, in which case they are called empty . The content of
an element may include text, and it may include a number of sub-elements, in
which case the element is called the parent of those sub-elements.

Ignore
This term has two slightly different meanings in this specification. First, a CSS
parser must follow certain rules when it discovers unknown or illegal syntax in a
style sheet. The parser must then ignore certain parts of the style sheets. The
exact rules for what parts must be ignored is given in these section:
Declarations and properties [p. 54] , Rules for handling parsing errors [p. 55] ,
Unsupported Values [p. 65] , or may be explained in the text where the term
"ignore" appears. Second, a user agent may (and, in some cases must)
disregard certain properties or values in the style sheet even if the syntax is
legal. For example, table-column elements can’t affect the font of the column, so
the font properties must be ignored.

Rendered content
The content of an element after the rendering that applies to it according to the
relevant style sheets has been applied. How a replaced element’s content is
rendered is not defined by this specification. Rendered content may also be
alternate text for an element (e.g., the value of the XHTML "alt" attribute), and
may include items inserted implicitly or explicitly by the style sheet, such as
bullets, numbering, etc.

Document tree
The tree of elements encoded in the source document. Each element in this tree
has exactly one parent, with the exception of the root element, which has none.

Child
An element A is called the child of element B if and only if B is the parent of A.

Descendant
An element A is called a descendant of an element B, if either (1) A is a child of
B, or (2) A is the child of some element C that is a descendant of B.

Ancestor
An element A is called an ancestor of an element B, if and only if B is a
descendant of A.

Sibling
An element A is called a sibling of an element B, if and only if B and A share the
same parent element. Element A is a preceding sibling if it comes before B in

4123 Apr 2009 15:57

Conformance: requirements and recommendations

the document tree. Element B is a following sibling if it comes after A in the
document tree.

Preceding element
An element A is called a preceding element of an element B, if and only if (1) A
is an ancestor of B or (2) A is a preceding sibling of B.

Following element
An element A is called a following element of an element B, if and only if B is a
preceding element of A.

Author
An author is a person who writes documents and associated style sheets. An
authoring tool is a User Agent [p. 42] that generates style sheets.

User
A user is a person who interacts with a user agent to view, hear, or otherwise
use a document and its associated style sheet. The user may provide a
personal style sheet that encodes personal preferences.

User agent (UA)
A user agent is any program that interprets a document written in the document
language and applies associated style sheets according to the terms of this
specification. A user agent may display a document, read it aloud, cause it to be
printed, convert it to another format, etc.
An HTML user agent is one that supports the HTML 2.x, HTML 3.x, or HTML 4.x
specifications. A user agent that supports XHTML [XHTML], but not HTML (as
listed in the previous sentence) is not considered an HTML user agent for the
purpose of conformance with this specification.

Property
CSS defines a finite set of parameters, called properties, that direct the
rendering of a document. Each property has a name (e.g., ’color’, ’font’ or
border’) and a value (e.g., ’red’, ’12pt Times’ or ’dotted’). Properties are attached
to various parts of the document and to the page on which the document is to
be displayed by the mechanisms of specificity, cascading and inheritance (see
the chapter on Assigning property values, Cascading, and Inheritance [p. 93]).

Here is an example of a source document written in HTML:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
 <TITLE>My home page</TITLE>
 <BODY>
 <H1>My home page</H1>
 <P>Welcome to my home page! Let me tell you about my favorite
 composers:

 Elvis Costello
 Johannes Brahms
 Georges Brassens

 </BODY>
</HTML>

23 Apr 2009 15:5742

Conformance: requirements and recommendations

This results in the following tree:

HTML

HEAD

TITLE

BODY

P UL

LI

H1

LILI

According to the definition of HTML 4, HEAD elements will be inferred during
parsing and become part of the document tree even if the "head" tags are not in the
document source. Similarly, the parser knows where the P and LI elements end,
even though there are no </p> and tags in the source.

Documents written in XHTML (and other XML-based languages) behave
differently: there are no inferred elements and all elements must have end tags.

3.2 UA Conformance
This section defines conformance with the CSS 2.1 specification only. There may be
other levels of CSS in the future that may require a user agent to implement a
different set of features in order to conform.

In general, the following points must be observed by a user agent claiming
conformance to this specification:

1. It must recognize one or more of the CSS 2.1 media types [p. 101] .
2. For each source document, it must attempt to retrieve all associated style

sheets that are appropriate for the recognized media types. If it cannot retrieve
all associated style sheets (for instance, because of network errors), it must
display the document using those it can retrieve.

3. It must parse the style sheets according to this specification. In particular, it
must recognize all at-rules, blocks, declarations, and selectors (see the
grammar of CSS 2.1 [p. 403]). If a user agent encounters a property that
applies for a supported media type, the user agent must parse the value
according to the property definition. This means that the user agent must accept
all valid values and must ignore declarations with invalid values. User agents
must ignore rules that apply to unsupported media types [p. 101] .

4. For each element in a document tree [p. 41] , it must assign a value for every
property according to the property’s definition and the rules of cascading and
inheritance [p. 93] .

5. If the source document comes with alternate style sheet sets (such as with the
"alternate" keyword in HTML 4 [HTML4]), the UA must allow the user to select
which style sheet set the UA should apply.

6. The UA must allow the user to turn off the influence of author style sheets.

4323 Apr 2009 15:57

Conformance: requirements and recommendations

Not every user agent must observe every point, however:

An application that reads style sheets without rendering any content (e.g., a
CSS 2.1 validator) must respect points 1-3.
An authoring tool is only required to output valid style sheets [p. 40]
A user agent that renders a document with associated style sheets must respect
points 1-6 and render the document according to the media-specific
requirements set forth in this specification. Values [p. 94] may be approximated
when required by the user agent.

The inability of a user agent to implement part of this specification due to the
limitations of a particular device (e.g., a user agent cannot render colors on a
monochrome monitor or page) does not imply non-conformance.

UAs must allow users to specify a file that contains the user style sheet. UAs that
run on devices without any means of writing or specifying files are exempted from
this requirement. Additionally, UAs may offer other means to specify user
preferences, for example through a GUI.

CSS 2.1 does not define which properties apply to form controls and frames, or
how CSS can be used to style them. User agents may apply CSS properties to these
elements. Authors are recommended to treat such support as experimental. A future
level of CSS may specify this further.

3.3 Error conditions
In general, this document specifies error handling behavior throughout the
specification. For example, see the rules for handling parsing errors [p. 55] .

3.4 The text/css content type
CSS style sheets that exist in separate files are sent over the Internet as a sequence
of bytes accompanied by encoding information. The structure of the transmission,
termed a message entity, is defined by RFC 2045 and RFC 2616 (see [RFC2045]
and [RFC2616]). A message entity with a content type of "text/css" represents an
independent CSS document. The "text/css" content type has been registered by
RFC 2318 ([RFC2318]).

23 Apr 2009 15:5744

Conformance: requirements and recommendations

4 Syntax and basic data types
Contents

................. 454.1 Syntax

.............. 464.1.1 Tokenization

............... 494.1.2 Keywords

......... 494.1.2.1 Vendor-specific extensions

......... 504.1.2.2 Informative Historical Notes

............ 504.1.3 Characters and case

.............. 524.1.4 Statements

............... 524.1.5 At-rules

............... 534.1.6 Blocks

...... 534.1.7 Rule sets, declaration blocks, and selectors

.......... 544.1.8 Declarations and properties

.............. 554.1.9 Comments

........... 554.2 Rules for handling parsing errors

................. 584.3 Values

........... 584.3.1 Integers and real numbers

............... 584.3.2 Lengths

.............. 614.3.3 Percentages

............. 614.3.4 URLs and URIs

............... 624.3.5 Counters

............... 634.3.6 Colors

............... 654.3.7 Strings

............ 654.3.8 Unsupported Values

........... 654.4 CSS style sheet representation

.694.4.1 Referring to characters not represented in a character encoding

4.1 Syntax
This section describes a grammar (and forward-compatible parsing rules) common
to any level of CSS (including CSS 2.1). Future updates of CSS will adhere to this
core syntax, although they may add additional syntactic constraints.

These descriptions are normative. They are also complemented by the normative
grammar rules presented in Appendix G [p. 403] .

In this specification, the expressions "immediately before" or "immediately after"
mean with no intervening white space or comments.

4523 Apr 2009 15:57

Syntax and basic data types

4.1.1 Tokenization
All levels of CSS — level 1, level 2, and any future levels — use the same core
syntax. This allows UAs to parse (though not completely understand) style sheets
written in levels of CSS that didn’t exist at the time the UAs were created. Designers
can use this feature to create style sheets that work with older user agents, while
also exercising the possibilities of the latest levels of CSS.

At the lexical level, CSS style sheets consist of a sequence of tokens. The list of
tokens for CSS is as follows. The definitions use Lex-style regular expressions. Octal
codes refer to ISO 10646 ([ISO10646]). As in Lex, in case of multiple matches, the
longest match determines the token.

23 Apr 2009 15:5746

Syntax and basic data types

Token Definition

IDENT {ident}

ATKEYWORD @{ident}

STRING {string}

INVALID {invalid}

HASH #{name}

NUMBER {num}

PERCENTAGE {num}%

DIMENSION {num}{ident}

URI
url\({w}{string}{w}\)
|url\({w}([!#$%&*-~]| {nonascii}| {escape})* {w}\)

UNICODE-RANGE u\+[0-9a-f?]{1,6}(-[0-9a-f]{1,6})?

CDO <!--

CDC -->

; ;

{ \{

} \}

(\(

) \)

[\[

] \]

S [\t\r\n\f]+

COMMENT \/*[^*]**+([^/*][^*]**+)*\/

FUNCTION {ident}\(

INCLUDES ~=

DASHMATCH |=

DELIM
any other character not matched by the above rules, and
neither a single nor a double quote

4723 Apr 2009 15:57

Syntax and basic data types

The macros in curly braces ({}) above are defined as follows:

Macro Definition

ident [-]? {nmstart}{nmchar}*

name {nmchar}+

nmstart [_a-z]| {nonascii}| {escape}

nonascii [^\0-\177]

unicode \\[0-9a-f]{1,6}(\r\n|[\n\r\t\f])?

escape {unicode}|\\[^\n\r\f0-9a-f]

nmchar [_a-z0-9-]| {nonascii}| {escape}

num [0-9]+|[0-9]*\.[0-9]+

string {string1}| {string2}

string1 \"([^\n\r\f\\"]|\\{nl}| {escape})*\"

string2 \’([^\n\r\f\\’]|\\{nl}| {escape})*\’

invalid {invalid1}| {invalid2}

invalid1 \"([^\n\r\f\\"]|\\{nl}| {escape})*

invalid2 \’([^\n\r\f\\’]|\\{nl}| {escape})*

nl \n|\r\n|\r|\f

w [\t\r\n\f]*

Below is the core syntax for CSS. The sections that follow describe how to use it.
Appendix G [p. 403] describes a more restrictive grammar that is closer to the CSS
level 2 language. Parts of style sheets that can be parsed according to this grammar
but not according to the grammar in Appendix G are among the parts that will be
ignored according to the rules for handling parsing errors [p. 55] .

stylesheet : [CDO | CDC | S | statement]*;
statement : ruleset | at-rule;
at-rule : ATKEYWORD S* any* [block | ’;’ S*];
block : ’{’ S* [any | block | ATKEYWORD S* | ’;’ S*]* ’}’ S*;
ruleset : selector? ’{’ S* declaration? [’;’ S* declaration?]* ’}’ S*;
selector : any+;
declaration : property S* ’:’ S* value;
property : IDENT;
value : [any | block | ATKEYWORD S*]+;

23 Apr 2009 15:5748

Syntax and basic data types

any : [IDENT | NUMBER | PERCENTAGE | DIMENSION | STRING
 | DELIM | URI | HASH | UNICODE-RANGE | INCLUDES
 | DASHMATCH | FUNCTION S* any* ’)’
 | ’(’ S* any* ’)’ | ’[’ S* any* ’]’] S*;

COMMENT tokens do not occur in the grammar (to keep it readable), but any
number of these tokens may appear anywhere outside other tokens. (Note, however,
that a comment before or within the @charset rule disables the @charset.)

The token S in the grammar above stands for white space. Only the characters
"space" (U+0020), "tab" (U+0009), "line feed" (U+000A), "carriage return" (U+000D),
and "form feed" (U+000C) can occur in white space. Other space-like characters,
such as "em-space" (U+2003) and "ideographic space" (U+3000), are never part of
white space.

The meaning of input that cannot be tokenized or parsed is undefined in CSS 2.1.

4.1.2 Keywords
Keywords have the form of identifiers. [p. 51] Keywords must not be placed between
quotes ("..." or ’...’). Thus,

red

is a keyword, but

"red"

is not. (It is a string [p. 65] .) Other illegal examples:

Illegal example(s):

width: "auto";
border: "none";
background: "red";

4.1.2.1 Vendor-specific extensions

In CSS, identifiers may begin with ’- ’ (dash) or ’_’ (underscore). Keywords and
property names [p. 54] beginning with - ’ or ’_’ are reserved for vendor-specific
extensions. Such vendor-specific extensions should have one of the following
formats:

’-’ + vendor identifier + ’-’ + meaningful name
’_’ + vendor identifier + ’-’ + meaningful name

Example(s):

For example, if XYZ organization added a property to describe the color of the
border on the East side of the display, they might call it -xyz-border-east-color.

Other known examples:

4923 Apr 2009 15:57

Syntax and basic data types

-moz-box-sizing
-moz-border-radius
-wap-accesskey

An initial dash or underscore is guaranteed never to be used in a property or
keyword by any current or future level of CSS. Thus typical CSS implementations
may not recognize such properties and may ignore them according to the rules for
handling parsing errors [p. 55] . However, because the initial dash or underscore is
part of the grammar, CSS 2.1 implementers should always be able to use a
CSS-conforming parser, whether or not they support any vendor-specific extensions.

Authors should avoid vendor-specific extensions

4.1.2.2 Informative Historical Notes

This section is informative.

At the time of writing, the following prefixes are known to exist:

prefix organization

-ms- , mso- Microsoft

-moz- Mozilla

-o- , -xv- Opera Software

-atsc- Advanced Television Standards Committee

-wap- The WAP Forum

-khtml- KDE

-webkit- Apple

prince- YesLogic

-ah- Antenna House

-hp- Hewlett Packard

-ro- Real Objects

-rim- Research In Motion

4.1.3 Characters and case
The following rules always hold:

All CSS syntax is case-insensitive within the ASCII range (i.e. [a-z] and [A-Z] are
equivalent), except for parts that are not under the control of CSS. For example,
the case-sensitivity of values of the HTML attributes "id" and "class", of font
names, and of URIs lies outside the scope of this specification. Note in

23 Apr 2009 15:5750

Syntax and basic data types

particular that element names are case-insensitive in HTML, but case-sensitive
in XML.
In CSS, identifiers (including element names, classes, and IDs in selectors
[p. 71]) can contain only the characters [a-zA-Z0-9] and ISO 10646 characters
U+00A1 and higher, plus the hyphen (-) and the underscore (_); they cannot
start with a digit, or a hyphen followed by a digit. Identifiers can also contain
escaped characters and any ISO 10646 character as a numeric code (see next
item). For instance, the identifier "B&W?" may be written as "B\&W\?" or "B\26
W\3F".

Note that Unicode is code-by-code equivalent to ISO 10646 (see [UNICODE]
and [ISO10646]).

In CSS 2.1, a backslash (\) character indicates three types of character
escapes.

First, inside a string [p. 65] , a backslash followed by a newline is ignored (i.e.,
the string is deemed not to contain either the backslash or the newline).

Second, it cancels the meaning of special CSS characters. Except within CSS
comments, any character (except a hexadecimal digit, linefeed, carriage return
or form feed) can be escaped with a backslash to remove its special meaning.
For example, "\"" is a string consisting of one double quote. Style sheet
preprocessors must not remove these backslashes from a style sheet since that
would change the style sheet’s meaning.

Third, backslash escapes allow authors to refer to characters they can’t easily
put in a document. In this case, the backslash is followed by at most six
hexadecimal digits (0..9A..F), which stand for the ISO 10646 ([ISO10646])
character with that number, which must not be zero. (It is undefined in CSS 2.1
what happens if a style sheet does contain a character with Unicode codepoint
zero.) If a character in the range [0-9a-fA-F] follows the hexadecimal number,
the end of the number needs to be made clear. There are two ways to do that:

1. with a space (or other white space character): "\26 B" ("&B"). In this case,
user agents should treat a "CR/LF" pair (U+000D/U+000A) as a single
white space character.

2. by providing exactly 6 hexadecimal digits: "\000026B" ("&B")

In fact, these two methods may be combined. Only one white space character
is ignored after a hexadecimal escape. Note that this means that a "real" space
after the escape sequence must itself either be escaped or doubled.

If the number is outside the range allowed by Unicode (e.g., "\110000" is
above the maximum 10FFFF allowed in current Unicode), the UA may replace
the escape with the "replacement character" (U+FFFD). If the character is to be
displayed, the UA should show a visible symbol, such as a "missing character"
glyph (cf. 15.2, [p. 233] point 5).
Note: Backslash escapes, where allowed, are always considered to be part of
an identifier [p. 51] or a string (i.e., "\7B" is not punctuation, even though "{" is,
and "\32" is allowed at the start of a class name, even though "2" is not).

5123 Apr 2009 15:57

Syntax and basic data types

The identifier "te\st" is exactly the same identifier as "test".

4.1.4 Statements
A CSS style sheet, for any level of CSS, consists of a list of statements (see the
grammar [p. 46] above). There are two kinds of statements: at-rules and rule sets.
There may be white space [p. 49] around the statements.

4.1.5 At-rules
At-rules start with an at-keyword, an ’@’ character followed immediately by an
identifier [p. 51] (for example, ’@import’, ’@page’).

An at-rule consists of everything up to and including the next semicolon (;) or the
next block, [p. 53] whichever comes first.

CSS 2.1 user agents must ignore [p. 55] any ’@import’ [p. 96] rule that occurs
inside a block [p. 53] or after any non-ignored statement other than an @charset or
an @import rule.

Illegal example(s):

Assume, for example, that a CSS 2.1 parser encounters this style sheet:

@import "subs.css";
h1 { color: blue }
@import "list.css";

The second ’@import’ is illegal according to CSS 2.1. The CSS 2.1 parser ignores
[p. 55] the whole at-rule, effectively reducing the style sheet to:

@import "subs.css";
h1 { color: blue }

Illegal example(s):

In the following example, the second ’@import’ rule is invalid, since it occurs inside
a ’@media’ block [p. 53] .

@import "subs.css";
@media print {
 @import "print-main.css";
 body { font-size: 10pt }
}
h1 {color: blue }

Instead, to achieve the effect of only importing a style sheet for ’print’ media, use
the @import rule with media syntax, e.g.:

@import "subs.css";
@import "print-main.css" print;
@media print {
 body { font-size: 10pt }
}
h1 {color: blue }

23 Apr 2009 15:5752

Syntax and basic data types

4.1.6 Blocks
A block starts with a left curly brace ({) and ends with the matching right curly brace
(}). In between there may be any tokens, except that parentheses (()), brackets ([])
and braces ({ }) must always occur in matching pairs and may be nested. Single (’)
and double quotes (") must also occur in matching pairs, and characters between
them are parsed as a string. See Tokenization [p. 46] above for the definition of a
string.

Illegal example(s):

Here is an example of a block. Note that the right brace between the double
quotes does not match the opening brace of the block, and that the second single
quote is an escaped character [p. 51] , and thus doesn’t match the first single quote:

{ causta: "}" + ({7} * ’\’’) }

Note that the above rule is not valid CSS 2.1, but it is still a block as defined
above.

4.1.7 Rule sets, declaration blocks, and selectors
A rule set (also called "rule") consists of a selector followed by a declaration block.

A declaration block starts with a left curly brace ({) and ends with the matching
right curly brace (}). In between there must be a list of zero or more
semicolon-separated (;) declarations.

The selector (see also the section on selectors [p. 71]) consists of everything up
to (but not including) the first left curly brace ({). A selector always goes together with
a declaration block. When a user agent can’t parse the selector (i.e., it is not valid
CSS 2.1), it must ignore [p. 55] the selector and the following declaration block (if
any) as well.

CSS 2.1 gives a special meaning to the comma (,) in selectors. However, since it
is not known if the comma may acquire other meanings in future updates of CSS,
the whole statement should be ignored [p. 55] if there is an error anywhere in the
selector, even though the rest of the selector may look reasonable in CSS 2.1.

Illegal example(s):

For example, since the "&" is not a valid token in a CSS 2.1 selector, a CSS 2.1
user agent must ignore [p. 55] the whole second line, and not set the color of H3 to
red:

h1, h2 {color: green }
h3, h4 & h5 {color: red }
h6 {color: black }

Example(s):

5323 Apr 2009 15:57

Syntax and basic data types

Here is a more complex example. The first two pairs of curly braces are inside a
string, and do not mark the end of the selector. This is a valid CSS 2.1 rule.

p[example="public class foo\
{\
 private int x;\
\
 foo(int x) {\
 this.x = x;\
 }\
\
}"] { color: red }

4.1.8 Declarations and properties
A declaration is either empty or consists of a property name, followed by a colon (:),
followed by a value. Around each of these there may be white space [p. 49] .

Because of the way selectors work, multiple declarations for the same selector
may be organized into semicolon (;) separated groups.

Example(s):

Thus, the following rules:

h1 { font-weight: bold }
h1 { font-size: 12px }
h1 { line-height: 14px }
h1 { font-family: Helvetica }
h1 { font-variant: normal }
h1 { font-style: normal }

are equivalent to:

h1 {
 font-weight: bold;
 font-size: 12px;
 line-height: 14px;
 font-family: Helvetica;
 font-variant: normal;
 font-style: normal
}

A property name is an identifier [p. 51] . Any token may occur in the value.
Parentheses ("()"), brackets ("[]"), braces ("{ }"), single quotes (’) and double quotes
(") must come in matching pairs, and semicolons not in strings must be escaped
[p. 51] . Parentheses, brackets, and braces may be nested. Inside the quotes,
characters are parsed as a string.

The syntax of values is specified separately for each property, but in any case,
values are built from identifiers, strings, numbers, lengths, percentages, URIs,
colors, etc.

23 Apr 2009 15:5754

Syntax and basic data types

A user agent must ignore [p. 55] a declaration with an invalid property name or an
invalid value. Every CSS 2.1 property has its own syntactic and semantic restrictions
on the values it accepts.

Illegal example(s):

For example, assume a CSS 2.1 parser encounters this style sheet:

h1 { color: red; font-style: 12pt } /* Invalid value: 12pt */
p { color: blue; font-vendor: any; /* Invalid prop.: font-vendor */
 font-variant: small-caps }
em em { font-style: normal }

The second declaration on the first line has an invalid value ’12pt’. The second
declaration on the second line contains an undefined property ’font-vendor’. The
CSS 2.1 parser will ignore [p. 55] these declarations, effectively reducing the style
sheet to:

h1 { color: red; }
p { color: blue; font-variant: small-caps }
em em { font-style: normal }

4.1.9 Comments
Comments begin with the characters "/*" and end with the characters "*/". They may
occur anywhere between tokens, and their contents have no influence on the
rendering. Comments may not be nested.

CSS also allows the SGML comment delimiters ("<!--" and "-->") in certain places
defined by the grammar, but they do not delimit CSS comments. They are permitted
so that style rules appearing in an HTML source document (in the STYLE element)
may be hidden from pre-HTML 3.2 user agents. See the HTML 4 specification
([HTML4]) for more information.

4.2 Rules for handling parsing errors
In some cases, user agents must ignore part of an illegal style sheet. This
specification defines ignore to mean that the user agent parses the illegal part (in
order to find its beginning and end), but otherwise acts as if it had not been there.
CSS 2.1 reserves for future updates of CSS all property:value combinations and
@-keywords that do not contain an identifier beginning with dash or underscore.
Implementations must ignore such combinations (other than those introduced by
future updates of CSS).

To ensure that new properties and new values for existing properties can be
added in the future, user agents are required to obey the following rules when they
encounter the following scenarios:

Unknown properties. User agents must ignore [p. 55] a declaration [p. 54] with
an unknown property. For example, if the style sheet is:

5523 Apr 2009 15:57

Syntax and basic data types

h1 { color: red; rotation: 70minutes }

the user agent will treat this as if the style sheet had been

h1 { color: red }

Illegal values. User agents must ignore a declaration with an illegal value. For
example:

img { float: left } /* correct CSS 2.1 */
img { float: left here } /* "here" is not a value of ’float’ */
img { background: "red" } /* keywords cannot be quoted */
img { border-width: 3 } /* a unit must be specified for length values */

A CSS 2.1 parser would honor the first rule and ignore [p. 55] the rest, as if the
style sheet had been:

img { float: left }
img { }
img { }
img { }

A user agent conforming to a future CSS specification may accept one or
more of the other rules as well.

Malformed declarations. User agents must handle unexpected tokens
encountered while parsing a declaration by reading until the end of the
declaration, while observing the rules for matching pairs of (), [], {}, "", and ’’, and
correctly handling escapes. For example, a malformed declaration may be
missing a property, colon (:) or value. The following are all equivalent:

p { color:green }
p { color:green; color } /* malformed declaration missing ’:’, value */
p { color:red; color; color:green } /* same with expected recovery */
p { color:green; color: } /* malformed declaration missing value */
p { color:red; color:; color:green } /* same with expected recovery */
p { color:green; color{;color:maroon} } /* unexpected tokens { } */
p { color:red; color{;color:maroon}; color:green } /* same with recovery */

Malformed statements. User agents must handle unexpected tokens
encountered while parsing a statement by reading until the end of the
statement, while observing the rules for matching pairs of (), [], {}, "", and ’’, and
correctly handling escapes. For example, a malformed statement may contain
an unexpected closing brace or at-keyword. E.g., the following lines are all
ignored:

p @here {color: red} /* ruleset with unexpected at-keyword "@here" */
@foo @bar; /* at-rule with unexpected at-keyword "@bar" */
}} {{ - }} /* ruleset with unexpected right brace */
) ({}) p {color: red } /* ruleset with unexpected right parenthesis */

Invalid at-keywords. User agents must ignore [p. 55] an invalid at-keyword
together with everything following it, up to and including the next semicolon (;),
the next block ({...}), or the end of the block (}) that contains the invalid
at-keyword, whichever comes first. For example, consider the following:

23 Apr 2009 15:5756

Syntax and basic data types

@three-dee {
 @background-lighting {
 azimuth: 30deg;
 elevation: 190deg;
 }
 h1 { color: red }
}
h1 { color: blue }

The ’@three-dee’ at-rule is not part of CSS 2.1. Therefore, the whole at-rule
(up to, and including, the third right curly brace) is ignored. [p. 55] A CSS 2.1
user agent ignores [p. 55] it, effectively reducing the style sheet to:

h1 { color: blue }

Something inside an at-rule that is ignored because it is invalid, such as an
invalid declaration within an @media-rule, does not make the entire at-rule
invalid.

Unexpected end of style sheet.
User agents must close all open constructs (for example: blocks,

parentheses, brackets, rules, strings, and comments) at the end of the style
sheet. For example:

 @media screen {
 p:before { content: ’Hello

would be treated the same as:

 @media screen {
 p:before { content: ’Hello’; }
 }

in a conformant UA.

Unexpected end of string.
User agents must close strings upon reaching the end of a line, but then drop

the construct (declaration or rule) in which the string was found. For example:

 p {
 color: green;
 font-family: ’Courier New Times
 color: red;
 color: green;
 }

...would be treated the same as:

 p { color: green; color: green; }

...because the second declaration (from ’font-family’ to the semicolon after
’color: red’) is invalid and is dropped.

See also Rule sets, declaration blocks, and selectors [p. 53] for parsing rules for
declaration blocks.

5723 Apr 2009 15:57

Syntax and basic data types

4.3 Values

4.3.1 Integers and real numbers
Some value types may have integer values (denoted by <integer>) or real number
values (denoted by <number>). Real numbers and integers are specified in decimal
notation only. An <integer> consists of one or more digits "0" to "9". A <number> can
either be an <integer>, or it can be zero or more digits followed by a dot (.) followed
by one or more digits. Both integers and real numbers may be preceded by a "-" or
"+" to indicate the sign. -0 is equivalent to 0 and is not a negative number.

Note that many properties that allow an integer or real number as a value actually
restrict the value to some range, often to a non-negative value.

4.3.2 Lengths
Lengths refer to horizontal or vertical measurements.

The format of a length value (denoted by <length> in this specification) is a
<number> (with or without a decimal point) immediately followed by a unit identifier
(e.g., px, em, etc.). After a zero length, the unit identifier is optional.

Some properties allow negative length values, but this may complicate the
formatting model and there may be implementation-specific limits. If a negative
length value cannot be supported, it should be converted to the nearest value that
can be supported.

If a negative length value is set on a property that does not allow negative length
values, the declaration is ignored.

There are two types of length units: relative and absolute. Relative length units
specify a length relative to another length property. Style sheets that use relative
units will more easily scale from one medium to another (e.g., from a computer
display to a laser printer).

Relative units are:

em: the ’font-size’ of the relevant font
ex: the ’x-height’ of the relevant font
px : pixels, relative to the viewing device

Example(s):

h1 { margin: 0.5em } /* em */
h1 { margin: 1ex } /* ex */
p { font-size: 12px } /* px */

The ’em’ unit is equal to the computed value of the ’font-size’ property of the
element on which it is used. The exception is when ’em’ occurs in the value of the
’font-size’ property itself, in which case it refers to the font size of the parent element.
It may be used for vertical or horizontal measurement. (This unit is also sometimes

23 Apr 2009 15:5758

Syntax and basic data types

called the quad-width in typographic texts.)

The ’ex’ unit is defined by the element’s first available font. The ’x-height’ is so
called because it is often equal to the height of the lowercase "x". However, an ’ex’ is
defined even for fonts that don’t contain an "x".

The x-height of a font can be found in different ways. Some fonts contain reliable
metrics for the x-height. If reliable font metrics are not available, UAs may determine
the x-height from the height of a lowercase glyph. One possible heuristics is to look
at how far the glyph for the lowercase "o" extends below the baseline, and subtract
that value from the top of its bounding box. In the cases where it is impossible or
impractical to determine the x-height, a value of 0.5em should be used.

Example(s):

The rule:

h1 { line-height: 1.2em }

means that the line height of "h1" elements will be 20% greater than the font size
of the "h1" elements. On the other hand:

h1 { font-size: 1.2em }

means that the font-size of "h1" elements will be 20% greater than the font size
inherited by "h1" elements.

When specified for the root of the document tree [p. 41] (e.g., "HTML" in HTML),
’em’ and ’ex’ refer to the property’s initial value [p. 27] .

Pixel units are relative to the resolution of the viewing device, i.e., most often a
computer display. If the pixel density of the output device is very different from that of
a typical computer display, the user agent should rescale pixel values. It is
recommended that the pixel unit refer to the whole number of device pixels that best
approximates the reference pixel. It is recommended that the reference pixel be the
visual angle of one pixel on a device with a pixel density of 96dpi and a distance
from the reader of an arm’s length. For a nominal arm’s length of 28 inches, the
visual angle is therefore about 0.0213 degrees.

For reading at arm’s length, 1px thus corresponds to about 0.26 mm (1/96 inch).
When printed on a laser printer, meant for reading at a little less than arm’s length
(55 cm, 21 inches), 1px is about 0.20 mm. On a 300 dots-per-inch (dpi) printer, that
may be rounded up to 3 dots (0.25 mm); on a 600 dpi printer, it can be rounded to 5
dots.

The two images below illustrate the effect of viewing distance on the size of a pixel
and the effect of a device’s resolution. In the first image, a reading distance of 71 cm
(28 inch) results in a px of 0.26 mm, while a reading distance of 3.5 m (12 feet)
requires a px of 1.3 mm.

5923 Apr 2009 15:57

Syntax and basic data types

28 inch
71 cm

140 inch
3.5 m

0.26 mm
1.3 mm

viewer

In the second image, an area of 1px by 1px is covered by a single dot in a
low-resolution device (a computer screen), while the same area is covered by 16
dots in a higher resolution device (such as a 400 dpi laser printer).

laserprint

monitor screen

1px
1px

= 1 device pixel

Child elements do not inherit the relative values specified for their parent; they
inherit the computed values [p. 94] .

Example(s):

In the following rules, the computed ’text-indent’ value of "h1" elements will be
36px, not 45px, if "h1" is a child of the "body" element.

body {
 font-size: 12px;
 text-indent: 3em; /* i.e., 36px */
}
h1 { font-size: 15px }

23 Apr 2009 15:5760

Syntax and basic data types

Absolute length units are only useful when the physical properties of the output
medium are known. The absolute units are:

in : inches — 1 inch is equal to 2.54 centimeters.
cm : centimeters
mm : millimeters
pt : points — the points used by CSS 2.1 are equal to 1/72nd of an inch.
pc : picas — 1 pica is equal to 12 points.

Example(s):

h1 { margin: 0.5in } /* inches */
h2 { line-height: 3cm } /* centimeters */
h3 { word-spacing: 4mm } /* millimeters */
h4 { font-size: 12pt } /* points */
h4 { font-size: 1pc } /* picas */

In cases where the used [p. 94] length cannot be supported, user agents must
approximate it in the actual value. [p. 94]

4.3.3 Percentages
The format of a percentage value (denoted by <percentage> in this specification) is
a <number> immediately followed by ’%’.

Percentage values are always relative to another value, for example a length.
Each property that allows percentages also defines the value to which the
percentage refers. The value may be that of another property for the same element,
a property for an ancestor element, or a value of the formatting context (e.g., the
width of a containing block [p. 122]). When a percentage value is set for a property
of the root [p. 41] element and the percentage is defined as referring to the inherited
value of some property, the resultant value is the percentage times the initial value
[p. 27] of that property.

Example(s):

Since child elements (generally) inherit the computed values [p. 94] of their parent,
in the following example, the children of the P element will inherit a value of 12px for
’line-height’, not the percentage value (120%):

p { font-size: 10px }
p { line-height: 120% } /* 120% of ’font-size’ */

4.3.4 URLs and URIs
URI values (Uniform Resource Identifiers, see [RFC3986], which includes URLs,
URNs, etc) in this specification are denoted by <uri>. The functional notation used to
designate URIs in property values is "url()", as in:

6123 Apr 2009 15:57

Syntax and basic data types

Example(s):

body { background: url("http://www.example.com/pinkish.png") }

The format of a URI value is ’url(’ followed by optional white space [p. 49] followed
by an optional single quote (’) or double quote (") character followed by the URI
itself, followed by an optional single quote (’) or double quote (") character followed
by optional white space followed by ’)’. The two quote characters must be the same.

Example(s):

An example without quotes:

li { list-style: url(http://www.example.com/redball.png) disc }

Some characters appearing in an unquoted URI, such as parentheses, commas,
white space characters, single quotes (’) and double quotes ("), must be escaped
with a backslash so that the resulting URI value is a URI token: ’\(’, ’\)’, ’\,’.

Depending on the type of URI, it might also be possible to write the above
characters as URI-escapes (where "(" = %28, ")" = %29, etc.) as described in
[RFC3986].

In order to create modular style sheets that are not dependent on the absolute
location of a resource, authors may use relative URIs. Relative URIs (as defined in
[RFC3986]) are resolved to full URIs using a base URI. RFC 3986, section 5, defines
the normative algorithm for this process. For CSS style sheets, the base URI is that
of the style sheet, not that of the source document.

Example(s):

For example, suppose the following rule:

body { background: url("yellow") }

is located in a style sheet designated by the URI:

http://www.example.org/style/basic.css

The background of the source document’s BODY will be tiled with whatever image
is described by the resource designated by the URI

http://www.example.org/style/yellow

User agents may vary in how they handle invalid URIs or URIs that designate
unavailable or inapplicable resources.

4.3.5 Counters
Counters are denoted by case-sensitive identifiers (see the ’counter-increment’ and
’counter-reset’ properties). To refer to the value of a counter, the notation
’counter(<identifier>)’ or ’counter(<identifier>, <’list-style-type’>)’, with optional white
space separating the tokens, is used. The default style is ’decimal’.

23 Apr 2009 15:5762

Syntax and basic data types

To refer to a sequence of nested counters of the same name, the notation is
’counters(<identifier>, <string>)’ or ’counters(<identifier>, <string>, <’list-style-type’>)’
with optional white space separating the tokens.

See "Nested counters and scope" [p. 204] in the chapter on generated content
[p. 195] for how user agents must determine the value or values of the counter. See
the definition of counter values of the ’content’ property for how it must convert these
values to a string.

In CSS 2.1, the values of counters can only be referred to from the ’content’
property. Note that ’none’ is a possible <’list-style-type’>: ’counter(x, none)’ yields an
empty string.

Example(s):

Here is a style sheet that numbers paragraphs (p) for each chapter (h1). The
paragraphs are numbered with roman numerals, followed by a period and a space:

p {counter-increment: par-num}
h1 {counter-reset: par-num}
p:before {content: counter(par-num, upper-roman) ". "}

4.3.6 Colors
A <color> is either a keyword or a numerical RGB specification.

The list of color keywords is: aqua, black, blue, fuchsia, gray, green, lime, maroon,
navy, olive, orange, purple, red, silver, teal, white, and yellow. These 17 colors have
the following values:

maroon #800000red #ff0000orange #ffA500yellow #ffff00olive #808000
purple #800080 fuchsia #ff00ff white #ffffff lime #00ff00 green #008000
navy #000080 blue #0000ff aqua #00ffff teal #008080
black #000000 silver #c0c0c0 gray #808080

In addition to these color keywords, users may specify keywords that correspond
to the colors used by certain objects in the user’s environment. Please consult the
section on system colors [p. 284] for more information.

Example(s):

body {color: black; background: white }
h1 { color: maroon }
h2 { color: olive }

The RGB color model is used in numerical color specifications. These examples
all specify the same color:

Example(s):

em { color: #f00 } /* #rgb */
em { color: #ff0000 } /* #rrggbb */
em { color: rgb(255,0,0) }
em { color: rgb(100%, 0%, 0%) }

6323 Apr 2009 15:57

Syntax and basic data types

The format of an RGB value in hexadecimal notation is a ’#’ immediately followed
by either three or six hexadecimal characters. The three-digit RGB notation (#rgb) is
converted into six-digit form (#rrggbb) by replicating digits, not by adding zeros. For
example, #fb0 expands to #ffbb00. This ensures that white (#ffffff) can be specified
with the short notation (#fff) and removes any dependencies on the color depth of
the display.

The format of an RGB value in the functional notation is ’rgb(’ followed by a
comma-separated list of three numerical values (either three integer values or three
percentage values) followed by ’)’. The integer value 255 corresponds to 100%, and
to F or FF in the hexadecimal notation: rgb(255,255,255) = rgb(100%,100%,100%) =
#FFF. White space [p. 49] characters are allowed around the numerical values.

All RGB colors are specified in the sRGB color space (see [SRGB]). User agents
may vary in the fidelity with which they represent these colors, but using sRGB
provides an unambiguous and objectively measurable definition of what the color
should be, which can be related to international standards (see [COLORIMETRY]).

Conforming user agents [p. 43] may limit their color-displaying efforts to
performing a gamma-correction on them. sRGB specifies a display gamma of 2.2
under specified viewing conditions. User agents should adjust the colors given in
CSS such that, in combination with an output device’s "natural" display gamma, an
effective display gamma of 2.2 is produced. See the section on gamma correction
[p. 230] for further details. Note that only colors specified in CSS are affected; e.g.,
images are expected to carry their own color information.

Values outside the device gamut should be clipped or mapped into the gamut
when the gamut is known: the red, green, and blue values must be changed to fall
within the range supported by the device. Users agents may perform higher quality
mapping of colors from one gamut to another. For a typical CRT monitor, whose
device gamut is the same as sRGB, the four rules below are equivalent:

Example(s):

em { color: rgb(255,0,0) } /* integer range 0 - 255 */
em { color: rgb(300,0,0) } /* clipped to rgb(255,0,0) */
em { color: rgb(255,-10,0) } /* clipped to rgb(255,0,0) */
em { color: rgb(110%, 0%, 0%) } /* clipped to rgb(100%,0%,0%) */

Other devices, such as printers, have different gamuts than sRGB; some colors
outside the 0..255 sRGB range will be representable (inside the device gamut), while
other colors inside the 0..255 sRGB range will be outside the device gamut and will
thus be mapped.

Note. Mapping or clipping of color values should be done to the actual device
gamut if known (which may be larger or smaller than 0..255).

23 Apr 2009 15:5764

Syntax and basic data types

4.3.7 Strings
Strings can either be written with double quotes or with single quotes. Double quotes
cannot occur inside double quotes, unless escaped (e.g., as ’\"’ or as ’\22’).
Analogously for single quotes (e.g., "\’" or "\27").

Example(s):

"this is a ’string’"
"this is a \"string\""
’this is a "string"’
’this is a \’string\’’

A string cannot directly contain a newline. To include a newline in a string, use an
escape representing the line feed character in ISO-10646 (U+000A), such as "\A" or
"\00000a". This character represents the generic notion of "newline" in CSS. See the
’content’ property for an example.

It is possible to break strings over several lines, for esthetic or other reasons, but
in such a case the newline itself has to be escaped with a backslash (\). For
instance, the following two selectors are exactly the same:

Example(s):

a[title="a not s\
o very long title"] {/*...*/}
a[title="a not so very long title"] {/*...*/}

4.3.8 Unsupported Values
If a UA does not support a particular value, it should ignore that value when parsing
style sheets, as if that value was an illegal value [p. 56] . For example:

Example(s):

 h3 {
 display: inline;
 display: run-in;
 }

A UA that supports the ’run-in’ value for the ’display’ property will accept the first
display declaration and then "write over" that value with the second display
declaration. A UA that does not support the ’run-in’ value will process the first display
declaration and ignore the second display declaration.

4.4 CSS style sheet representation
A CSS style sheet is a sequence of characters from the Universal Character Set
(see [ISO10646]). For transmission and storage, these characters must be encoded
by a character encoding that supports the set of characters available in US-ASCII
(e.g., UTF-8, ISO 8859-x, SHIFT JIS, etc.). For a good introduction to character sets
and character encodings, please consult the HTML 4 specification ([HTML4], chapter

6523 Apr 2009 15:57

Syntax and basic data types

5). See also the XML 1.0 specification ([XML10], sections 2.2 and 4.3.3, and
Appendix F).

When a style sheet is embedded in another document, such as in the STYLE
element or "style" attribute of HTML, the style sheet shares the character encoding
of the whole document.

When a style sheet resides in a separate file, user agents must observe the
following priorities when determining a style sheet’s character encoding (from
highest priority to lowest):

1. An HTTP "charset" parameter in a "Content-Type" field (or similar parameters in
other protocols)

2. BOM and/or @charset (see below)
3. <link charset=""> or other metadata from the linking mechanism (if any)
4. charset of referring style sheet or document (if any)
5. Assume UTF-8

Authors using an @charset rule must place the rule at the very beginning of the
style sheet, preceded by no characters. (If a byte order mark is appropriate for the
encoding used, it may precede the @charset rule.)

After "@charset", authors specify the name of a character encoding (in quotes).
For example:

@charset "ISO-8859-1";

@charset must be written literally, i.e., the 10 characters ’@charset "’ (lowercase,
no backslash escapes), followed by the encoding name, followed by ’";’.

The name must be a charset name as described in the IANA registry. See
[CHARSETS] for a complete list of charsets. Authors should use the charset names
marked as "preferred MIME name" in the IANA registry.

User agents must support at least the UTF-8 encoding.

User agents must ignore any @charset rule not at the beginning of the style sheet.
When user agents detect the character encoding using the BOM and/or the
@charset rule, they should follow the following rules:

Except as specified in these rules, all @charset rules are ignored.
The encoding is detected based on the stream of bytes that begins the style
sheet. The following table gives a set of possibilities for initial byte sequences
(written in hexadecimal). The first row that matches the beginning of the style
sheet gives the result of encoding detection based on the BOM and/or @charset
rule. If no rows match, the encoding cannot be detected based on the BOM
and/or @charset rule. The notation (...)* refers to repetition for which the best
match is the one that repeats as few times as possible. The bytes marked "XX"
are those used to determine the name of the encoding, by treating them, in the
order given, as a sequence of ASCII characters. Bytes marked "YY" are similar,
but need to be transcoded into ASCII as noted. User agents may ignore entries

23 Apr 2009 15:5766

Syntax and basic data types

in the table if they do not support any encodings relevant to the entry.

Initial Bytes Result

EF BB BF 40 63 68 61 72 73 65 74 20 22
(XX)* 22 3B

as specified

EF BB BF UTF-8

40 63 68 61 72 73 65 74 20 22 (XX)* 22
3B

as specified

FE FF 00 40 00 63 00 68 00 61 00 72 00
73 00 65 00 74 00 20 00 22 (00 XX)* 00
22 00 3B

as specified (with BE endianness
if not specified)

00 40 00 63 00 68 00 61 00 72 00 73 00
65 00 74 00 20 00 22 (00 XX)* 00 22 00
3B

as specified (with BE endianness
if not specified)

FF FE 40 00 63 00 68 00 61 00 72 00 73
00 65 00 74 00 20 00 22 00 (XX 00)* 22
00 3B 00

as specified (with LE endianness
if not specified)

40 00 63 00 68 00 61 00 72 00 73 00 65
00 74 00 20 00 22 00 (XX 00)* 22 00 3B
00

as specified (with LE endianness
if not specified)

00 00 FE FF 00 00 00 40 00 00 00 63 00
00 00 68 00 00 00 61 00 00 00 72 00 00
00 73 00 00 00 65 00 00 00 74 00 00 00
20 00 00 00 22 (00 00 00 XX)* 00 00 00
22 00 00 00 3B

as specified (with BE endianness
if not specified)

00 00 00 40 00 00 00 63 00 00 00 68 00
00 00 61 00 00 00 72 00 00 00 73 00 00
00 65 00 00 00 74 00 00 00 20 00 00 00
22 (00 00 00 XX)* 00 00 00 22 00 00 00
3B

as specified (with BE endianness
if not specified)

00 00 FF FE 00 00 40 00 00 00 63 00 00
00 68 00 00 00 61 00 00 00 72 00 00 00
73 00 00 00 65 00 00 00 74 00 00 00 20
00 00 00 22 00 (00 00 XX 00)* 00 00 22
00 00 00 3B 00

as specified (with 2143
endianness if not specified)

6723 Apr 2009 15:57

Syntax and basic data types

00 00 40 00 00 00 63 00 00 00 68 00 00
00 61 00 00 00 72 00 00 00 73 00 00 00
65 00 00 00 74 00 00 00 20 00 00 00 22
00 (00 00 XX 00)* 00 00 22 00 00 00 3B
00

as specified (with 2143
endianness if not specified)

FE FF 00 00 00 40 00 00 00 63 00 00 00
68 00 00 00 61 00 00 00 72 00 00 00 73
00 00 00 65 00 00 00 74 00 00 00 20 00
00 00 22 00 00 (00 XX 00 00)* 00 22 00
00 00 3B 00 00

as specified (with 3412
endianness if not specified)

00 40 00 00 00 63 00 00 00 68 00 00 00
61 00 00 00 72 00 00 00 73 00 00 00 65
00 00 00 74 00 00 00 20 00 00 00 22 00
00 (00 XX 00 00)* 00 22 00 00 00 3B 00
00

as specified (with 3412
endianness if not specified)

FF FE 00 00 40 00 00 00 63 00 00 00 68
00 00 00 61 00 00 00 72 00 00 00 73 00
00 00 65 00 00 00 74 00 00 00 20 00 00
00 22 00 00 00 (XX 00 00 00)* 22 00 00
00 3B 00 00 00

as specified (with LE endianness
if not specified)

40 00 00 00 63 00 00 00 68 00 00 00 61
00 00 00 72 00 00 00 73 00 00 00 65 00
00 00 74 00 00 00 20 00 00 00 22 00 00
00 (XX 00 00 00)* 22 00 00 00 3B 00 00
00

as specified (with LE endianness
if not specified)

00 00 FE FF UTF-32-BE

FF FE 00 00 UTF-32-LE

00 00 FF FE UTF-32-2143

FE FF 00 00 UTF-32-3412

FE FF UTF-16-BE

FF FE UTF-16-LE

7C 83 88 81 99 A2 85 A3 40 7F (YY)* 7F
5E

as specified, transcoded from
EBCDIC to ASCII

AE 83 88 81 99 A2 85 A3 40 FC (YY)* FC
5E

as specified, transcoded from
IBM1026 to ASCII

00 63 68 61 72 73 65 74 20 22 (YY)* 22
3B

as specified, transcoded from
GSM 03.38 to ASCII

23 Apr 2009 15:5768

Syntax and basic data types

analogous patterns

User agents may support
additional, analogous, patterns if
they support encodings that are
not handled by the patterns here

If the encoding is detected based on one of the entries in the table above
marked "as specified", the user agent ignores the style sheet if it does not parse
an appropriate @charset rule at the beginning of the stream of characters
resulting from decoding in the chosen @charset. This ensures that:

@charset rules should only function if they are in the encoding of the style
sheet,
byte order marks are ignored only in encodings that support a byte order
mark, and
encoding names cannot contain newlines.

User agents must ignore style sheets in unknown encodings.

4.4.1 Referring to characters not represented in a character
encoding
A style sheet may have to refer to characters that cannot be represented in the
current character encoding. These characters must be written as escaped [p. 51]
references to ISO 10646 characters. These escapes serve the same purpose as
numeric character references in HTML or XML documents (see [HTML4], chapters 5
and 25).

The character escape mechanism should be used when only a few characters
must be represented this way. If most of a style sheet requires escaping, authors
should encode it with a more appropriate encoding (e.g., if the style sheet contains a
lot of Greek characters, authors might use "ISO-8859-7" or "UTF-8").

Intermediate processors using a different character encoding may translate these
escaped sequences into byte sequences of that encoding. Intermediate processors
must not, on the other hand, alter escape sequences that cancel the special
meaning of an ASCII character.

Conforming user agents [p. 43] must correctly map to ISO-10646 all characters in
any character encodings that they recognize (or they must behave as if they did).

For example, a style sheet transmitted as ISO-8859-1 (Latin-1) cannot contain
Greek letters directly: "κουρος" (Greek: "kouros") has to be written as
"\3BA\3BF\3C5\3C1\3BF\3C2".

Note. In HTML 4, numeric character references are interpreted in "style" attribute
values but not in the content of the STYLE element. Because of this asymmetry, we
recommend that authors use the CSS character escape mechanism rather than
numeric character references for both the "style" attribute and the STYLE element.
For example, we recommend:

6923 Apr 2009 15:57

Syntax and basic data types

...

rather than:

...

23 Apr 2009 15:5770

Syntax and basic data types

5 Selectors
Contents

.............. 715.1 Pattern matching

............... 735.2 Selector syntax

............... 735.2.1 Grouping

.............. 745.3 Universal selector

............... 745.4 Type selectors

............. 745.5 Descendant selectors

............... 755.6 Child selectors

............ 755.7 Adjacent sibling selectors

.............. 765.8 Attribute selectors

....... 765.8.1 Matching attributes and attribute values

......... 785.8.2 Default attribute values in DTDs

............. 795.8.3 Class selectors

................ 805.9 ID selectors

......... 815.10 Pseudo-elements and pseudo-classes

.............. 825.11 Pseudo-classes

........... 825.11.1 :first-child pseudo-class

....... 835.11.2 The link pseudo-classes: :link and :visited

... 835.11.3 The dynamic pseudo-classes: :hover, :active, and :focus

........ 855.11.4 The language pseudo-class: :lang

.............. 865.12 Pseudo-elements

......... 865.12.1 The :first-line pseudo-element

......... 885.12.2 The :first-letter pseudo-element

....... 915.12.3 The :before and :after pseudo-elements

5.1 Pattern matching
In CSS, pattern matching rules determine which style rules apply to elements in the
document tree [p. 41] . These patterns, called selectors, may range from simple
element names to rich contextual patterns. If all conditions in the pattern are true for
a certain element, the selector matches the element.

The case-sensitivity of document language element names in selectors depends
on the document language. For example, in HTML, element names are
case-insensitive, but in XML they are case-sensitive.

The following table summarizes CSS 2.1 selector syntax:

Pattern Meaning
Described in

section

7123 Apr 2009 15:57

Selectors

* Matches any element.
Universal selector
[p. 74]

E
Matches any E element (i.e., an element
of type E).

Type selectors
[p. 74]

E F
Matches any F element that is a
descendant of an E element.

Descendant
selectors [p. 74]

E > F
Matches any F element that is a child of
an element E.

Child selectors
[p. 75]

E:first-child
Matches element E when E is the first
child of its parent.

The :first-child
pseudo-class
[p. 82]

E:link
E:visited

Matches element E if E is the source
anchor of a hyperlink of which the target is
not yet visited (:link) or already visited
(:visited).

The link
pseudo-classes
[p. 83]

E:active
E:hover
E:focus

Matches E during certain user actions.
The dynamic
pseudo-classes
[p. 83]

E:lang(c)

Matches element of type E if it is in
(human) language c (the document
language specifies how language is
determined).

The :lang()
pseudo-class
[p. 85]

E + F
Matches any F element immediately
preceded by a sibling element E.

Adjacent selectors
[p. 75]

E[foo]
Matches any E element with the "foo"
attribute set (whatever the value).

Attribute selectors
[p. 76]

E[foo="warning"]
Matches any E element whose "foo"
attribute value is exactly equal to
"warning".

Attribute selectors
[p. 76]

E[foo~="warning"]

Matches any E element whose "foo"
attribute value is a list of space-separated
values, one of which is exactly equal to
"warning".

Attribute selectors
[p. 76]

E[lang|="en"]
Matches any E element whose "lang"
attribute has a hyphen-separated list of
values beginning (from the left) with "en".

Attribute selectors
[p. 76]

23 Apr 2009 15:5772

Selectors

DIV.warning
Language specific. (In HTML, the same as
DIV[class~="warning"].)

Class selectors
[p. 79]

E#myid
Matches any E element with ID equal to
"myid". ID selectors [p. 80]

5.2 Selector syntax
A simple selector is either a type selector [p. 74] or universal selector [p. 74] followed
immediately by zero or more attribute selectors [p. 76] , ID selectors [p. 80] , or
pseudo-classes [p. 81] , in any order. The simple selector matches if all of its
components match.

Note: the terminology used here in CSS 2.1 is different from what is used in CSS3.
For example, a "simple selector" refers to a smaller part of a selector in CSS3 than in
CSS 2.1. See the CSS3 Selectors module [CSS3SEL].

A selector is a chain of one or more simple selectors separated by combinators.
Combinators are: white space, ">", and "+". White space may appear between a
combinator and the simple selectors around it.

The elements of the document tree that match a selector are called subjects of the
selector. A selector consisting of a single simple selector matches any element
satisfying its requirements. Prepending a simple selector and combinator to a chain
imposes additional matching constraints, so the subjects of a selector are always a
subset of the elements matching the last simple selector.

One pseudo-element [p. 81] may be appended to the last simple selector in a
chain, in which case the style information applies to a subpart of each subject.

5.2.1 Grouping
When several selectors share the same declarations, they may be grouped into a
comma-separated list.

Example(s):

In this example, we condense three rules with identical declarations into one.
Thus,

h1 { font-family: sans-serif }
h2 { font-family: sans-serif }
h3 { font-family: sans-serif }

is equivalent to:

h1, h2, h3 { font-family: sans-serif }

CSS offers other "shorthand" mechanisms as well, including multiple declarations
[p. 54] and shorthand properties [p. 28] .

7323 Apr 2009 15:57

Selectors

5.3 Universal selector
The universal selector, written "*", matches the name of any element type. It
matches any single element in the document tree. [p. 41]

If the universal selector is not the only component of a simple selector [p. 73] , the
"*" may be omitted. For example:

*[lang=fr] and [lang=fr] are equivalent.
*.warning and .warning are equivalent.
*#myid and #myid are equivalent.

5.4 Type selectors
A type selector matches the name of a document language element type. A type
selector matches every instance of the element type in the document tree.

Example(s):

The following rule matches all H1 elements in the document tree:

h1 { font-family: sans-serif }

5.5 Descendant selectors
At times, authors may want selectors to match an element that is the descendant of
another element in the document tree (e.g., "Match those EM elements that are
contained by an H1 element"). Descendant selectors express such a relationship in
a pattern. A descendant selector is made up of two or more selectors separated by
white space [p. 49] . A descendant selector of the form "A B " matches when an
element B is an arbitrary descendant of some ancestor [p. 41] element A.

Example(s):

For example, consider the following rules:

h1 { color: red }
em { color: red }

Although the intention of these rules is to add emphasis to text by changing its
color, the effect will be lost in a case such as:

<H1>This headline is very important</H1>

We address this case by supplementing the previous rules with a rule that sets the
text color to blue whenever an EM occurs anywhere within an H1:

h1 { color: red }
em { color: red }
h1 em { color: blue }

23 Apr 2009 15:5774

Selectors

The third rule will match the EM in the following fragment:

<H1>This headline
is very important</H1>

Example(s):

The following selector:

div * p

matches a P element that is a grandchild or later descendant of a DIV element.
Note the white space on either side of the "*" is not part of the universal selector; the
white space is a combinator indicating that the DIV must be the ancestor of some
element, and that that element must be an ancestor of the P.

Example(s):

The selector in the following rule, which combines descendant and attribute
selectors [p. 76] , matches any element that (1) has the "href" attribute set and (2) is
inside a P that is itself inside a DIV:

div p *[href]

5.6 Child selectors
A child selector matches when an element is the child [p. 41] of some element. A
child selector is made up of two or more selectors separated by ">".

Example(s):

The following rule sets the style of all P elements that are children of BODY:

body > P { line-height: 1.3 }

Example(s):

The following example combines descendant selectors and child selectors:

div ol>li p

It matches a P element that is a descendant of an LI; the LI element must be the
child of an OL element; the OL element must be a descendant of a DIV. Notice that
the optional white space around the ">" combinator has been left out.

For information on selecting the first child of an element, please see the section on
the :first-child [p. 82] pseudo-class below.

5.7 Adjacent sibling selectors
Adjacent sibling selectors have the following syntax: E1 + E2, where E2 is the
subject of the selector. The selector matches if E1 and E2 share the same parent in
the document tree and E1 immediately precedes E2, ignoring non-element nodes
(such as text nodes and comments).

7523 Apr 2009 15:57

Selectors

Example(s):

Thus, the following rule states that when a P element immediately follows a MATH
element, it should not be indented:

math + p { text-indent: 0 }

The next example reduces the vertical space separating an H1 and an H2 that
immediately follows it:

h1 + h2 { margin-top: -5mm }

Example(s):

The following rule is similar to the one in the previous example, except that it adds
a class selector. Thus, special formatting only occurs when H1 has
class="opener" :

h1.opener + h2 { margin-top: -5mm }

5.8 Attribute selectors
CSS 2.1 allows authors to specify rules that match elements which have certain
attributes defined in the source document.

5.8.1 Matching attributes and attribute values
Attribute selectors may match in four ways:

[att]
Match when the element sets the "att" attribute, whatever the value of the
attribute.

[att=val]
Match when the element’s "att" attribute value is exactly "val".

[att~=val]
Represents an element with the att attribute whose value is a white
space-separated list of words, one of which is exactly "val". If "val" contains
white space, it will never represent anything (since the words are separated by
spaces). If "val" is the empty string, it will never represent anything either.

[att|=val]
Represents an element with the att attribute, its value either being exactly "val"
or beginning with "val" immediately followed by "-" (U+002D). This is primarily
intended to allow language subcode matches (e.g., the hreflang attribute on
the a element in HTML) as described in RFC 3066 ([RFC3066]) or its
successor. For lang (or xml:lang) language subcode matching, please see
the :lang pseudo-class [p. 85] .

Attribute values must be identifiers or strings. The case-sensitivity of attribute
names and values in selectors depends on the document language.

23 Apr 2009 15:5776

Selectors

Example(s):

For example, the following attribute selector matches all H1 elements that specify
the "title" attribute, whatever its value:

h1[title] { color: blue; }

Example(s):

In the following example, the selector matches all SPAN elements whose "class"
attribute has exactly the value "example":

span[class=example] { color: blue; }

Multiple attribute selectors can be used to refer to several attributes of an element,
or even several times to the same attribute.

Example(s):

Here, the selector matches all SPAN elements whose "hello" attribute has exactly
the value "Cleveland" and whose "goodbye" attribute has exactly the value
"Columbus":

span[hello="Cleveland"][goodbye="Columbus"] { color: blue; }

Example(s):

The following selectors illustrate the differences between "=" and "~=". The first
selector will match, for example, the value "copyright copyleft copyeditor" for the "rel"
attribute. The second selector will only match when the "href" attribute has the value
"http://www.w3.org/".

a[rel~="copyright"]
a[href="http://www.w3.org/"]

Example(s):

The following rule hides all elements for which the value of the "lang" attribute is
"fr" (i.e., the language is French).

*[lang=fr] { display : none }

Example(s):

The following rule will match for values of the "lang" attribute that begin with "en",
including "en", "en-US", and "en-cockney":

*[lang|="en"] { color : red }

Example(s):

Similarly, the following aural style sheet rules allow a script to be read aloud in
different voices for each role:

7723 Apr 2009 15:57

Selectors

DIALOGUE[character=romeo]
 { voice-family: "Laurence Olivier", charles, male }

DIALOGUE[character=juliet]
 { voice-family: "Vivien Leigh", victoria, female }

5.8.2 Default attribute values in DTDs
Matching takes place on attribute values in the document tree. Default attribute
values may be defined in a DTD or elsewhere, but cannot always be selected by
attribute selectors. Style sheets should be designed so that they work even if the
default values are not included in the document tree.

More precisely, a UA is not required to read an "external subset" of the DTD but is
required to look for default attribute values in the document’s "internal subset." (See
[XML10] for definitions of these subsets.)

A UA that recognizes an XML namespace [XMLNAMESPACES] is not required to
use its knowledge of that namespace to treat default attribute values as if they were
present in the document. (E.g., an XHTML UA is not required to use its built-in
knowledge of the XHTML DTD.)

Note that, typically, implementations choose to ignore external subsets.

Example(s):

Example:

For example, consider an element EXAMPLE with an attribute "notation" that has
a default value of "decimal". The DTD fragment might be

<!ATTLIST EXAMPLE notation (decimal,octal) "decimal">

If the style sheet contains the rules

EXAMPLE[notation=decimal] { /*... default property settings ...*/ }
EXAMPLE[notation=octal] { /*... other settings...*/ }

the first rule will not match elements whose "notation" attribute is set by default,
i.e. not set explicitly. To catch all cases, the attribute selector for the default value
must be dropped:

EXAMPLE { /*... default property settings ...*/ }
EXAMPLE[notation=octal] { /*... other settings...*/ }

Here, because the selector EXAMPLE[notation=octal] is more specific [p. 98]
than the type selector alone, the style declarations in the second rule will override
those in the first for elements that have a "notation" attribute value of "octal". Care
has to be taken that all property declarations that are to apply only to the default
case are overridden in the non-default cases’ style rules.

23 Apr 2009 15:5778

Selectors

5.8.3 Class selectors
Working with HTML, authors may use the period (.) notation as an alternative to the
~= notation when representing the class attribute. Thus, for HTML, div.value
and div[class~=value] have the same meaning. The attribute value must
immediately follow the "period" (.). UAs may apply selectors using the period (.)
notation in XML documents if the UA has namespace specific knowledge that allows
it to determine which attribute is the "class" attribute for the respective namespace.
One such example of namespace specific knowledge is the prose in the specification
for a particular namespace (e.g. SVG 1.1 [SVG11] describes the SVG "class"
attribute [p. ??] and how a UA should interpret it, and similarly MathML 2.0
[MATH20] describes the MathML "class" attribute [p. ??] .)

Example(s):

For example, we can assign style information to all elements with
class~="pastoral" as follows:

.pastoral { color: green } / all elements with class~=pastoral */

or just

.pastoral { color: green } /* all elements with class~=pastoral */

The following assigns style only to H1 elements with class~="pastoral" :

H1.pastoral { color: green } /* H1 elements with class~=pastoral */

Given these rules, the first H1 instance below would not have green text, while the
second would:

<H1>Not green</H1>
<H1 class="pastoral">Very green</H1>

To match a subset of "class" values, each value must be preceded by a ".".

Example(s):

For example, the following rule matches any P element whose "class" attribute has
been assigned a list of space-separated values that includes "pastoral" and "marine":

p.marine.pastoral { color: green }

This rule matches when class="pastoral blue aqua marine" but does not
match for class="pastoral blue" .

Note. CSS gives so much power to the "class" attribute, that authors could
conceivably design their own "document language" based on elements with almost
no associated presentation (such as DIV and SPAN in HTML) and assigning style
information through the "class" attribute. Authors should avoid this practice since the
structural elements of a document language often have recognized and accepted
meanings and author-defined classes may not.

7923 Apr 2009 15:57

Selectors

Note: If an element has multiple class attributes, their values must be
concatenated with spaces between the values before searching for the class. As of
this time the working group is not aware of any manner in which this situation can be
reached, however, so this behavior is explicitly non-normative in this specification.

5.9 ID selectors
Document languages may contain attributes that are declared to be of type ID. What
makes attributes of type ID special is that no two such attributes can have the same
value; whatever the document language, an ID attribute can be used to uniquely
identify its element. In HTML all ID attributes are named "id"; XML applications may
name ID attributes differently, but the same restriction applies.

The ID attribute of a document language allows authors to assign an identifier to
one element instance in the document tree. CSS ID selectors match an element
instance based on its identifier. A CSS ID selector contains a "#" immediately
followed by the ID value, which must be an identifier.

Note that CSS does not specify how a UA knows the ID attribute of an element.
The UA may, e.g., read a document’s DTD, have the information hard-coded or ask
the user.

Example(s):

The following ID selector matches the H1 element whose ID attribute has the
value "chapter1":

h1#chapter1 { text-align: center }

In the following example, the style rule matches the element that has the ID value
"z98y". The rule will thus match for the P element:

<HEAD>
 <TITLE>Match P</TITLE>
 <STYLE type="text/css">
 *#z98y { letter-spacing: 0.3em }
 </STYLE>
</HEAD>
<BODY>
 <P id=z98y>Wide text</P>
</BODY>

In the next example, however, the style rule will only match an H1 element that
has an ID value of "z98y". The rule will not match the P element in this example:

<HEAD>
 <TITLE>Match H1 only</TITLE>
 <STYLE type="text/css">
 H1#z98y { letter-spacing: 0.5em }
 </STYLE>
</HEAD>
<BODY>
 <P id=z98y>Wide text</P>
</BODY>

23 Apr 2009 15:5780

Selectors

ID selectors have a higher specificity than attribute selectors. For example, in
HTML, the selector #p123 is more specific than [id=p123] in terms of the cascade
[p. 93] .

Note. In XML 1.0 [XML10], the information about which attribute contains an
element’s IDs is contained in a DTD. When parsing XML, UAs do not always read
the DTD, and thus may not know what the ID of an element is. If a style sheet
designer knows or suspects that this will be the case, he should use normal attribute
selectors instead: [name=p371] instead of #p371. However, the cascading order of
normal attribute selectors is different from ID selectors. It may be necessary to add
an "!important" priority to the declarations: [name=p371] {color: red !
important}.

If an element has multiple ID attributes, all of them must be treated as IDs for that
element for the purposes of the ID selector. Such a situation could be reached using
mixtures of xml:id [XMLID], DOM3 Core [DOM-LEVEL-3-CORE], XML DTDs
[XML10] and namespace-specific knowledge.

5.10 Pseudo-elements and pseudo-classes
In CSS 2.1, style is normally attached to an element based on its position in the
document tree [p. 41] . This simple model is sufficient for many cases, but some
common publishing scenarios may not be possible due to the structure of the
document tree [p. 41] . For instance, in HTML 4 (see [HTML4]), no element refers to
the first line of a paragraph, and therefore no simple CSS selector may refer to it.

CSS introduces the concepts of pseudo-elements and pseudo-classes to permit
formatting based on information that lies outside the document tree.

Pseudo-elements create abstractions about the document tree beyond those
specified by the document language. For instance, document languages do not
offer mechanisms to access the first letter or first line of an element’s content.
CSS pseudo-elements allow style sheet designers to refer to this otherwise
inaccessible information. Pseudo-elements may also provide style sheet
designers a way to assign style to content that does not exist in the source
document (e.g., the :before and :after [p. 195] pseudo-elements give access to
generated content).
Pseudo-classes classify elements on characteristics other than their name,
attributes or content; in principle characteristics that cannot be deduced from the
document tree. Pseudo-classes may be dynamic, in the sense that an element
may acquire or lose a pseudo-class while a user interacts with the document.
The exceptions are ’:first-child’ [p. 82] , which can be deduced from the
document tree, and ’:lang()’ [p. 85] , which can be deduced from the document
tree in some cases.

Neither pseudo-elements nor pseudo-classes appear in the document source or
document tree.

8123 Apr 2009 15:57

Selectors

Pseudo-classes are allowed anywhere in selectors while pseudo-elements may
only be appended after the last simple selector of the selector.

Pseudo-element and pseudo-class names are case-insensitive.

Some pseudo-classes are mutually exclusive, while others can be applied
simultaneously to the same element. In case of conflicting rules, the normal
cascading order [p. 97] determines the outcome.

5.11 Pseudo-classes

5.11.1 :first-child pseudo-class
The :first-child pseudo-class matches an element that is the first child element of
some other element.

Example(s):

In the following example, the selector matches any P element that is the first child
of a DIV element. The rule suppresses indentation for the first paragraph of a DIV:

div > p:first-child { text-indent: 0 }

This selector would match the P inside the DIV of the following fragment:

<P> The last P before the note.
<DIV class="note">
 <P> The first P inside the note.
</DIV>

but would not match the second P in the following fragment:

<P> The last P before the note.
<DIV class="note">
 <H2>Note</H2>
 <P> The first P inside the note.
</DIV>

Example(s):

The following rule sets the font weight to ’bold’ for any EM element that is some
descendant of a P element that is a first child:

p:first-child em { font-weight : bold }

Note that since anonymous [p. 125] boxes are not part of the document tree, they
are not counted when calculating the first child.

For example, the EM in:

<P>abc default

is the first child of the P.

23 Apr 2009 15:5782

Selectors

The following two selectors are equivalent:

* > a:first-child /* A is first child of any element */
a:first-child /* Same */

5.11.2 The link pseudo-classes: :link and :visited
User agents commonly display unvisited links differently from previously visited
ones. CSS provides the pseudo-classes ’:link’ and ’:visited’ to distinguish them:

The :link pseudo-class applies for links that have not yet been visited.
The :visited pseudo-class applies once the link has been visited by the user.

UAs may return a visited link to the (unvisited) ’:link’ state at some point.

The two states are mutually exclusive.

The document language determines which elements are hyperlink source
anchors. For example, in HTML4, the link pseudo-classes apply to A elements with
an "href" attribute. Thus, the following two CSS 2.1 declarations have similar effect:

a:link { color: red }
:link { color: red }

Example(s):

If the following link:

external link

has been visited, this rule:

a.external:visited { color: blue }

will cause it to be blue.

Note. It is possible for style sheet authors to abuse the :link and :visited
pseudo-classes to determine which sites a user has visited without the user’s
consent.

UAs may therefore treat all links as unvisited links, or implement other measures
to preserve the user’s privacy while rendering visited and unvisited links differently.
See [P3P] for more information about handling privacy.

5.11.3 The dynamic pseudo-classes: :hover, :active, and
:focus
Interactive user agents sometimes change the rendering in response to user actions.
CSS provides three pseudo-classes for common cases:

The :hover pseudo-class applies while the user designates an element (with
some pointing device), but does not activate it. For example, a visual user agent
could apply this pseudo-class when the cursor (mouse pointer) hovers over a

8323 Apr 2009 15:57

Selectors

box generated by the element. User agents not supporting interactive media
[p. 104] do not have to support this pseudo-class. Some conforming user agents
supporting interactive media [p. 104] may not be able to support this
pseudo-class (e.g., a pen device).
The :active pseudo-class applies while an element is being activated by the
user. For example, between the times the user presses the mouse button and
releases it.
The :focus pseudo-class applies while an element has the focus (accepts
keyboard events or other forms of text input).

An element may match several pseudo-classes at the same time.

CSS doesn’t define which elements may be in the above states, or how the states
are entered and left. Scripting may change whether elements react to user events or
not, and different devices and UAs may have different ways of pointing to, or
activating elements.

CSS 2.1 doesn’t define if the parent of an element that is ’:active’ or ’:hover’ is also
in that state.

User agents are not required to reflow a currently displayed document due to
pseudo-class transitions. For instance, a style sheet may specify that the ’font-size’
of an :active link should be larger than that of an inactive link, but since this may
cause letters to change position when the reader selects the link, a UA may ignore
the corresponding style rule.

Example(s):

a:link { color: red } /* unvisited links */
a:visited { color: blue } /* visited links */
a:hover { color: yellow } /* user hovers */
a:active { color: lime } /* active links */

Note that the A:hover must be placed after the A:link and A:visited rules, since
otherwise the cascading rules will hide the ’color’ property of the A:hover rule.
Similarly, because A:active is placed after A:hover, the active color (lime) will apply
when the user both activates and hovers over the A element.

Example(s):

An example of combining dynamic pseudo-classes:

a:focus { background: yellow }
a:focus:hover { background: white }

The last selector matches A elements that are in pseudo-class :focus and in
pseudo-class :hover.

For information about the presentation of focus outlines, please consult the section
on dynamic focus outlines [p. 286] .

23 Apr 2009 15:5784

Selectors

Note. In CSS1, the ’:active’ pseudo-class was mutually exclusive with ’:link’ and
’:visited’. That is no longer the case. An element can be both ’:visited’ and ’:active’
(or ’:link’ and ’:active’) and the normal cascading rules determine which style
declarations apply.

Note. Also note that in CSS1, the ’:active’ pseudo-class only applied to links.

5.11.4 The language pseudo-class: :lang
If the document language specifies how the human language of an element is
determined, it is possible to write selectors in CSS that match an element based on
its language. For example, in HTML [HTML4], the language is determined by a
combination of the "lang" attribute, the META element, and possibly by information
from the protocol (such as HTTP headers). XML uses an attribute called xml:lang,
and there may be other document language-specific methods for determining the
language.

The pseudo-class ’:lang(C)’ matches if the element is in language C. Whether
there is a match is based solely on the identifier C being either equal to, or a
hyphen-separated substring of, the element’s language value, in the same way as if
performed by the ’|=’ [p. 76] operator. The matching of C against the element’s
language value is performed case-insensitively. The identifier C doesn’t have to be a
valid language name.

C must not be empty.

Note: It is recommended that documents and protocols indicate language using
codes from RFC 3066 [RFC3066] or its successor, and by means of "xml:lang"
attributes in the case of XML-based documents [XML10]. See "FAQ: Two-letter or
three-letter language codes." [p. ??]

Example(s):

The following rules set the quotation marks for an HTML document that is either in
Canadian French or German:

html:lang(fr-ca) { quotes: ’« ’ ’ »’ }
html:lang(de) { quotes: ’»’ ’«’ ’\2039’ ’\203A’ }
:lang(fr) > Q { quotes: ’« ’ ’ »’ }
:lang(de) > Q { quotes: ’»’ ’«’ ’\2039’ ’\203A’ }

The second pair of rules actually set the ’quotes’ property on Q elements
according to the language of its parent. This is done because the choice of quote
marks is typically based on the language of the element around the quote, not the
quote itself: like this piece of French “à l’improviste” in the middle of an English text
uses the English quotation marks.

Note the difference between [lang|=xx] and :lang(xx). In this HTML example, only
the BODY matches [lang|=fr] (because it has a LANG attribute) but both the BODY
and the P match :lang(fr) (because both are in French).

8523 Apr 2009 15:57

Selectors

<body lang=fr>
 <p>Je suis Français.</p>
</body>

5.12 Pseudo-elements

5.12.1 The :first-line pseudo-element
The :first-line pseudo-element applies special styles to the contents of the first
formatted line of a paragraph. For instance:

p:first-line { text-transform: uppercase }

The above rule means "change the letters of the first line of every paragraph to
uppercase". However, the selector "P:first-line" does not match any real HTML
element. It does match a pseudo-element that conforming user agents [p. 43] will
insert at the beginning of every paragraph.

Note that the length of the first line depends on a number of factors, including the
width of the page, the font size, etc. Thus, an ordinary HTML paragraph such as:

<P>This is a somewhat long HTML
paragraph that will be broken into several
lines. The first line will be identified
by a fictional tag sequence. The other lines
will be treated as ordinary lines in the
paragraph.</P>

the lines of which happen to be broken as follows:

THIS IS A SOMEWHAT LONG HTML PARAGRAPH THAT
will be broken into several lines. The first
line will be identified by a fictional tag
sequence. The other lines will be treated as
ordinary lines in the paragraph.

might be "rewritten" by user agents to include the fictional tag sequence for
:first-line. This fictional tag sequence helps to show how properties are inherited.

<P><P:first-line> This is a somewhat long HTML
paragraph that </P:first-line> will be broken into several
lines. The first line will be identified
by a fictional tag sequence. The other lines
will be treated as ordinary lines in the
paragraph.</P>

If a pseudo-element breaks up a real element, the desired effect can often be
described by a fictional tag sequence that closes and then re-opens the element.
Thus, if we mark up the previous paragraph with a SPAN element:

23 Apr 2009 15:5786

Selectors

<P> This is a somewhat long HTML
paragraph that will be broken into several
lines. The first line will be identified
by a fictional tag sequence. The other lines
will be treated as ordinary lines in the
paragraph.</P>

the user agent could simulate start and end tags for SPAN when inserting the
fictional tag sequence for :first-line.

<P><P:first-line> This is a
somewhat long HTML
paragraph that will </P:first-line> be
broken into several
lines. The first line will be identified
by a fictional tag sequence. The other lines
will be treated as ordinary lines in the
paragraph.</P>

The :first-line pseudo-element can only be attached to a block-level [p. 123]
element, inline-block, table-caption or a table-cell.

The "first formatted line" of an element may occur inside a block-level descendant
in the same flow (i.e., a block-level descendant that is not positioned and not a float).
E.g., the first line of the DIV in <DIV><P>This line...</P></DIV> is the first
line of the P (assuming that both P and DIV are block-level).

The first line of a table-cell or inline-block cannot be the first formatted line of an
ancestor element. Thus, in <DIV><P STYLE="display:
inline-block">Hello
Goodbye</P> etcetera</DIV> the first formatted
line of the DIV is not the line "Hello".

Note that the first line of the P in this fragment: <p>
First... doesn’t
contain any letters (assuming the default style for BR in HTML 4). The word "First" is
not on the first formatted line.

A UA should act as if the fictional start tags of the first-line pseudo-elements were
nested just inside the innermost enclosing block-level element. (Since CSS1 and
CSS2 were silent on this case, authors should not rely on this behavior.) Here is an
example. The fictional tag sequence for

<DIV>
 <P>First paragraph</P>
 <P>Second paragraph</P>
</DIV>

is

<DIV>
 <P><DIV:first-line><P:first-line>First paragraph</P:first-line></DIV:first-line></P>
 <P><P:first-line>Second paragraph</P:first-line></P>
</DIV>

8723 Apr 2009 15:57

Selectors

The :first-line pseudo-element is similar to an inline-level element, but with certain
restrictions. The following properties apply to a :first-line pseudo-element: font
properties, [p. 233] color property, [p. 223] background properties, [p. 224]
’word-spacing’, ’letter-spacing’, ’text-decoration’, ’vertical-align’, ’text-transform’,
’line-height’,. UAs may apply other properties as well.

5.12.2 The :first-letter pseudo-element
The :first-letter pseudo-element must select the first letter of the first line of a block, if
it is not preceded by any other content (such as images or inline tables) on its line.
The :first-letter pseudo-element may be used for "initial caps" and "drop caps", which
are common typographical effects. This type of initial letter is similar to an inline-level
element if its ’float’ property is ’none’, otherwise it is similar to a floated element.

These are the properties that apply to :first-letter pseudo-elements: font properties,
[p. 233] ’text-decoration’, ’text-transform’, ’letter-spacing’, ’word-spacing’ (when
appropriate), ’line-height’, ’float’, ’vertical-align’ (only if ’float’ is ’none’), margin
properties, [p. 109] padding properties, [p. 112] border properties, [p. 114] color
property, [p. 223] background properties. [p. 224] UAs may apply other properties as
well. To allow UAs to render a typographically correct drop cap or initial cap, the UA
may choose a line-height, width and height based on the shape of the letter, unlike
for normal elements. CSS3 is expected to have specific properties that apply to
first-letter.

This example shows a possible rendering of an initial cap. Note that the
’line-height’ that is inherited by the first-letter pseudo-element is 1.1, but the UA in
this example has computed the height of the first letter differently, so that it doesn’t
cause any unnecessary space between the first two lines. Also note that the fictional
start tag of the first letter is inside the SPAN, and thus the font weight of the first
letter is normal, not bold as the SPAN:

p { line-height: 1.1 }
p:first-letter { font-size: 3em; font-weight: normal }
span { font-weight: bold }
...
<p>Het hemelsche gerecht heeft zich ten lange lesten

Erbarremt over my en mijn benaeuwde vesten

En arme burgery, en op mijn volcx gebed

En dagelix geschrey de bange stad ontzet.

The following CSS 2.1 will make a drop cap initial letter span about two lines:

23 Apr 2009 15:5788

Selectors

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
 <HEAD>
 <TITLE>Drop cap initial letter</TITLE>
 <STYLE type="text/css">
 P { font-size: 12pt; line-height: 1.2 }
 P:first-letter { font-size: 200%; font-style: italic;
 font-weight: bold; float: left }
 SPAN { text-transform: uppercase }
 </STYLE>
 </HEAD>
 <BODY>
 <P>The first few words of an article
 in The Economist.</P>
 </BODY>
</HTML>

This example might be formatted as follows:

T HE FIRST few
words of an

article in the
Economist

The fictional tag sequence is:

<P>

<P:first-letter>
T
</P:first-letter>he first

few words of an article in the Economist.
</P>

Note that the :first-letter pseudo-element tags abut the content (i.e., the initial
character), while the :first-line pseudo-element start tag is inserted right after the
start tag of the block element.

In order to achieve traditional drop caps formatting, user agents may approximate
font sizes, for example to align baselines. Also, the glyph outline may be taken into
account when formatting.

Punctuation (i.e, characters defined in Unicode [UNICODE] in the "open" (Ps),
"close" (Pe), "initial" (Pi). "final" (Pf) and "other" (Po) punctuation classes), that
precedes or follows the first letter should be included, as in:

"A
bird in
the hand
is worth

two in the bush,"
says an old proverb.

8923 Apr 2009 15:57

Selectors

The ’:first-letter’ also applies if the first letter is in fact a digit, e.g., the "6" in "67
million dollars is a lot of money."

The :first-letter pseudo-element applies to block, list-item, table-cell, table-caption
and inline-block elements.

The :first-letter pseudo-element can be used with all such elements that contain
text, or that have a descendant in the same flow that contains text. A UA should act
as if the fictional start tag of the first-letter pseudo-element is just before the first text
of the element, even if that first text is in a descendant.

Example(s):

Here is an example. The fictional tag sequence for this HTML fragment:

<div>
<p>The first text.

is:

<div>
<p><div:first-letter><p:first-letter>T</...></...>he first text.

The first letter of a table-cell or inline-block cannot be the first letter of an ancestor
element. Thus, in <DIV><P STYLE="display:
inline-block">Hello
Goodbye</P> etcetera</DIV> the first letter of
the DIV is not the letter "H". In fact, the DIV doesn’t have a first letter.

The first letter must occur on the first formatted line. [p. 87] For example, in this
fragment: <p>
First... the first line doesn’t contain any letters and
’:first-letter’ doesn’t match anything (assuming the default style for BR in HTML 4). In
particular, it does not match the "F" of "First."

If an element is a list item [p. 206] (’display: list-item’), the ’:first-letter’ applies to
the first letter in the principal box after the marker. UAs may ignore ’:first-letter’ on list
items with ’list-style-position: inside’. If an element has ’:before’ or ’:after’ content, the
’:first-letter applies to the first letter of the element including that content.

E.g., after the rule ’p:before {content: "Note: "}’, the selector ’p:first-letter’ matches
the "N" of "Note".

Some languages may have specific rules about how to treat certain letter
combinations. In Dutch, for example, if the letter combination "ij" appears at the
beginning of a word, both letters should be considered within the :first-letter
pseudo-element.

If the letters that would form the first-letter are not in the same element, such as
"’T" in <p>’T... , the UA may create a first-letter pseudo-element from one of
the elements, both elements, or simply not create a pseudo-element.

Similarly, if the first letter(s) of the block are not at the start of the line (for example
due to bidirectional reordering), then the UA need not create the pseudo-element(s).

23 Apr 2009 15:5790

Selectors

Example(s):

The following example illustrates how overlapping pseudo-elements may interact.
The first letter of each P element will be green with a font size of ’24pt’. The rest of
the first formatted line will be ’blue’ while the rest of the paragraph will be ’red’.

p { color: red; font-size: 12pt }
p:first-letter { color: green; font-size: 200% }
p:first-line { color: blue }

<P>Some text that ends up on two lines</P>

Assuming that a line break will occur before the word "ends", the fictional tag
sequence for this fragment might be:

<P>
<P:first-line>
<P:first-letter>
S
</P:first-letter>ome text that
</P:first-line>
ends up on two lines
</P>

Note that the :first-letter element is inside the :first-line element. Properties set on
:first-line are inherited by :first-letter, but are overridden if the same property is set on
:first-letter.

5.12.3 The :before and :after pseudo-elements
The ’:before’ and ’:after’ pseudo-elements can be used to insert generated content
before or after an element’s content. They are explained in the section on generated
text. [p. 195]

Example(s):

h1:before {content: counter(chapno, upper-roman) ". "}

When the :first-letter and :first-line pseudo-elements are applied to an element
having content generated using :before and :after, they apply to the first letter or line
of the element including the generated content.

Example(s):

p.special:before {content: "Special! "}
p.special:first-letter {color: #ffd800}

This will render the "S" of "Special!" in gold.

9123 Apr 2009 15:57

Selectors

23 Apr 2009 15:5792

Selectors

6 Assigning property values, Cascading, and
Inheritance
Contents

......... 936.1 Specified, computed, and actual values

............. 936.1.1 Specified values

............. 946.1.2 Computed values

.............. 946.1.3 Used values

.............. 946.1.4 Actual values

................ 946.2 Inheritance

............. 956.2.1 The ’inherit’ value

.............. 966.3 The @import rule

............... 966.4 The cascade

............. 976.4.1 Cascading order

............. 986.4.2 !important rules

......... 986.4.3 Calculating a selector’s specificity

...... 996.4.4 Precedence of non-CSS presentational hints

6.1 Specified, computed, and actual values
Once a user agent has parsed a document and constructed a document tree [p. 41] ,
it must assign, for every element in the tree, a value to every property that applies to
the target media type [p. 101] .

The final value of a property is the result of a four-step calculation: the value is
determined through specification (the "specified value"), then resolved into a value
that is used for inheritance (the "computed value"), then converted into an absolute
value if necessary (the "used value"), and finally transformed according to the
limitations of the local environment (the "actual value").

6.1.1 Specified values
User agents must first assign a specified value to each property based on the
following mechanisms (in order of precedence):

1. If the cascade [p. 96] results in a value, use it.
2. Otherwise, if the property is inherited [p. 94] and the element is not the root of

the document tree, use the computed value of the parent element.
3. Otherwise use the property’s initial value. The initial value of each property is

indicated in the property’s definition.

9323 Apr 2009 15:57

Assigning property values, Cascading, and Inheritance

6.1.2 Computed values
Specified values are resolved to computed values during the cascade; for example
URIs are made absolute and ’em’ and ’ex’ units are computed to pixel or absolute
lengths. Computing a value never requires the user agent to render the document.

The computed value of URIs that the UA cannot resolve to absolute URIs is the
specified value.

When the specified value is not ’inherit’, the computed value of a property is
determined as specified by the Computed Value line in the definition of the property.
See the section on inheritance [p. 94] for the definition of computed values when the
specified value is ’inherit’.

The computed value exists even when the property doesn’t apply, as defined by
the ’Applies To’ [p. 27] line. However, some properties may define the computed
value of a property for an element to depend on whether the property applies to that
element.

6.1.3 Used values
Computed values are processed as far as possible without formatting the document.
Some values, however, can only be determined when the document is being laid
out. For example, if the width of an element is set to be a certain percentage of its
containing block, the width cannot be determined until the width of the containing
block has been determined. The used value is the result of taking the computed
value and resolving any remaining dependencies into an absolute value.

6.1.4 Actual values
A used value is in principle the value used for rendering, but a user agent may not
be able to make use of the value in a given environment. For example, a user agent
may only be able to render borders with integer pixel widths and may therefore have
to approximate the computed width, or the user agent may be forced to use only
black and white shades instead of full colour. The actual value is the used value after
any approximations have been applied.

6.2 Inheritance
Some values are inherited by the children of an element in the document tree [p. 41]
, as described above [p. 93] . Each property defines [p. 25] whether it is inherited or
not.

Suppose there is an H1 element with an emphasizing element (EM) inside:

<H1>The headline is important!</H1>

23 Apr 2009 15:5794

Assigning property values, Cascading, and Inheritance

If no color has been assigned to the EM element, the emphasized "is" will inherit
the color of the parent element, so if H1 has the color blue, the EM element will
likewise be in blue.

When inheritance occurs, elements inherit computed values. The computed value
from the parent element becomes both the specified value and the computed value
on the child.

Example(s):

For example, given the following style sheet:

body { font-size: 10pt }
h1 { font-size: 130% }

and this document fragment:

<BODY>
 <H1>A large heading</H1>
</BODY>

the ’font-size’ property for the H1 element will have the computed value ’13pt’
(130% times 10pt, the parent’s value). Since the computed value of ’font-size’ is
inherited, the EM element will have the computed value ’13pt’ as well. If the user
agent does not have the 13pt font available, the actual value of ’font-size’ for both H1
and EM might be, for example, ’12pt’.

6.2.1 The ’inherit’ value
Each property may also have a specified value of ’inherit’, which means that, for a
given element, the property takes the same computed value as the property for the
element’s parent. The ’inherit’ value can be used to strengthen inherited values, and
it can also be used on properties that are not normally inherited.

If the ’inherit’ value is set on the root element, the property is assigned its initial
value.

Example(s):

In the example below, the ’color’ and ’background’ properties are set on the BODY
element. On all other elements, the ’color’ value will be inherited and the background
will be transparent. If these rules are part of the user’s style sheet, black text on a
white background will be enforced throughout the document.

body {
 color: black !important;
 background: white !important;
}

* {
 color: inherit !important;
 background: transparent !important;
}

9523 Apr 2009 15:57

Assigning property values, Cascading, and Inheritance

6.3 The @import rule
The ’@import’ rule allows users to import style rules from other style sheets. In
CSS 2.1, any @import rules must precede all other rules (except the @charset rule,
if present). See the section on parsing [p. 52] for when user agents must ignore
@import rules. The ’@import’ keyword must be followed by the URI of the style
sheet to include. A string is also allowed; it will be interpreted as if it had url(...)
around it.

Example(s):

The following lines are equivalent in meaning and illustrate both ’@import’
syntaxes (one with "url()" and one with a bare string):

@import "mystyle.css";
@import url("mystyle.css");

So that user agents can avoid retrieving resources for unsupported media types
[p. 101] , authors may specify media-dependent @import rules. These conditional
imports specify comma-separated media types after the URI.

Example(s):

The following rules illustrate how @import rules can be made media-dependent:

@import url("fineprint.css") print;
@import url("bluish.css") projection, tv;

In the absence of any media types, the import is unconditional. Specifying ’all’ for
the medium has the same effect. The import only takes effect if the target medium
matches the media list.

A target medium matches a media list if one of the items in the media list is the
target medium or ’all’.

Note that Media Queries [MEDIAQ] extends the syntax of media lists and the
definition of matching.

When the same style sheet is imported or linked to a document in multiple places,
user agents must process (or act as though they do) each link as though the link
were to a separate style sheet.

6.4 The cascade
Style sheets may have three different origins: author, user, and user agent.

Author . The author specifies style sheets for a source document according to
the conventions of the document language. For instance, in HTML, style sheets
may be included in the document or linked externally.
User : The user may be able to specify style information for a particular
document. For example, the user may specify a file that contains a style sheet
or the user agent may provide an interface that generates a user style sheet (or

23 Apr 2009 15:5796

Assigning property values, Cascading, and Inheritance

behaves as if it did).
User agent : Conforming user agents [p. 43] must apply a default style sheet (or
behave as if they did). A user agent’s default style sheet should present the
elements of the document language in ways that satisfy general presentation
expectations for the document language (e.g., for visual browsers, the EM
element in HTML is presented using an italic font). See A sample style sheet for
HTML [p. 389] for a recommended default style sheet for HTML documents.

Note that the user may modify system settings (e.g. system colors) that affect
the default style sheet. However, some user agent implementations make it
impossible to change the values in the default style sheet.

Style sheets from these three origins will overlap in scope, and they interact
according to the cascade.

The CSS cascade assigns a weight to each style rule. When several rules apply,
the one with the greatest weight takes precedence.

By default, rules in author style sheets have more weight than rules in user style
sheets. Precedence is reversed, however, for "!important" rules. All user and author
rules have more weight than rules in the UA’s default style sheet.

6.4.1 Cascading order
To find the value for an element/property combination, user agents must apply the
following sorting order:

1. Find all declarations that apply to the element and property in question, for the
target media type [p. 101] . Declarations apply if the associated selector
matches [p. 71] the element in question and the target medium matches the
media list on all @media rules containing the declaration and on all links on the
path through which the style sheet was reached.

2. Sort according to importance (normal or important) and origin (author, user, or
user agent). In ascending order of precedence:

1. user agent declarations
2. user normal declarations
3. author normal declarations
4. author important declarations
5. user important declarations

3. Sort rules with the same importance and origin by specificity [p. 98] of selector:
more specific selectors will override more general ones. Pseudo-elements and
pseudo-classes are counted as normal elements and classes, respectively.

4. Finally, sort by order specified: if two declarations have the same weight, origin
and specificity, the latter specified wins. Declarations in imported style sheets
are considered to be before any declarations in the style sheet itself.

9723 Apr 2009 15:57

Assigning property values, Cascading, and Inheritance

Apart from the "!important" setting on individual declarations, this strategy gives
author’s style sheets higher weight than those of the reader. User agents must give
the user the ability to turn off the influence of specific author style sheets, e.g.,
through a pull-down menu. Conformance to UAAG 1.0 checkpoint 4.14 satisfies this
condition [UAAG10].

6.4.2 !important rules
CSS attempts to create a balance of power between author and user style sheets.
By default, rules in an author’s style sheet override those in a user’s style sheet (see
cascade rule 3).

However, for balance, an "!important" declaration (the delimiter token "!" and
keyword "important" follow the declaration) takes precedence over a normal
declaration. Both author and user style sheets may contain "!important" declarations,
and user "!important" rules override author "!important" rules. This CSS feature
improves accessibility of documents by giving users with special requirements (large
fonts, color combinations, etc.) control over presentation.

Declaring a shorthand property (e.g., ’background’) to be "!important" is equivalent
to declaring all of its sub-properties to be "!important".

Example(s):

The first rule in the user’s style sheet in the following example contains an
"!important" declaration, which overrides the corresponding declaration in the
author’s style sheet. The second declaration will also win due to being marked
"!important". However, the third rule in the user’s style sheet is not "!important" and
will therefore lose to the second rule in the author’s style sheet (which happens to
set style on a shorthand property). Also, the third author rule will lose to the second
author rule since the second rule is "!important". This shows that "!important"
declarations have a function also within author style sheets.

/* From the user’s style sheet */
p { text-indent: 1em ! important }
p { font-style: italic ! important }
p { font-size: 18pt }

/* From the author’s style sheet */
p { text-indent: 1.5em !important }
p { font: normal 12pt sans-serif !important }
p { font-size: 24pt }

6.4.3 Calculating a selector’s specificity
A selector’s specificity is calculated as follows:

count 1 if the declaration is from is a ’style’ attribute rather than a rule with a
selector, 0 otherwise (= a) (In HTML, values of an element’s "style" attribute are
style sheet rules. These rules have no selectors, so a=1, b=0, c=0, and d=0.)
count the number of ID attributes in the selector (= b)

23 Apr 2009 15:5798

Assigning property values, Cascading, and Inheritance

count the number of other attributes and pseudo-classes in the selector (= c)
count the number of element names and pseudo-elements in the selector (= d)

The specificity is based only on the form of the selector. In particular, a selector of
the form "[id=p33]" is counted as an attribute selector (a=0, b=0, c=1, d=0), even if
the id attribute is defined as an "ID" in the source document’s DTD.

Concatenating the four numbers a-b-c-d (in a number system with a large base)
gives the specificity.

Example(s):

Some examples:

 * {} /* a=0 b=0 c=0 d=0 -> specificity = 0,0,0,0 */
 li {} /* a=0 b=0 c=0 d=1 -> specificity = 0,0,0,1 */
 li:first-line {} /* a=0 b=0 c=0 d=2 -> specificity = 0,0,0,2 */
 ul li {} /* a=0 b=0 c=0 d=2 -> specificity = 0,0,0,2 */
 ul ol+li {} /* a=0 b=0 c=0 d=3 -> specificity = 0,0,0,3 */
 h1 + *[rel=up]{} /* a=0 b=0 c=1 d=1 -> specificity = 0,0,1,1 */
 ul ol li.red {} /* a=0 b=0 c=1 d=3 -> specificity = 0,0,1,3 */
 li.red.level {} /* a=0 b=0 c=2 d=1 -> specificity = 0,0,2,1 */
 #x34y {} /* a=0 b=1 c=0 d=0 -> specificity = 0,1,0,0 */
 style="" /* a=1 b=0 c=0 d=0 -> specificity = 1,0,0,0 */

<HEAD>
<STYLE type="text/css">
 #x97z { color: red }
</STYLE>
</HEAD>
<BODY>
<P ID=x97z style="color: green">
</BODY>

In the above example, the color of the P element would be green. The declaration
in the "style" attribute will override the one in the STYLE element because of
cascading rule 3, since it has a higher specificity.

6.4.4 Precedence of non-CSS presentational hints
The UA may choose to honor presentational attributes in an HTML source
document. If so, these attributes are translated to the corresponding CSS rules with
specificity equal to 0, and are treated as if they were inserted at the start of the
author style sheet. They may therefore be overridden by subsequent style sheet
rules. In a transition phase, this policy will make it easier for stylistic attributes to
coexist with style sheets.

For HTML, any attribute that is not in the following list should be considered
presentational: abbr, accept-charset, accept, accesskey, action, alt, archive, axis,
charset, checked, cite, class, classid, code, codebase, codetype, colspan, coords,
data, datetime, declare, defer, dir, disabled, enctype, for, headers, href, hreflang,
http-equiv, id, ismap, label, lang, language, longdesc, maxlength, media, method,
multiple, name, nohref, object, onblur, onchange, onclick, ondblclick, onfocus,

9923 Apr 2009 15:57

Assigning property values, Cascading, and Inheritance

onkeydown, onkeypress, onkeyup, onload, onload, onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup, onreset, onselect, onsubmit, onunload,
onunload, profile, prompt, readonly, rel, rev, rowspan, scheme, scope, selected,
shape, span, src, standby, start, style, summary, title, type (except on LI, OL and UL
elements), usemap, value, valuetype, version.

For other languages, all document language-based styling should be handled in
the user agent style sheet.

Example(s):

The following user style sheet would override the font weight of ’b’ elements in all
documents, and the color of ’font’ elements with color attributes in XML documents.
It would not affect the color of any ’font’ elements with color attributes in HTML
documents:

b { font-weight: normal; }
font[color] { color: orange; }

The following, however, would override the color of font elements in all
documents:

font[color] { color: orange ! important; }

23 Apr 2009 15:57100

Assigning property values, Cascading, and Inheritance

7 Media types
Contents

............ 1017.1 Introduction to media types

........ 1017.2 Specifying media-dependent style sheets

............. 1027.2.1 The @media rule

............. 1027.3 Recognized media types

.............. 1047.3.1 Media groups

7.1 Introduction to media types
One of the most important features of style sheets is that they specify how a
document is to be presented on different media: on the screen, on paper, with a
speech synthesizer, with a braille device, etc.

Certain CSS properties are only designed for certain media (e.g., the
’page-break-before’ property only applies to paged media). On occasion, however,
style sheets for different media types may share a property, but require different
values for that property. For example, the ’font-size’ property is useful both for
screen and print media. The two media types are different enough to require
different values for the common property; a document will typically need a larger font
on a computer screen than on paper. Therefore, it is necessary to express that a
style sheet, or a section of a style sheet, applies to certain media types.

7.2 Specifying media-dependent style sheets
There are currently two ways to specify media dependencies for style sheets:

Specify the target medium from a style sheet with the @media or @import
at-rules.

Example(s):

@import url("fancyfonts.css") screen;
@media print {
 /* style sheet for print goes here */
}

Specify the target medium within the document language. For example, in
HTML 4 ([HTML4]), the "media" attribute on the LINK element specifies the
target media of an external style sheet:

10123 Apr 2009 15:57

Media types

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
 <HEAD>
 <TITLE>Link to a target medium</TITLE>
 <LINK REL="stylesheet" TYPE="text/css"
 MEDIA="print, handheld" HREF="foo.css">
 </HEAD>
 <BODY>
 <P>The body...
 </BODY>
</HTML>

The @import [p. 96] rule is defined in the chapter on the cascade [p. 93] .

7.2.1 The @media rule
An @media rule specifies the target media types [p. 102] (separated by commas) of
a set of statements [p. 46] (delimited by curly braces). Invalid statements must be
ignored per 4.1.7 "Rule sets, declaration blocks, and selectors" [p. 53] and 4.2
"Rules for handling parsing errors." [p. 55] The @media construct allows style sheet
rules for various media in the same style sheet:

 @media print {
 body { font-size: 10pt }
 }
 @media screen {
 body { font-size: 13px }
 }
 @media screen, print {
 body { line-height: 1.2 }
 }

Style rules outside of @media rules apply to all media types that the style sheet
applies to. At-rules inside @media are invalid in CSS2.1.

7.3 Recognized media types
The names chosen for CSS media types reflect target devices for which the relevant
properties make sense. In the following list of CSS media types the names of media
types are normative, but the descriptions are informative. Likewise, the "Media" field
in the description of each property is informative.

all
Suitable for all devices.

braille
Intended for braille tactile feedback devices.

embossed
Intended for paged braille printers.

handheld
Intended for handheld devices (typically small screen, limited bandwidth).

23 Apr 2009 15:57102

Media types

print
Intended for paged material and for documents viewed on screen in print
preview mode. Please consult the section on paged media [p. 213] for
information about formatting issues that are specific to paged media.

projection
Intended for projected presentations, for example projectors. Please consult the
section on paged media [p. 213] for information about formatting issues that are
specific to paged media.

screen
Intended primarily for color computer screens.

speech
Intended for speech synthesizers. Note: CSS2 had a similar media type called
’aural’ for this purpose. See the appendix on aural style sheets [p. 291] for
details.

tty
Intended for media using a fixed-pitch character grid (such as teletypes,
terminals, or portable devices with limited display capabilities). Authors should
not use pixel units [p. 59] with the "tty" media type.

tv
Intended for television-type devices (low resolution, color, limited-scrollability
screens, sound available).

Media type names are case-insensitive.

Media types are mutually exclusive in the sense that a user agent can only
support one media type when rendering a document. However, user agents may use
different media types on different canvases. For example, a document may
(simultaneously) be shown in ’screen’ mode on one canvas and ’print’ mode on
another canvas.

Note that a multimodal media type is still only one media type. The ’tv’ media type,
for example, is a multimodal media type that renders both visually and aurally to a
single canvas.

@media and @import rules with unknown media types are treated as if the
unknown media types are not present.

Example(s):

For example, in the following snippet, the rule on the P element applies in ’screen’
mode (even though the ’3D’ media type is not known).

@media screen, 3D {
 P { color: green; }
}

Note. Future updates of CSS may extend the list of media types. Authors should
not rely on media type names that are not yet defined by a CSS specification.

10323 Apr 2009 15:57

Media types

7.3.1 Media groups
This section is informative, not normative.

Each CSS property definition specifies which media types the property applies to.
Since properties generally apply to several media types, the "Applies to media"
section of each property definition lists media groups rather than individual media
types. Each property applies to all media types in the media groups listed in its
definition.

CSS 2.1 defines the following media groups:

continuous or paged .
visual , audio , speech , or tactile .
grid (for character grid devices), or bitmap .
interactive (for devices that allow user interaction), or static (for those that
don’t).
all (includes all media types)

The following table shows the relationships between media groups and media
types:

Relationship between media groups and media types

Media
Types

Media Groups

 continuous/paged visual/audio/speech/tactile grid/bitmap interactive/static

braille continuous tactile grid both

embossed paged tactile grid static

handheld both visual, audio, speech both both

print paged visual bitmap static

projection paged visual bitmap interactive

screen continuous visual, audio bitmap both

speech continuous speech N/A both

tty continuous visual grid both

tv both visual, audio bitmap both

23 Apr 2009 15:57104

Media types

8 Box model
Contents

............... 1058.1 Box dimensions

........ 1078.2 Example of margins, padding, and borders
8.3 Margin properties: ’margin-top’, ’margin-right’, ’margin-bottom’, ’margin-left’,

................. 109and ’margin’

............ 1118.3.1 Collapsing margins
8.4 Padding properties: ’padding-top’, ’padding-right’, ’padding-bottom’,

............. 112’padding-left’, and ’padding’

.............. 1148.5 Border properties
8.5.1 Border width: ’border-top-width’, ’border-right-width’,

.... 114’border-bottom-width’, ’border-left-width’, and ’border-width’
8.5.2 Border color: ’border-top-color’, ’border-right-color’,

.... 115’border-bottom-color’, ’border-left-color’, and ’border-color’
8.5.3 Border style: ’border-top-style’, ’border-right-style’,

.... 116’border-bottom-style’, ’border-left-style’, and ’border-style’
8.5.4 Border shorthand properties: ’border-top’, ’border-right’,

........ 118’border-bottom’, ’border-left’, and ’border’

..... 1208.6 The box model for inline elements in bidirection context

The CSS box model describes the rectangular boxes that are generated for
elements in the document tree [p. 41] and laid out according to the visual formatting
model [p. 121] .

8.1 Box dimensions
Each box has a content area (e.g., text, an image, etc.) and optional surrounding
padding, border, and margin areas; the size of each area is specified by properties
defined below. The following diagram shows how these areas relate and the
terminology used to refer to pieces of margin, border, and padding:

10523 Apr 2009 15:57

Box model

Margin edge

Border edge

Padding edge

Content edge

Content

Border

Margin (Transparent)

Padding

Right

TM

LM RM

BM

LB RB

TB

BB

TP

BP

RPLP

Top

Bottom

Left

The margin, border, and padding can be broken down into top, right, bottom, and
left segments (e.g., in the diagram, "LM" for left margin, "RP" for right padding, "TB"
for top border, etc.).

The perimeter of each of the four areas (content, padding, border, and margin) is
called an "edge", so each box has four edges:

content edge or inner edge
The content edge surrounds the rectangle given by the width [p. 167] and height
[p. 176] of the box, which often depend on the element’s rendered content
[p. 41] . The four content edges define the box’s content box.

padding edge
The padding edge surrounds the box padding. If the padding has 0 width, the
padding edge is the same as the content edge. The four padding edges define
the box’s padding box.

border edge
The border edge surrounds the box’s border. If the border has 0 width, the
border edge is the same as the padding edge. The four border edges define the
box’s border box.

margin edge or outer edge
The margin edge surrounds the box margin. If the margin has 0 width, the
margin edge is the same as the border edge. The four margin edges define the
box’s margin box.

23 Apr 2009 15:57106

Box model

Each edge may be broken down into a top, right, bottom, and left edge.

The dimensions of the content area of a box — the content width and content
height — depend on several factors: whether the element generating the box has the
’width’ or ’height’ property set, whether the box contains text or other boxes, whether
the box is a table, etc. Box widths and heights are discussed in the chapter on visual
formatting model details [p. 163] .

The background style of the content, padding, and border areas of a box is
specified by the ’background’ property of the generating element. Margin
backgrounds are always transparent.

8.2 Example of margins, padding, and borders
This example illustrates how margins, padding, and borders interact. The example
HTML document:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
 <HEAD>
 <TITLE>Examples of margins, padding, and borders</TITLE>
 <STYLE type="text/css">
 UL {
 background: yellow;
 margin: 12px 12px 12px 12px;
 padding: 3px 3px 3px 3px;
 /* No borders set */
 }
 LI {
 color: white; /* text color is white */
 background: blue; /* Content, padding will be blue */
 margin: 12px 12px 12px 12px;
 padding: 12px 0px 12px 12px; /* Note 0px padding right */
 list-style: none /* no glyphs before a list item */
 /* No borders set */
 }
 LI.withborder {
 border-style: dashed;
 border-width: medium; /* sets border width on all sides */
 border-color: lime;
 }
 </STYLE>
 </HEAD>
 <BODY>

 First element of list
 <LI class="withborder">Second element of list is
 a bit longer to illustrate wrapping.

 </BODY>
</HTML>

10723 Apr 2009 15:57

Box model

results in a document tree [p. 41] with (among other relationships) a UL element
that has two LI children.

The first of the following diagrams illustrates what this example would produce.
The second illustrates the relationship between the margins, padding, and borders of
the UL elements and those of its children LI elements. (Image is not to scale.)

Note that:

The content width [p. 107] for each LI box is calculated top-down; the containing
block [p. 122] for each LI box is established by the UL element.
The margin box height of each LI box depends on its content height [p. 107] ,

23 Apr 2009 15:57108

Box model

plus top and bottom padding, borders, and margins. Note that vertical margins
between the LI boxes collapse. [p. 111]
The right padding of the LI boxes has been set to zero width (the ’padding’
property). The effect is apparent in the second illustration.
The margins of the LI boxes are transparent — margins are always transparent
— so the background color (yellow) of the UL padding and content areas shines
through them.
The second LI element specifies a dashed border (the ’border-style’ property).

8.3 Margin properties: ’margin-top’, ’margin-right’,
’margin-bottom’, ’margin-left’, and ’margin’
Margin properties specify the width of the margin area [p. 105] of a box. The ’margin’
shorthand property sets the margin for all four sides while the other margin
properties only set their respective side. These properties apply to all elements, but
vertical margins will not have any effect on non-replaced inline elements.

The properties defined in this section refer to the <margin-width> value type,
which may take one of the following values:

<length>
Specifies a fixed width.

<percentage>
The percentage is calculated with respect to the width of the generated box’s
containing block [p. 122] . Note that this is true for ’margin-top’ and
’margin-bottom’ as well. If the containing block’s width depends on this element,
then the resulting layout is undefined in CSS 2.1.

auto
See the section on calculating widths and margins [p. 167] for behavior.

Negative values for margin properties are allowed, but there may be
implementation-specific limits.

’margin-top’ , ’margin-bottom’

Value: <margin-width> | inherit
Initial: 0
Applies to: all elements except elements with table display types other

than table-caption, table and inline-table
Inherited: no
Percentages: refer to width of containing block
Media: visual
Computed value: the percentage as specified or the absolute length

10923 Apr 2009 15:57

Box model

These properties have no effect on non-replaced inline elements.

’margin-right’ , ’margin-left’

Value: <margin-width> | inherit
Initial: 0
Applies to: all elements except elements with table display types other

than table-caption, table and inline-table
Inherited: no
Percentages: refer to width of containing block
Media: visual
Computed value: the percentage as specified or the absolute length

These properties set the top, right, bottom, and left margin of a box.

Example(s):

h1 { margin-top: 2em }

’margin’

Value: <margin-width>{1,4} | inherit
Initial: see individual properties
Applies to: all elements except elements with table display types other

than table-caption, table and inline-table
Inherited: no
Percentages: refer to width of containing block
Media: visual
Computed value: see individual properties

The ’margin’ property is a shorthand property for setting ’margin-top’,
’margin-right’, ’margin-bottom’, and ’margin-left’ at the same place in the style sheet.

If there is only one value, it applies to all sides. If there are two values, the top and
bottom margins are set to the first value and the right and left margins are set to the
second. If there are three values, the top is set to the first value, the left and right are
set to the second, and the bottom is set to the third. If there are four values, they
apply to the top, right, bottom, and left, respectively.

Example(s):

body { margin: 2em } /* all margins set to 2em */
body { margin: 1em 2em } /* top & bottom = 1em, right & left = 2em */
body { margin: 1em 2em 3em } /* top=1em, right=2em, bottom=3em, left=2em */

The last rule of the example above is equivalent to the example below:

23 Apr 2009 15:57110

Box model

body {
 margin-top: 1em;
 margin-right: 2em;
 margin-bottom: 3em;
 margin-left: 2em; /* copied from opposite side (right) */
}

8.3.1 Collapsing margins
In this specification, the expression collapsing margins means that adjoining margins
(no non-empty content, padding or border areas or clearance [p. 143] separate
them) of two or more boxes (which may be next to one another or nested) combine
to form a single margin.

In CSS 2.1, horizontal margins never collapse.

Vertical margins may collapse between certain boxes:

Two or more adjoining vertical margins of block [p. 123] boxes in the normal
flow [p. 132] collapse. The resulting margin width is the maximum of the
adjoining margin widths. In the case of negative margins, the maximum of the
absolute values of the negative adjoining margins is deducted from the
maximum of the positive adjoining margins. If there are no positive margins, the
absolute maximum of the negative adjoining margins is deducted from zero.
Note. Adjoining boxes may be generated by elements that are not related as
siblings or ancestors.
Vertical margins between a floated [p. 136] box and any other box do not
collapse (not even between a float and its in-flow children).
Vertical margins of elements that establish new block formatting contexts (such
as floats and elements with ’overflow’ other than ’visible’) do not collapse with
their in-flow children.
Margins of absolutely [p. 144] positioned boxes do not collapse (not even with
their in-flow children).
Margins of inline-block elements do not collapse (not even with their in-flow
children).
If the top and bottom margins of a box are adjoining, then it is possible for
margins to collapse through it. In this case, the position of the element depends
on its relationship with the other elements whose margins are being collapsed.

If the element’s margins are collapsed with its parent’s top margin, the top
border edge of the box is defined to be the same as the parent’s.
Otherwise, either the element’s parent is not taking part in the margin
collapsing, or only the parent’s bottom margin is involved. The position of
the element’s top border edge is the same as it would have been if the
element had a non-zero bottom border.

An element that has had clearance [p. 143] applied to it never collapses its
top margin with its parent block’s bottom margin.

11123 Apr 2009 15:57

Box model

Note that the positions of elements that have been collapsed through have no
effect on the positions of the other elements with whose margins they are being
collapsed; the top border edge position is only required for laying out
descendants of these elements.

Margins of the root element’s box do not collapse.

The bottom margin of an in-flow block-level element is always adjoining to the top
margin of its next in-flow block-level sibling, unless that sibling has clearance.
[p. 143]

The top margin of an in-flow block-level element is adjoining to its first in-flow
block-level child’s top margin if the element has no top border, no top padding, and
the child has no clearance. [p. 143]

The bottom margin of an in-flow block-level element with a ’height’ of ’auto’ is
adjoining to its last in-flow block-level child’s bottom margin if the element has no
bottom padding or border.

An element’s own margins are adjoining if the ’min-height’ property is zero, and it
has neither top or bottom borders nor top or bottom padding, and it has a ’height’ of
either 0 or ’auto’, and it does not contain a line box, and all of its in-flow children’s
margins (if any) are adjoining.

When an element’s own margins collapse, and that element has had clearance
applied to it, its top margin collapses with the adjoining margins of subsequent
siblings but that resulting margin does not collapse with the bottom margin of the
parent block.

Collapsing is based on the used value of ’padding’, ’margin’, and ’border’ (i.e.,
after resolving any percentages). The collapsed margin is calculated over the used
value of the various margins.

Please consult the examples of margin, padding, and borders [p. 107] for an
illustration of collapsed margins.

8.4 Padding properties: ’padding-top’, ’padding-right’,
’padding-bottom’, ’padding-left’, and ’padding’
The padding properties specify the width of the padding area [p. 105] of a box. The
’padding’ shorthand property sets the padding for all four sides while the other
padding properties only set their respective side.

The properties defined in this section refer to the <padding-width> value type,
which may take one of the following values:

<length>
Specifies a fixed width.

<percentage>
The percentage is calculated with respect to the width of the generated box’s
containing block [p. 122] , even for ’padding-top’ and ’padding-bottom’. If the

23 Apr 2009 15:57112

Box model

containing block’s width depends on this element, then the resulting layout is
undefined in CSS 2.1.

Unlike margin properties, values for padding values cannot be negative. Like
margin properties, percentage values for padding properties refer to the width of the
generated box’s containing block.

’padding-top’ , ’padding-right’ , ’padding-bottom’ , ’padding-left’

Value: <padding-width> | inherit
Initial: 0
Applies to: all elements except table-row-group, table-header-group,

table-footer-group, table-row, table-column-group and
table-column

Inherited: no
Percentages: refer to width of containing block
Media: visual
Computed value: the percentage as specified or the absolute length

These properties set the top, right, bottom, and left padding of a box.

Example(s):

blockquote { padding-top: 0.3em }

’padding’

Value: <padding-width>{1,4} | inherit
Initial: see individual properties
Applies to: all elements except table-row-group, table-header-group,

table-footer-group, table-row, table-column-group and
table-column

Inherited: no
Percentages: refer to width of containing block
Media: visual
Computed value: see individual properties

The ’padding’ property is a shorthand property for setting ’padding-top’,
’padding-right’, ’padding-bottom’, and ’padding-left’ at the same place in the style
sheet.

If there is only one value, it applies to all sides. If there are two values, the top and
bottom paddings are set to the first value and the right and left paddings are set to
the second. If there are three values, the top is set to the first value, the left and right
are set to the second, and the bottom is set to the third. If there are four values, they
apply to the top, right, bottom, and left, respectively.

11323 Apr 2009 15:57

Box model

The surface color or image of the padding area is specified via the ’background’
property:

Example(s):

h1 {
 background: white;
 padding: 1em 2em;
}

The example above specifies a ’1em’ vertical padding (’padding-top’ and
’padding-bottom’) and a ’2em’ horizontal padding (’padding-right’ and ’padding-left’).
The ’em’ unit is relative [p. 58] to the element’s font size: ’1em’ is equal to the size of
the font in use.

8.5 Border properties
The border properties specify the width, color, and style of the border area [p. 105] of
a box. These properties apply to all elements.

Note. Notably for HTML, user agents may render borders for certain user interface
elements (e.g., buttons, menus, etc.) differently than for "ordinary" elements.

8.5.1 Border width: ’border-top-width’, ’border-right-width’,
’border-bottom-width’, ’border-left-width’, and ’border-width’
The border width properties specify the width of the border area [p. 105] . The
properties defined in this section refer to the <border-width> value type, which may
take one of the following values:

thin
A thin border.

medium
A medium border.

thick
A thick border.

<length>
The border’s thickness has an explicit value. Explicit border widths cannot be
negative.

The interpretation of the first three values depends on the user agent. The
following relationships must hold, however:

’thin’ <=’medium’ <= ’thick’.

Furthermore, these widths must be constant throughout a document.

’border-top-width’ , ’border-right-width’ , ’border-bottom-width’ ,
’border-left-width’

23 Apr 2009 15:57114

Box model

Value: <border-width> | inherit
Initial: medium
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: absolute length; ’0’ if the border style is ’none’ or ’hidden’

These properties set the width of the top, right, bottom, and left border of a box.

’border-width’

Value: <border-width>{1,4} | inherit
Initial: see individual properties
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: see individual properties

This property is a shorthand property for setting ’border-top-width’,
’border-right-width’, ’border-bottom-width’, and ’border-left-width’ at the same place
in the style sheet.

If there is only one value, it applies to all sides. If there are two values, the top and
bottom borders are set to the first value and the right and left are set to the second. If
there are three values, the top is set to the first value, the left and right are set to the
second, and the bottom is set to the third. If there are four values, they apply to the
top, right, bottom, and left, respectively.

Example(s):

In the examples below, the comments indicate the resulting widths of the top,
right, bottom, and left borders:

h1 { border-width: thin } /* thin thin thin thin */
h1 { border-width: thin thick } /* thin thick thin thick */
h1 { border-width: thin thick medium } /* thin thick medium thick */

8.5.2 Border color: ’border-top-color’, ’border-right-color’,
’border-bottom-color’, ’border-left-color’, and ’border-color’
The border color properties specify the color of a box’s border.

’border-top-color’ , ’border-right-color’ , ’border-bottom-color’ ,
’border-left-color’

11523 Apr 2009 15:57

Box model

Value: <color> | transparent | inherit
Initial: the value of the ’color’ property
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: when taken from the ’color’ property, the computed value of

’color’; otherwise, as specified

’border-color’

Value: [<color> | transparent]{1,4} | inherit
Initial: see individual properties
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: see individual properties

The ’border-color’ property sets the color of the four borders. Values have the
following meanings:

<color>
Specifies a color value.

transparent
The border is transparent (though it may have width).

The ’border-color’ property can have from one to four values, and the values are
set on the different sides as for ’border-width’.

If an element’s border color is not specified with a border property, user agents
must use the value of the element’s ’color’ property as the computed value [p. 94] for
the border color.

Example(s):

In this example, the border will be a solid black line.

p {
 color: black;
 background: white;
 border: solid;
}

8.5.3 Border style: ’border-top-style’, ’border-right-style’,
’border-bottom-style’, ’border-left-style’, and ’border-style’

23 Apr 2009 15:57116

Box model

The border style properties specify the line style of a box’s border (solid, double,
dashed, etc.). The properties defined in this section refer to the <border-style>
value type, which may take one of the following values:

none
No border; the computed border width is zero.

hidden
Same as ’none’, except in terms of border conflict resolution [p. 279] for table
elements [p. 257] .

dotted
The border is a series of dots.

dashed
The border is a series of short line segments.

solid
The border is a single line segment.

double
The border is two solid lines. The sum of the two lines and the space between
them equals the value of ’border-width’.

groove
The border looks as though it were carved into the canvas.

ridge
The opposite of ’groove’: the border looks as though it were coming out of the
canvas.

inset
The border makes the box look as though it were embedded in the canvas.

outset
The opposite of ’inset’: the border makes the box look as though it were coming
out of the canvas.

All borders are drawn on top of the box’s background. The color of borders drawn
for values of ’groove’, ’ridge’, ’inset’, and ’outset’ depends on the element’s border
color properties [p. 115] , but UAs may choose their own algorithm to calculate the
actual colors used. For instance, if the ’border-color’ has the value ’silver’, then a UA
could use a gradient of colors from white to dark gray to indicate a sloping border.

’border-top-style’ , ’border-right-style’ , ’border-bottom-style’ , ’border-left-style’

Value: <border-style> | inherit
Initial: none
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: as specified

11723 Apr 2009 15:57

Box model

’border-style’

Value: <border-style>{1,4} | inherit
Initial: see individual properties
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: see individual properties

The ’border-style’ property sets the style of the four borders. It can have from one
to four values, and the values are set on the different sides as for ’border-width’
above.

Example(s):

#xy34 { border-style: solid dotted }

In the above example, the horizontal borders will be ’solid’ and the vertical borders
will be ’dotted’.

Since the initial value of the border styles is ’none’, no borders will be visible
unless the border style is set.

8.5.4 Border shorthand properties: ’border-top’, ’border-right’,
’border-bottom’, ’border-left’, and ’border’

’border-top’ , ’border-right’ , ’border-bottom’ , ’border-left’

Value: [<border-width> || <border-style> || <’border-top-color’>] |
inherit

Initial: see individual properties
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: see individual properties

This is a shorthand property for setting the width, style, and color of the top, right,
bottom, and left border of a box.

Example(s):

h1 { border-bottom: thick solid red }

The above rule will set the width, style, and color of the border below the H1
element. Omitted values are set to their initial values [p. 27] . Since the following rule
does not specify a border color, the border will have the color specified by the ’color’
property:

23 Apr 2009 15:57118

Box model

H1 { border-bottom: thick solid }

’border’

Value: [<border-width> || <border-style> || <’border-top-color’>] |
inherit

Initial: see individual properties
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: see individual properties

The ’border’ property is a shorthand property for setting the same width, color, and
style for all four borders of a box. Unlike the shorthand ’margin’ and ’padding’
properties, the ’border’ property cannot set different values on the four borders. To
do so, one or more of the other border properties must be used.

Example(s):

For example, the first rule below is equivalent to the set of four rules shown after it:

p { border: solid red }
p {
 border-top: solid red;
 border-right: solid red;
 border-bottom: solid red;
 border-left: solid red
}

Since, to some extent, the properties have overlapping functionality, the order in
which the rules are specified is important.

Example(s):

Consider this example:

blockquote {
 border: solid red;
 border-left: double;
 color: black;
}

In the above example, the color of the left border is black, while the other borders
are red. This is due to ’border-left’ setting the width, style, and color. Since the color
value is not given by the ’border-left’ property, it will be taken from the ’color’
property. The fact that the ’color’ property is set after the ’border-left’ property is not
relevant.

11923 Apr 2009 15:57

Box model

8.6 The box model for inline elements in bidirection
context
For each line box, UAs must take the inline boxes generated for each element and
render the margins, borders and padding in visual order (not logical order).

When the element’s ’direction’ property is ’ltr’, the left-most generated box of the
first line box in which the element appears has the left margin, left border and left
padding, and the right-most generated box of the last line box in which the element
appears has the right padding, right border and right margin.

When the element’s ’direction’ property is ’rtl’, the right-most generated box of the
first line box in which the element appears has the right padding, right border and
right margin, and the left-most generated box of the last line box in which the
element appears has the left margin, left border and left padding.

23 Apr 2009 15:57120

Box model

9 Visual formatting model
Contents

........ 1219.1 Introduction to the visual formatting model

.............. 1229.1.1 The viewport

............. 1229.1.2 Containing blocks

............ 1239.2 Controlling box generation

........ 1239.2.1 Block-level elements and block boxes

......... 1239.2.1.1 Anonymous block boxes

........ 1259.2.2 Inline-level elements and inline boxes

......... 1259.2.2.1 Anonymous inline boxes

.............. 1269.2.3 Run-in boxes

............ 1269.2.4 The ’display’ property

.............. 1289.3 Positioning schemes

..... 1289.3.1 Choosing a positioning scheme: ’position’ property

........ 1309.3.2 Box offsets: ’top’, ’right’, ’bottom’, ’left’

................ 1329.4 Normal flow

........... 1329.4.1 Block formatting contexts

........... 1339.4.2 Inline formatting context

............ 1359.4.3 Relative positioning

................. 1369.5 Floats

....... 1419.5.1 Positioning the float: the ’float’ property

..... 1429.5.2 Controlling flow next to floats: the ’clear’ property

.............. 1449.6 Absolute positioning

............. 1459.6.1 Fixed positioning

...... 1469.7 Relationships between ’display’, ’position’, and ’float’

.... 1479.8 Comparison of normal flow, floats, and absolute positioning

.............. 1489.8.1 Normal flow

............ 1489.8.2 Relative positioning

.............. 1499.8.3 Floating a box

............ 1529.8.4 Absolute positioning

............. 1569.9 Layered presentation

..... 1569.9.1 Specifying the stack level: the ’z-index’ property

.... 1589.10 Text direction: the ’direction’ and ’unicode-bidi’ properties

9.1 Introduction to the visual formatting model
This chapter and the next describe the visual formatting model: how user agents
process the document tree [p. 41] for visual media [p. 101] .

12123 Apr 2009 15:57

Visual formatting model

In the visual formatting model, each element in the document tree generates zero
or more boxes according to the box model [p. 105] . The layout of these boxes is
governed by:

box dimensions [p. 105] and type [p. 123] .
positioning scheme [p. 128] (normal flow, float, and absolute positioning).
relationships between elements in the document tree. [p. 41]
external information (e.g., viewport size, intrinsic [p. 41] dimensions of images,
etc.).

The properties defined in this chapter and the next apply to both continuous media
[p. 104] and paged media [p. 104] . However, the meanings of the margin properties
[p. 109] vary when applied to paged media (see the page model [p. 214] for details).

The visual formatting model does not specify all aspects of formatting (e.g., it does
not specify a letter-spacing algorithm). Conforming user agents [p. 43] may behave
differently for those formatting issues not covered by this specification.

9.1.1 The viewport
User agents for continuous media [p. 104] generally offer users a viewport (a window
or other viewing area on the screen) through which users consult a document. User
agents may change the document’s layout when the viewport is resized (see the
initial containing block [p. 163]).

When the viewport is smaller than the area of the canvas on which the document
is rendered, the user agent should offer a scrolling mechanism. There is at most one
viewport per canvas [p. 36] , but user agents may render to more than one canvas
(i.e., provide different views of the same document).

9.1.2 Containing blocks
In CSS 2.1, many box positions and sizes are calculated with respect to the edges of
a rectangular box called a containing block. In general, generated boxes act as
containing blocks for descendant boxes; we say that a box "establishes" the
containing block for its descendants. The phrase "a box’s containing block" means
"the containing block in which the box lives," not the one it generates.

Each box is given a position with respect to its containing block, but it is not
confined by this containing block; it may overflow [p. 187] .

The details [p. 163] of how a containing block’s dimensions are calculated are
described in the next chapter [p. 163] .

23 Apr 2009 15:57122

Visual formatting model

9.2 Controlling box generation
The following sections describe the types of boxes that may be generated in
CSS 2.1. A box’s type affects, in part, its behavior in the visual formatting model. The
’display’ property, described below, specifies a box’s type.

9.2.1 Block-level elements and block boxes
Block-level elements are those elements of the source document that are formatted
visually as blocks (e.g., paragraphs). Several values of the ’display’ property make
an element block-level: ’block’, ’list-item’, and ’run-in’ (part of the time; see run-in
boxes [p. 126]), and ’table’.

Block-level elements (except for display ’table’ elements, which are described in a
later chapter) generate a principal block box that contains either only block boxes or
only inline boxes [p. 125] . The principal block box establishes the containing block
[p. 122] for descendant boxes and generated content and is also the box involved in
any positioning scheme. Principal block boxes participate in a block formatting
context [p. 132] .

Some block-level elements generate additional boxes outside of the principal box:
’list-item’ elements. These additional boxes are placed with respect to the principal
box.

9.2.1.1 Anonymous block boxes

In a document like this:

<DIV>
 Some text
 <P>More text
</DIV>

(and assuming the DIV and the P both have ’display: block’), the DIV appears to
have both inline content and block content. To make it easier to define the
formatting, we assume that there is an anonymous block box around "Some text".

12323 Apr 2009 15:57

Visual formatting model

Some text

More text

DIV box
anonymous box

P box

Diagram showing the three boxes, of which one is anonymous, for the example
above.

In other words: if a block box (such as that generated for the DIV above) has
another block box or run-in box inside it (such as the P above), then we force it to
have only block boxes and run-in boxes inside it.

When an inline box contains a block box, the inline box (and its inline ancestors
within the same line box) are broken around the block. The line boxes before the
break and after the break are enclosed in anonymous boxes, and the block box
becomes a sibling of those anonymous boxes. When such an inline box is affected
by relative positioning, the relative positioning also affects the block box.

Example(s):

This model would apply in the following example if the following rules:

body { display: inline }
p { display: block }

were used with this HTML document:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HEAD>
<TITLE>Anonymous text interrupted by a block</TITLE>
</HEAD>
<BODY>
This is anonymous text before the P.
<P>This is the content of P.</P>
This is anonymous text after the P.
</BODY>

The BODY element contains a chunk (C1) of anonymous text followed by a
block-level element followed by another chunk (C2) of anonymous text. The resulting
boxes would be an anonymous block box around the BODY, containing an
anonymous block box around C1, the P block box, and another anonymous block
box around C2.

23 Apr 2009 15:57124

Visual formatting model

The properties of anonymous boxes are inherited from the enclosing
non-anonymous box (e.g. in the example just below the subsection heading
"Anonymous block boxes", the one for DIV). Non-inherited properties have their
initial value. For example, the font of the anonymous box is inherited from the DIV,
but the margins will be 0.

Properties set on elements that cause anonymous block boxes to be generated
still apply to the boxes and content of that element. For example, if a border had
been set on the BODY element in the above example, the border would be drawn
around C1 (open at the end of the line) and C2 (open at the start of the line).

Some user agents have implemented borders on inlines containing blocks in other
ways, e.g. by wrapping such nested blocks inside "anonymous line boxes" and thus
drawing inline borders around such boxes. As CSS1 and CSS2 did not define this
behavior, CSS1-only and CSS2-only user agents may implement this alternative
model and still claim conformance to this part of CSS 2.1. This does not apply to
UAs developed after this specification was released.

9.2.2 Inline-level elements and inline boxes
Inline-level elements are those elements of the source document that do not form
new blocks of content; the content is distributed in lines (e.g., emphasized pieces of
text within a paragraph, inline images, etc.). Several values of the ’display’ property
make an element inline: ’inline’, ’inline-table’, ’inline-block’ and ’run-in’ (part of the
time; see run-in boxes [p. 126]). Inline-level elements generate inline boxes.

9.2.2.1 Anonymous inline boxes

In a document with HTML markup like this:

<p>Some emphasized text</p>

The <p> generates a block box, with several inline boxes inside it. The box for
"emphasized" is an inline box generated by an inline element (), but the other
boxes ("Some" and "text") are inline boxes generated by a block-level element
(<p>). The latter are called anonymous inline boxes, because they don’t have an
associated inline-level element.

Such anonymous inline boxes inherit inheritable properties from their block parent
box. Non-inherited properties have their initial value. In the example, the color of the
anonymous inline boxes is inherited from the P, but the background is transparent.

White space content that would subsequently be collapsed away according to the
’white-space’ property does not generate any anonymous inline boxes.

If it is clear from the context which type of anonymous box is meant, both
anonymous inline boxes and anonymous block boxes are simply called anonymous
boxes in this specification.

12523 Apr 2009 15:57

Visual formatting model

There are more types of anonymous boxes that arise when formatting tables
[p. 261] .

9.2.3 Run-in boxes
A run-in box behaves as follows:

1. If the run-in box contains a block [p. 123] box, the run-in box becomes a block
box.

2. If a sibling block [p. 123] box (that does not float and is not absolutely positioned
[p. 144]) follows the run-in box, the run-in box becomes the first inline box of the
block box. A run-in cannot run in to a block that already starts with a run-in or
that itself is a run-in.

3. Otherwise, the run-in box becomes a block box.

A ’run-in’ box is useful for run-in headers, as in this example:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
 <HEAD>
 <TITLE>A run-in box example</TITLE>
 <STYLE type="text/css">
 H3 { display: run-in }
 </STYLE>
 </HEAD>
 <BODY>
 <H3>A run-in heading.</H3>
 <P>And a paragraph of text that
 follows it.
 </BODY>
</HTML>

This example might be formatted as:

 A run-in heading. And a
 paragraph of text that
 follows it.

Despite appearing visually part of the following block box, a run-in element still
inherits properties from its parent in the source tree.

Please consult the section on generated content [p. 195] for information about how
run-in boxes interact with generated content.

9.2.4 The ’display’ property

’display’

23 Apr 2009 15:57126

Visual formatting model

Value: inline | block | list-item | run-in | inline-block | table |
inline-table | table-row-group | table-header-group |
table-footer-group | table-row | table-column-group |
table-column | table-cell | table-caption | none | inherit

Initial: inline
Applies to: all elements
Inherited: no
Percentages: N/A
Media: all
Computed value: see text

The values of this property have the following meanings:

block
This value causes an element to generate a block box.

inline-block
This value causes an element to generate a block box, which itself is flowed as
a single inline box, similar to a replaced element. The inside of an inline-block is
formatted as a block box, and the element itself is formatted as an inline
replaced element.

inline
This value causes an element to generate one or more inline boxes.

list-item
This value causes an element (e.g., LI in HTML) to generate a principal block
box and a list-item inline box. For information about lists and examples of list
formatting, please consult the section on lists [p. 206] .

none
This value causes an element to not appear in the formatting structure [p. 36]
(i.e., in visual media the element generates no boxes and has no effect on
layout). Descendant elements do not generate any boxes either; the element
and its content are removed from the formatting structure entirely. This behavior
cannot be overridden by setting the ’display’ property on the descendants.

Please note that a display of ’none’ does not create an invisible box; it creates
no box at all. CSS includes mechanisms that enable an element to generate
boxes in the formatting structure that affect formatting but are not visible
themselves. Please consult the section on visibility [p. 192] for details.

run-in
This value creates either block or inline boxes, depending on context. Properties
apply to run-in boxes based on their final status (inline-level or block-level).

table, inline-table, table-row-group, table-column, table-column-group,
table-header-group, table-footer-group, table-row, table-cell, and table-caption

These values cause an element to behave like a table element (subject to
restrictions described in the chapter on tables [p. 257]).

12723 Apr 2009 15:57

Visual formatting model

The computed value is the same as the specified value, except for positioned and
floating elements (see Relationships between ’display’, ’position’, and ’float’ [p. 146])
and for the root element. For the root element, the computed value is changed as
described in the section on the relationships between ’display’, ’position’, and ’float’
[p. 146] .

Note that although the initial value [p. 27] of ’display’ is ’inline’, rules in the user
agent’s default style sheet [p. 97] may override [p. 93] this value. See the sample
style sheet [p. 389] for HTML 4 in the appendix.

Example(s):

Here are some examples of the ’display’ property:

p { display: block }
em { display: inline }
li { display: list-item }
img { display: none } /* Don’t display images */

9.3 Positioning schemes
In CSS 2.1, a box may be laid out according to three positioning schemes:

1. Normal flow [p. 132] . In CSS 2.1, normal flow includes block formatting [p. 132]
of block [p. 123] boxes, inline formatting [p. 133] of inline [p. 125] boxes, relative
positioning [p. 135] of block or inline boxes, and positioning of run-in [p. 126]
boxes.

2. Floats [p. 136] . In the float model, a box is first laid out according to the normal
flow, then taken out of the flow and shifted to the left or right as far as possible.
Content may flow along the side of a float.

3. Absolute positioning [p. 144] . In the absolute positioning model, a box is
removed from the normal flow entirely (it has no impact on later siblings) and
assigned a position with respect to a containing block.

Note. CSS 2.1’s positioning schemes help authors make their documents more
accessible by allowing them to avoid mark-up tricks (e.g., invisible images) used for
layout effects.

9.3.1 Choosing a positioning scheme: ’position’ property
The ’position’ and ’float’ properties determine which of the CSS 2.1 positioning
algorithms is used to calculate the position of a box.

’position’

23 Apr 2009 15:57128

Visual formatting model

Value: static | relative | absolute | fixed | inherit
Initial: static
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: as specified

The values of this property have the following meanings:

static
The box is a normal box, laid out according to the normal flow [p. 132] . The
’top’, ’right’, ’bottom’, and ’left’ properties do not apply.

relative
The box’s position is calculated according to the normal flow [p. 132] (this is
called the position in normal flow). Then the box is offset relative [p. 135] to its
normal position. When a box B is relatively positioned, the position of the
following box is calculated as though B were not offset. The effect of
’position:relative’ on table-row-group, table-header-group, table-footer-group,
table-row, table-column-group, table-column, table-cell, and table-caption
elements is undefined.

absolute
The box’s position (and possibly size) is specified with the ’top’, ’right’, ’bottom’,
and ’left’ properties. These properties specify offsets with respect to the box’s
containing block [p. 122] . Absolutely positioned boxes are taken out of the
normal flow. This means they have no impact on the layout of later siblings.
Also, though absolutely positioned [p. 144] boxes have margins, they do not
collapse [p. 111] with any other margins.

fixed
The box’s position is calculated according to the ’absolute’ model, but in
addition, the box is fixed [p. 145] with respect to some reference. As with the
’absolute’ model, the box’s margins do not collapse with any other margins. In
the case of handheld, projection, screen, tty, and tv media types, the box is fixed
with respect to the viewport [p. 122] and doesn’t move when scrolled. In the
case of the print media type, the box is rendered on every page, and is fixed
with respect to the page box, even if the page is seen through a viewport
[p. 122] (in the case of a print-preview, for example). For other media types, the
presentation is undefined. Authors may wish to specify ’fixed’ in a
media-dependent way. For instance, an author may want a box to remain at the
top of the viewport [p. 122] on the screen, but not at the top of each printed
page. The two specifications may be separated by using an @media rule
[p. 102] , as in:

Example(s):

12923 Apr 2009 15:57

Visual formatting model

@media screen {
 h1#first { position: fixed }
}
@media print {
 h1#first { position: static }
}

UAs must not paginate the content of fixed boxes. Note that UAs may print
invisible content in other ways. See "Content outside the page box" [p. 216] in
chapter 13.

User agents may treat position as ’static’ on the root element.

9.3.2 Box offsets: ’top’, ’right’, ’bottom’, ’left’
An element is said to be positioned if its ’position’ property has a value other than
’static’. Positioned elements generate positioned boxes, laid out according to four
properties:

’top’

Value: <length> | <percentage> | auto | inherit
Initial: auto
Applies to: positioned elements
Inherited: no
Percentages: refer to height of containing block
Media: visual
Computed value: for ’position:relative’, see section Relative Positioning. [p. 135]

For ’position:static’, ’auto’. Otherwise: if specified as a length,
the corresponding absolute length; if specified as a
percentage, the specified value; otherwise, ’auto’.

This property specifies how far an absolutely positioned [p. 144] box’s top margin
edge is offset below the top edge of the box’s containing block [p. 122] . For
relatively positioned boxes, the offset is with respect to the top edges of the box itself
(i.e., the box is given a position in the normal flow, then offset from that position
according to these properties).

’right’

23 Apr 2009 15:57130

Visual formatting model

Value: <length> | <percentage> | auto | inherit
Initial: auto
Applies to: positioned elements
Inherited: no
Percentages: refer to width of containing block
Media: visual
Computed value: for ’position:relative’, see section Relative Positioning. [p. 135]

For ’position:static’, ’auto’. Otherwise: if specified as a length,
the corresponding absolute length; if specified as a
percentage, the specified value; otherwise, ’auto’.

Like ’top’, but specifies how far a box’s right margin edge is offset to the left of the
right edge of the box’s containing block [p. 122] . For relatively positioned boxes, the
offset is with respect to the right edge of the box itself.

’bottom’

Value: <length> | <percentage> | auto | inherit
Initial: auto
Applies to: positioned elements
Inherited: no
Percentages: refer to height of containing block
Media: visual
Computed value: for ’position:relative’, see section Relative Positioning. [p. 135]

For ’position:static’, ’auto’. Otherwise: if specified as a length,
the corresponding absolute length; if specified as a
percentage, the specified value; otherwise, ’auto’.

Like ’top’, but specifies how far a box’s bottom margin edge is offset above the
bottom of the box’s containing block [p. 122] . For relatively positioned boxes, the
offset is with respect to the bottom edge of the box itself.

’left’

Value: <length> | <percentage> | auto | inherit
Initial: auto
Applies to: positioned elements
Inherited: no
Percentages: refer to width of containing block
Media: visual
Computed value: for ’position:relative’, see section Relative Positioning. [p. 135]

For ’position:static’, ’auto’. Otherwise: if specified as a length,
the corresponding absolute length; if specified as a
percentage, the specified value; otherwise, ’auto’.

13123 Apr 2009 15:57

Visual formatting model

Like ’top’, but specifies how far a box’s left margin edge is offset to the right of the
left edge of the box’s containing block [p. 122] . For relatively positioned boxes, the
offset is with respect to the left edge of the box itself.

The values for the four properties have the following meanings:

<length>
The offset is a fixed distance from the reference edge. Negative values are
allowed.

<percentage>
The offset is a percentage of the containing block’s width (for ’left’ or ’right’) or
height (for ’top’ and ’bottom’). Negative values are allowed.

auto
For non-replaced elements, the effect of this value depends on which of related
properties have the value ’auto’ as well. See the sections on the width [p. 169]
and height [p. 178] of absolutely positioned [p. 144] , non-replaced elements for
details. For replaced elements, the effect of this value depends only on the
intrinsic dimensions of the replaced content. See the sections on the width
[p. 171] and height [p. 179] of absolutely positioned, replaced elements for
details.

9.4 Normal flow
Boxes in the normal flow belong to a formatting context, which may be block or
inline, but not both simultaneously. Block [p. 123] boxes participate in a block
formatting [p. 132] context. Inline boxes [p. 125] participate in an inline formatting
[p. 133] context.

9.4.1 Block formatting contexts
Floats, absolutely positioned elements, inline-blocks, table-cells, table-captions, and
elements with ’overflow’ other than ’visible’ (except when that value has been
propagated to the viewport) establish new block formatting contexts.

In a block formatting context, boxes are laid out one after the other, vertically,
beginning at the top of a containing block. The vertical distance between two sibling
boxes is determined by the ’margin’ properties. Vertical margins between adjacent
block boxes in a block formatting context collapse [p. 111] .

In a block formatting context, each box’s left outer edge touches the left edge of
the containing block (for right-to-left formatting, right edges touch). This is true even
in the presence of floats (although a box’s line boxes may shrink due to the floats),
unless the box establishes a new block formatting context (in which case the box
itself may become narrower [p. 137] due to the floats).

For information about page breaks in paged media, please consult the section on
allowed page breaks [p. 219] .

23 Apr 2009 15:57132

Visual formatting model

9.4.2 Inline formatting context
In an inline formatting context, boxes are laid out horizontally, one after the other,
beginning at the top of a containing block. Horizontal margins, borders, and padding
are respected between these boxes. The boxes may be aligned vertically in different
ways: their bottoms or tops may be aligned, or the baselines of text within them may
be aligned. The rectangular area that contains the boxes that form a line is called a
line box.

The width of a line box is determined by a containing block [p. 122] and the
presence of floats. The height of a line box is determined by the rules given in the
section on line height calculations [p. 182] .

A line box is always tall enough for all of the boxes it contains. However, it may be
taller than the tallest box it contains (if, for example, boxes are aligned so that
baselines line up). When the height of a box B is less than the height of the line box
containing it, the vertical alignment of B within the line box is determined by the
’vertical-align’ property. When several inline boxes cannot fit horizontally within a
single line box, they are distributed among two or more vertically-stacked line boxes.
Thus, a paragraph is a vertical stack of line boxes. Line boxes are stacked with no
vertical separation and they never overlap.

In general, the left edge of a line box touches the left edge of its containing block
and the right edge touches the right edge of its containing block. However, floating
boxes may come between the containing block edge and the line box edge. Thus,
although line boxes in the same inline formatting context generally have the same
width (that of the containing block), they may vary in width if available horizontal
space is reduced due to floats [p. 136] . Line boxes in the same inline formatting
context generally vary in height (e.g., one line might contain a tall image while the
others contain only text).

When the total width of the inline boxes on a line is less than the width of the line
box containing them, their horizontal distribution within the line box is determined by
the ’text-align’ property. If that property has the value ’justify’, the user agent may
stretch spaces and words in inline boxes (except for inline-table and inline-block
boxes) as well.

When an inline box exceeds the width of a line box, it is split into several boxes
and these boxes are distributed across several line boxes. If an inline box cannot be
split (e.g. if the inline box contains a single character, or language specific word
breaking rules disallow a break within the inline box, or if the inline box is affected by
a white-space value of nowrap or pre), then the inline box overflows the line box.

When an inline box is split, margins, borders, and padding have no visual effect
where the split occurs (or at any split, when there are several).

Inline boxes may also be split into several boxes within the same line box due to
bidirectional text processing [p. 158] .

13323 Apr 2009 15:57

Visual formatting model

Line boxes that contain no text, no preserved white space, no inline elements with
non-zero margins, padding, or borders, and no other in-flow content (such as
images, inline blocks or inline tables), and don’t end with a line feed must be treated
as zero-height line boxes. For the purposes of margin collapsing, this line box must
be ignored.

Here is an example of inline box construction. The following paragraph (created by
the HTML block-level element P) contains anonymous text interspersed with the
elements EM and STRONG:

<P>Several emphasized words appear
in this sentence, dear.</P>

The P element generates a block box that contains five inline boxes, three of
which are anonymous:

Anonymous: "Several"
EM: "emphasized words"
Anonymous: "appear"
STRONG: "in this"
Anonymous: "sentence, dear."

To format the paragraph, the user agent flows the five boxes into line boxes. In
this example, the box generated for the P element establishes the containing block
for the line boxes. If the containing block is sufficiently wide, all the inline boxes will
fit into a single line box:

 Several emphasized words appear in this sentence, dear.

If not, the inline boxes will be split up and distributed across several line boxes.
The previous paragraph might be split as follows:

Several emphasized words appear
in this sentence, dear.

or like this:

Several emphasized
words appear in this
sentence, dear.

In the previous example, the EM box was split into two EM boxes (call them
"split1" and "split2"). Margins, borders, padding, or text decorations have no visible
effect after split1 or before split2.

Consider the following example:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
 <HEAD>
 <TITLE>Example of inline flow on several lines</TITLE>
 <STYLE type="text/css">
 EM {

23 Apr 2009 15:57134

Visual formatting model

 padding: 2px;
 margin: 1em;
 border-width: medium;
 border-style: dashed;
 line-height: 2.4em;
 }
 </STYLE>
 </HEAD>
 <BODY>
 <P>Several emphasized words appear here.</P>
 </BODY>
</HTML>

Depending on the width of the P, the boxes may be distributed as follows:

Several emphasized

words appear here.

Width of paragraph

Line height 2.4em

The margin is inserted before "emphasized" and after "words".
The padding is inserted before, above, and below "emphasized" and after,
above, and below "words". A dashed border is rendered on three sides in each
case.

9.4.3 Relative positioning
Once a box has been laid out according to the normal flow [p. 132] or floated, it may
be shifted relative to this position. This is called relative positioning. Offsetting a box
(B1) in this way has no effect on the box (B2) that follows: B2 is given a position as if
B1 were not offset and B2 is not re-positioned after B1’s offset is applied. This
implies that relative positioning may cause boxes to overlap. However, if relative
positioning causes an ’overflow:auto’ or ’overflow:scroll’ box to have overflow, the
UA must allow the user to access this content (at its offset position), which, through
the creation of scrollbars, may affect layout.

A relatively positioned box keeps its normal flow size, including line breaks and the
space originally reserved for it. The section on containing blocks [p. 122] explains
when a relatively positioned box establishes a new containing block.

For relatively positioned elements, ’left’ and ’right’ move the box(es) horizontally,
without changing their size. ’left’ moves the boxes to the right, and ’right’ moves
them to the left. Since boxes are not split or stretched as a result of ’left’ or ’right’, the
computed values are always: left = -right.

If both ’left’ and ’right’ are ’auto’ (their initial values), the computed values are ’0’
(i.e., the boxes stay in their original position).

13523 Apr 2009 15:57

Visual formatting model

If ’left’ is ’auto’, its computed value is minus the value of ’right’ (i.e., the boxes
move to the left by the value of ’right’).

If ’right’ is specified as ’auto’, its computed value is minus the value of ’left’.

If neither ’left’ nor ’right’ is ’auto’, the position is over-constrained, and one of them
has to be ignored. If the ’direction’ property of the containing block is ’ltr, the value of
’left’ wins and ’right’ becomes -’left’. If ’direction’ of the containing block is ’rtl’, ’right’
wins and ’left’ is ignored.

Example(s):

Example. The following three rules are equivalent:

div.a8 { position: relative; direction: ltr; left: -1em; right: auto }
div.a8 { position: relative; direction: ltr; left: auto; right: 1em }
div.a8 { position: relative; direction: ltr; left: -1em; right: 5em }

The ’top’ and ’bottom’ properties move relatively positioned element(s) up or down
without changing their size. ’top’ moves the boxes down, and ’bottom’ moves them
up. Since boxes are not split or stretched as a result of ’top’ or ’bottom’, the
computed values are always: top = -bottom. If both are ’auto’, their computed values
are both ’0’. If one of them is ’auto’, it becomes the negative of the other. If neither is
’auto’, ’bottom’ is ignored (i.e., the computed value of ’bottom’ will be minus the value
of ’top’).

Note. Dynamic movement of relatively positioned boxes can produce animation
effects in scripting environments (see also the ’visibility’ property). Although relative
positioning may be used as a form of superscripting and subscripting, the line height
is not automatically adjusted to take the positioning into consideration. See the
description of line height calculations [p. 182] for more information.

Examples of relative positioning are provided in the section comparing normal
flow, floats, and absolute positioning [p. 147] .

9.5 Floats
A float is a box that is shifted to the left or right on the current line. The most
interesting characteristic of a float (or "floated" or "floating" box) is that content may
flow along its side (or be prohibited from doing so by the ’clear’ property). Content
flows down the right side of a left-floated box and down the left side of a right-floated
box. The following is an introduction to float positioning and content flow; the exact
rules [p. 141] governing float behavior are given in the description of the ’float’
property.

A floated box is shifted to the left or right until its outer edge touches the
containing block edge or the outer edge of another float. If there’s a line box, the top
of the floated box is aligned with the top of the current line box.

If there isn’t enough horizontal room for the float, it is shifted downward until either
it fits or there are no more floats present.

23 Apr 2009 15:57136

Visual formatting model

Since a float is not in the flow, non-positioned block boxes created before and
after the float box flow vertically as if the float didn’t exist. However, line boxes
created next to the float are shortened to make room for the margin box of the float.
If a shortened line box is too small to contain any further content, then it is shifted
downward until either it fits or there are no more floats present. Any content in the
current line before a floated box is reflowed in the first available line on the other side
of the float. In other words, if inline boxes are placed on the line before a left float is
encountered that fits in the remaining line box space, the left float is placed on that
line, aligned with the top of the line box, and then the inline boxes already on the line
are moved accordingly to the right of the float (the right being the other side of the
left float) and vice versa for rtl and right floats.

The border box of a table, a block-level replaced element, or an element in the
normal flow that establishes a new block formatting context [p. 132] (such as an
element with ’overflow’ other than ’visible’) must not overlap any floats in the same
block formatting context as the element itself. If necessary, implementations should
clear the said element by placing it below any preceding floats, but may place it
adjacent to such floats if there is sufficient space. They may even make the border
box of said element narrower than defined by section 10.3.3. [p. 168] CSS2 does not
define when a UA may put said element next to the float or by how much said
element may become narrower.

Example(s):

Example. In the following document fragment, the containing block is too narrow
to contain the content next to the float, so the content gets moved to below the floats
where it is aligned in the line box according to the text-align property.

p { width: 10em; border: solid aqua; }
span { float: left; width: 5em; height: 5em; border: solid blue; }

...

<p>

 Supercalifragilisticexpialidocious
</p>

This fragment might look like this:

13723 Apr 2009 15:57

Visual formatting model

Several floats may be adjacent, and this model also applies to adjacent floats in
the same line.

Example(s):

The following rule floats all IMG boxes with class="icon" to the left (and sets
the left margin to ’0’):

img.icon {
 float: left;
 margin-left: 0;
}

Consider the following HTML source and style sheet:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
 <HEAD>
 <TITLE>Float example</TITLE>
 <STYLE type="text/css">
 IMG { float: left }
 BODY, P, IMG { margin: 2em }
 </STYLE>
 </HEAD>
 <BODY>
 <P>
 Some sample text that has no other...
 </BODY>
</HTML>

The IMG box is floated to the left. The content that follows is formatted to the right
of the float, starting on the same line as the float. The line boxes to the right of the
float are shortened due to the float’s presence, but resume their "normal" width (that
of the containing block established by the P element) after the float. This document
might be formatted as:

23 Apr 2009 15:57138

Visual formatting model

IMG

Some sample text
that has no other
purpose than to
show how floating
elements are moved
to the side of the
parent element
while honoring
margins, borders,
and padding. Note

how adjacent vertical margins are collapsed
between non−floating block−level elements.

IMG margins

max (BODY margin, P margin)

B
O
D
Y

m
a
r
g
i
n

P

m
a
r
g
i
n

P

m
a
r
g
i
n

B
O
D
Y

m
a
r
g
i
n

Formatting would have been exactly the same if the document had been:

<BODY>
 <P>Some sample text

 that has no other...
</BODY>

because the content to the left of the float is displaced by the float and reflowed
down its right side.

As stated in section 8.3.1 [p. 111] , the margins of floating boxes never collapse
[p. 111] with margins of adjacent boxes. Thus, in the previous example, vertical
margins do not collapse [p. 111] between the P box and the floated IMG box.

The contents of floats are stacked as if floats generated new stacking contexts,
except that any positioned elements and elements that actually create new stacking
contexts take part in the float’s parent stacking context. A float can overlap other
boxes in the normal flow (e.g., when a normal flow box next to a float has negative
margins). When this happens, floats are rendered in front of non-positioned in-flow
blocks, but behind in-flow inlines.

Example(s):

Here is another illustration, showing what happens when a float overlaps borders
of elements in the normal flow.

13923 Apr 2009 15:57

Visual formatting model

A floating image obscures borders of block boxes it overlaps.

The following example illustrates the use of the ’clear’ property to prevent content
from flowing next to a float.

Example(s):

Assuming a rule such as this:

p { clear: left }

formatting might look like this:

23 Apr 2009 15:57140

Visual formatting model

Both paragraphs have set ’clear: left’, which causes the second paragraph to be
"pushed down" to a position below the float — "clearance" is added above its top
margin to accomplish this (see the ’clear’ property).

9.5.1 Positioning the float: the ’float’ property

’float’

Value: left | right | none | inherit
Initial: none
Applies to: all, but see 9.7 [p. 146]
Inherited: no
Percentages: N/A
Media: visual
Computed value: as specified

This property specifies whether a box should float to the left, right, or not at all. It
may be set for any element, but only applies to elements that generate boxes that
are not absolutely positioned [p. 144] . The values of this property have the following
meanings:

left
The element generates a block [p. 123] box that is floated to the left. Content
flows on the right side of the box, starting at the top (subject to the ’clear’
property).

right
Similar to ’left’, except the box is floated to the right, and content flows on the
left side of the box, starting at the top.

none
The box is not floated.

User agents may treat float as ’none’ on the root element.

Here are the precise rules that govern the behavior of floats:

1. The left outer edge [p. 106] of a left-floating box may not be to the left of the left
edge of its containing block [p. 122] . An analogous rule holds for right-floating
elements.

2. If the current box is left-floating, and there are any left-floating boxes generated
by elements earlier in the source document, then for each such earlier box,
either the left outer edge [p. 106] of the current box must be to the right of the
right outer edge [p. 106] of the earlier box, or its top must be lower than the
bottom of the earlier box. Analogous rules hold for right-floating boxes.

3. The right outer edge [p. 106] of a left-floating box may not be to the right of the
left outer edge [p. 106] of any right-floating box that is to the right of it.
Analogous rules hold for right-floating elements.

4. A floating box’s outer top [p. 106] may not be higher than the top of its

14123 Apr 2009 15:57

Visual formatting model

containing block [p. 122] . When the float occurs between two collapsing
margins, the float is positioned as if it had an otherwise empty anonymous block
parent [p. 123] taking part in the flow. The position of such a parent is defined by
the rules [p. 111] in the section on margin collapsing.

5. The outer top [p. 106] of a floating box may not be higher than the outer top of
any block [p. 123] or floated [p. 136] box generated by an element earlier in the
source document.

6. The outer top [p. 106] of an element’s floating box may not be higher than the
top of any line-box [p. 133] containing a box generated by an element earlier in
the source document.

7. A left-floating box that has another left-floating box to its left may not have its
right outer edge to the right of its containing block’s right edge. (Loosely: a left
float may not stick out at the right edge, unless it is already as far to the left as
possible.) An analogous rule holds for right-floating elements.

8. A floating box must be placed as high as possible.
9. A left-floating box must be put as far to the left as possible, a right-floating box

as far to the right as possible. A higher position is preferred over one that is
further to the left/right.

References to other elements in these rules refer only to other elements in the
same block formatting context [p. 132] as the float.

Example(s):

This HTML fragment results in the b floating to the right.

<P>ab</P>

If the P element’s width is enough, the a and the b will be side by side. It might
look like this:

9.5.2 Controlling flow next to floats: the ’clear’ property

’clear’

Value: none | left | right | both | inherit
Initial: none
Applies to: block-level elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: as specified

23 Apr 2009 15:57142

Visual formatting model

This property indicates which sides of an element’s box(es) may not be adjacent
to an earlier floating box. The ’clear’ property does not consider floats inside the
element itself or in other block formatting contexts. [p. 132]

For run-in boxes [p. 126] , this property applies to the final block box to which the
run-in box belongs.

Clearance is introduced as spacing above the margin-top of an element. It is used
to push the element vertically (typically downward), past the float.

Values have the following meanings when applied to non-floating block boxes:

left
The clearance of the generated box is set to the amount necessary to place the
top border edge below the bottom outer edge of any left-floating boxes that
resulted from elements earlier in the source document.

right
The clearance of the generated box is set to the amount necessary to place the
top border edge below the bottom outer edge of any right-floating boxes that
resulted from elements earlier in the source document.

both
The clearance of the generated box is set to the amount necessary to place the
top border edge below the bottom outer edge of any right-floating and
left-floating boxes that resulted from elements earlier in the source document.

none
No constraint on the box’s position with respect to floats.

Computing the clearance of an element on which ’clear’ is set is done by first
determining the hypothetical position of the element’s top border edge within its
parent block. This position is determined after the top margin of the element has
been collapsed with previous adjacent margins (including the top margin of the
parent block).

If this hypothetical position of the element’s top border edge is not past the
relevant floats, then its clearance must be set to the greater of:

1. The amount necessary to place the border edge of the block even with the
bottom outer edge of the lowest float that is to be cleared.

2. The amount necessary to make the sum of the following equal to the distance to
which these margins collapsed when the hypothetical position was calculated:

the margins collapsing above the clearance
the clearance itself
if the block’s own margins collapse together: the block’s top margin
if the block’s own margins do not collapse together: the margins collapsing
below the clearance

Note: The clearance can be negative.

14323 Apr 2009 15:57

Visual formatting model

Example(s):

An example of negative clearance is this situation, in which the clearance is -1em.
(Assume none of the elements have borders or padding):

<p style=" margin-bottom: 4em">
 First paragraph.

<p style=" float: left; height: 2em; margin: 0">
 Floating paragraph.

<p style=" clear: left; margin-top: 3em">
 Last paragraph.

Explanation: Without the ’clear’, the first and last paragraphs’ margins would
collapse and the last paragraph’s top border edge would be flush with the top of the
floating paragraph. But the ’clear’ requires the top border edge to be below the float,
i.e., 2em lower. That means that the margins must not collapse and clearance must
be added such that clearance + margin-top = 2em, i.e., clearance = 2em -
margin-top = 2em - 3em = -1em.

When the property is set on floating elements, it results in a modification of the
rules [p. 141] for positioning the float. An extra constraint (#10) is added:

The top outer edge [p. 106] of the float must be below the bottom outer edge of
all earlier left-floating boxes (in the case of ’clear: left’), or all earlier right-floating
boxes (in the case of ’clear: right’), or both (’clear: both’).

Note. This property applied to all elements in CSS1 [p. ??] . Implementations may
therefore have supported this property on all elements. In CSS2 and CSS 2.1 the
’clear’ property only applies to block-level elements. Therefore authors should only
use this property on block-level elements. If an implementation does support clear
on inline elements, rather than setting a clearance as explained above, the
implementation should force a break and effectively insert one or more empty line
boxes (or shifting the new line box downward as described in section 9.5 [p. 136]) to
move the top of the cleared inline’s line box to below the respective floating box(es).

9.6 Absolute positioning
In the absolute positioning model, a box is explicitly offset with respect to its
containing block. It is removed from the normal flow entirely (it has no impact on later
siblings). An absolutely positioned box establishes a new containing block for normal
flow children and absolutely (but not fixed) positioned descendants. However, the
contents of an absolutely positioned element do not flow around any other boxes.
They may obscure the contents of another box (or be obscured themselves),
depending on the stack levels [p. 157] of the overlapping boxes.

References in this specification to an absolutely positioned element (or its box)
imply that the element’s ’position’ property has the value ’absolute’ or ’fixed’.

23 Apr 2009 15:57144

Visual formatting model

9.6.1 Fixed positioning
Fixed positioning is a subcategory of absolute positioning. The only difference is that
for a fixed positioned box, the containing block is established by the viewport [p. 122]
. For continuous media [p. 104] , fixed boxes do not move when the document is
scrolled. In this respect, they are similar to fixed background images [p. 224] . For
paged media [p. 213] , boxes with fixed positions are repeated on every page. This
is useful for placing, for instance, a signature at the bottom of each page. Boxes with
fixed position that are larger than the page area are clipped. Parts of the fixed
position box that are not visible in the initial containing block will not print.

Authors may use fixed positioning to create frame-like presentations. Consider the
following frame layout:

10em

header

main

s
i
d
e
b
a
r

footer 100px

15%

This might be achieved with the following HTML document and style rules:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
 <HEAD>
 <TITLE>A frame document with CSS 2.1</TITLE>
 <STYLE type="text/css" media="screen">
 BODY { height: 8.5in } /* Required for percentage heights below */
 #header {
 position: fixed;
 width: 100%;
 height: 15%;
 top: 0;
 right: 0;
 bottom: auto;
 left: 0;
 }
 #sidebar {

14523 Apr 2009 15:57

Visual formatting model

 position: fixed;
 width: 10em;
 height: auto;
 top: 15%;
 right: auto;
 bottom: 100px;
 left: 0;
 }
 #main {
 position: fixed;
 width: auto;
 height: auto;
 top: 15%;
 right: 0;
 bottom: 100px;
 left: 10em;
 }
 #footer {
 position: fixed;
 width: 100%;
 height: 100px;
 top: auto;
 right: 0;
 bottom: 0;
 left: 0;
 }
 </STYLE>
 </HEAD>
 <BODY>
 <DIV id="header"> ... </DIV>
 <DIV id="sidebar"> ... </DIV>
 <DIV id="main"> ... </DIV>
 <DIV id="footer"> ... </DIV>
 </BODY>
</HTML>

9.7 Relationships between ’display’, ’position’, and
’float’
The three properties that affect box generation and layout — ’display’, ’position’, and
’float’ — interact as follows:

1. If ’display’ has the value ’none’, then ’position’ and ’float’ do not apply. In this
case, the element generates no box.

2. Otherwise, if ’position’ has the value ’absolute’ or ’fixed’, the box is absolutely
positioned, the computed value of ’float’ is ’none’, and display is set according to
the table below. The position of the box will be determined by the ’top’, ’right’,
’bottom’ and ’left’ properties and the box’s containing block.

3. Otherwise, if ’float’ has a value other than ’none’, the box is floated and ’display’
is set according to the table below.

4. Otherwise, if the element is the root element, ’display’ is set according to the
table below.

23 Apr 2009 15:57146

Visual formatting model

5. Otherwise, the remaining ’display’ property values apply as specified.

Specified value
Computed

value

inline-table table

inline, run-in, table-row-group, table-column, table-column-group,
table-header-group, table-footer-group, table-row, table-cell,
table-caption, inline-block

block

others
same as
specified

9.8 Comparison of normal flow, floats, and absolute
positioning
To illustrate the differences between normal flow, relative positioning, floats, and
absolute positioning, we provide a series of examples based on the following HTML:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
 <HEAD>
 <TITLE>Comparison of positioning schemes</TITLE>
 </HEAD>
 <BODY>
 <P>Beginning of body contents.
 Start of outer contents.
 Inner contents.
 End of outer contents.
 End of body contents.
 </P>
 </BODY>
</HTML>

In this document, we assume the following rules:

body { display: block; font-size:12px; line-height: 200%;
 width: 400px; height: 400px }
p { display: block }
span { display: inline }

The final positions of boxes generated by the outer and inner elements vary in
each example. In each illustration, the numbers to the left of the illustration indicate
the normal flow [p. 132] position of the double-spaced (for clarity) lines.

Note. The diagrams in this section are illustrative and not to scale. They are meant
to highlight the differences between the various positioning schemes in CSS 2.1, and
are not intended to be reference renderings of the examples given.

14723 Apr 2009 15:57

Visual formatting model

9.8.1 Normal flow
Consider the following CSS declarations for outer and inner that don’t alter the
normal flow [p. 132] of boxes:

#outer { color: red }
#inner { color: blue }

The P element contains all inline content: anonymous inline text [p. 125] and two
SPAN elements. Therefore, all of the content will be laid out in an inline formatting
context, within a containing block established by the P element, producing
something like:

1

2

3

4

5

6

7

8

Document Window(0,0) (0, 400)

(400, 0) (400, 400)

contents.

Beginning of body contents. Start

Inner contents.

 End of body

of outer contents.

End of outer contents.

24 px

9.8.2 Relative positioning
To see the effect of relative positioning [p. 135] , we specify:

#outer { position: relative; top: -12px; color: red }
#inner { position: relative; top: 12px; color: blue }

Text flows normally up to the outer element. The outer text is then flowed into its
normal flow position and dimensions at the end of line 1. Then, the inline boxes
containing the text (distributed over three lines) are shifted as a unit by ’-12px’

23 Apr 2009 15:57148

Visual formatting model

(upwards).

The contents of inner, as a child of outer, would normally flow immediately after
the words "of outer contents" (on line 1.5). However, the inner contents are
themselves offset relative to the outer contents by ’12px’ (downwards), back to their
original position on line 2.

Note that the content following outer is not affected by the relative positioning of
outer.

1

2

3

4

5

6

7

8

Document Window(0,0) (0, 400)

(400, 0) (400, 400)

contents.

Beginning of body contents.
Start

Inner contents.

 End of body

of outer contents.

End of outer contents.

24 px

= −12px

= +12px

Note also that had the offset of outer been ’-24px’, the text of outer and the body
text would have overlapped.

9.8.3 Floating a box
Now consider the effect of floating [p. 136] the inner element’s text to the right by
means of the following rules:

#outer { color: red }
#inner { float: right; width: 130px; color: blue }

Text flows normally up to the inner box, which is pulled out of the flow and floated
to the right margin (its ’width’ has been assigned explicitly). Line boxes to the left of
the float are shortened, and the document’s remaining text flows into them.

14923 Apr 2009 15:57

Visual formatting model

1

2

3

4

5

6

7

8

Document Window(0,0) (0, 400)

(400, 0) (400, 400)

Beginning of body contents. Start

24 px

of outer contents.

of outer contents. End

End

of body contents.

Inner

contents.
width= 130 px

To show the effect of the ’clear’ property, we add a sibling element to the example:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
 <HEAD>
 <TITLE>Comparison of positioning schemes II</TITLE>
 </HEAD>
 <BODY>
 <P>Beginning of body contents.
 Start of outer contents.
 Inner contents.
 Sibling contents.
 End of outer contents.
 End of body contents.
 </P>
 </BODY>
</HTML>

The following rules:

#inner { float: right; width: 130px; color: blue }
#sibling { color: red }

23 Apr 2009 15:57150

Visual formatting model

cause the inner box to float to the right as before and the document’s remaining
text to flow into the vacated space:

1

2

3

4

5

6

7

8

Document Window(0,0) (0, 400)

(400, 0) (400, 400)

Beginning of body contents. Start

24 px
Inner

contents.
width= 130 px

of outer contents.

of outer contents.

Sibling contents. End

End of body

contents.

However, if the ’clear’ property on the sibling element is set to ’right’ (i.e., the
generated sibling box will not accept a position next to floating boxes to its right), the
sibling content begins to flow below the float:

#inner { float: right; width: 130px; color: blue }
#sibling { clear: right; color: red }

15123 Apr 2009 15:57

Visual formatting model

1

2

3

4

5

6

7

8

Document Window(0,0) (0, 400)

(400, 0) (400, 400)

Beginning of body contents. Start

24 px
Inner

contents.
width= 130 px

of outer contents.

contents. End of body contents.

Sibling contents. End of outer

9.8.4 Absolute positioning
Finally, we consider the effect of absolute positioning [p. 144] . Consider the
following CSS declarations for outer and inner:

#outer {
 position: absolute;
 top: 200px; left: 200px;
 width: 200px;
 color: red;
}
#inner { color: blue }

which cause the top of the outer box to be positioned with respect to its containing
block. The containing block for a positioned box is established by the nearest
positioned ancestor (or, if none exists, the initial containing block [p. 163] , as in our
example). The top side of the outer box is ’200px’ below the top of the containing
block and the left side is ’200px’ from the left side. The child box of outer is flowed
normally with respect to its parent.

23 Apr 2009 15:57152

Visual formatting model

1

2

3

4

5

6

7

8

Document Window(0,0) (0, 400)

(400, 0) (400, 400)

24 px

Beginning of body contents. End of

body contents.

(200, 200)

Start of outer

contents. Inner

contents. End of

outer contents.

The following example shows an absolutely positioned box that is a child of a
relatively positioned box. Although the parent outer box is not actually offset, setting
its ’position’ property to ’relative’ means that its box may serve as the containing
block for positioned descendants. Since the outer box is an inline box that is split
across several lines, the first inline box’s top and left edges (depicted by thick
dashed lines in the illustration below) serve as references for ’top’ and ’left’ offsets.

#outer {
 position: relative;
 color: red
}
#inner {
 position: absolute;
 top: 200px; left: -100px;
 height: 130px; width: 130px;
 color: blue;
}

This results in something like the following:

15323 Apr 2009 15:57

Visual formatting model

1

2

3

4

5

6

7

8

Document Window(0,0) (0, 400)

(400, 0) (400, 400)

Beginning of body contents. Start

24 px
of outer contents. End of outer

contents.

Inner

Contents.

width = 130 px

height = 130px

(+200, −100)

End of body contents.

If we do not position the outer box:

#outer { color: red }
#inner {
 position: absolute;
 top: 200px; left: -100px;
 height: 130px; width: 130px;
 color: blue;
}

the containing block for inner becomes the initial containing block [p. 163] (in our
example). The following illustration shows where the inner box would end up in this
case.

23 Apr 2009 15:57154

Visual formatting model

1

2

3

5

6

7

8

Document Window(0,0) (0, 400)

(400, 0) (400, 400)

Beginning of body contents. Start

24 px
of outer contents. End of outer

contents. End of body contents.

nts.

Inner

Conte

(−100, 200)

Relative and absolute positioning may be used to implement change bars, as
shown in the following example. The following fragment:

<P style="position: relative; margin-right: 10px; left: 10px;">
I used two red hyphens to serve as a change bar. They
will "float" to the left of the line containing THIS
--
word.</P>

might result in something like:

I used two red hyphens to serve
as a change bar. They will "float"
to the left of the line containing
THIS word.−−

10px

15523 Apr 2009 15:57

Visual formatting model

First, the paragraph (whose containing block sides are shown in the illustration) is
flowed normally. Then it is offset ’10px’ from the left edge of the containing block
(thus, a right margin of ’10px’ has been reserved in anticipation of the offset). The
two hyphens acting as change bars are taken out of the flow and positioned at the
current line (due to ’top: auto’), ’-1em’ from the left edge of its containing block
(established by the P in its final position). The result is that the change bars seem to
"float" to the left of the current line.

9.9 Layered presentation

9.9.1 Specifying the stack level: the ’z-index’ property

’z-index’

Value: auto | <integer> | inherit
Initial: auto
Applies to: positioned elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: as specified

For a positioned box, the ’z-index’ property specifies:

1. The stack level of the box in the current stacking context.
2. Whether the box establishes a local stacking context.

Values have the following meanings:

<integer>
This integer is the stack level of the generated box in the current stacking
context. The box also establishes a local stacking context in which its stack level
is ’0’.

auto
The stack level of the generated box in the current stacking context is the same
as its parent’s box. The box does not establish a new local stacking context.

In this section, the expression "in front of" means closer to the user as the user
faces the screen.

In CSS 2.1, each box has a position in three dimensions. In addition to their
horizontal and vertical positions, boxes lie along a "z-axis" and are formatted one on
top of the other. Z-axis positions are particularly relevant when boxes overlap
visually. This section discusses how boxes may be positioned along the z-axis.

23 Apr 2009 15:57156

Visual formatting model

The order in which the rendering tree is painted onto the canvas is described in
terms of stacking contexts. Stacking contexts can contain further stacking contexts.
A stacking context is atomic from the point of view of its parent stacking context;
boxes in other stacking contexts may not come between any of its boxes.

Each box belongs to one stacking context. Each box in a given stacking context
has an integer stack level, which is its position on the z-axis relative to other boxes in
the same stacking context. Boxes with greater stack levels are always formatted in
front of boxes with lower stack levels. Boxes may have negative stack levels. Boxes
with the same stack level in a stacking context are stacked back-to-front according to
document tree order.

The root element forms the root stacking context. Other stacking contexts are
generated by any positioned element (including relatively positioned elements)
having a computed value of ’z-index’ other than ’auto’. Stacking contexts are not
necessarily related to containing blocks. In future levels of CSS, other properties
may introduce stacking contexts, for example ’opacity [p. ??] ’ [CSS3COLOR].

Each stacking context consists of the following stacking levels (from back to front):

1. the background and borders of the element forming the stacking context.
2. the stacking contexts of descendants with negative stack levels.
3. a stacking level containing in-flow non-inline-level non-positioned descendants.
4. a stacking level for non-positioned floats and their contents.
5. a stacking level for in-flow inline-level non-positioned descendants.
6. a stacking level for positioned descendants with ’z-index: auto’, and any

descendant stacking contexts with ’z-index: 0’.
7. the stacking contexts of descendants with positive stack levels.

For a more thorough explanation of the stacking order, please see Appendix E
[p. 391] .

The contents of inline blocks and inline tables are stacked as if they generated
new stacking contexts, except that any positioned elements and any elements that
actually create new stacking contexts take part in the parent stacking context. They
are then painted atomically in the inline stacking level.

In the following example, the stack levels of the boxes (named with their "id"
attributes) are: "text2"=0, "image"=1, "text3"=2, and "text1"=3. The "text2" stack level
is inherited from the root box. The others are specified with the ’z-index’ property.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
 <HEAD>
 <TITLE>Z-order positioning</TITLE>
 <STYLE type="text/css">
 .pile {
 position: absolute;
 left: 2in;
 top: 2in;
 width: 3in;
 height: 3in;

15723 Apr 2009 15:57

Visual formatting model

 }
 </STYLE>
 </HEAD>
 <BODY>
 <P>
 <IMG id="image" class="pile"
 src="butterfly.png" alt="A butterfly image"
 style="z-index: 1">

 <DIV id="text1" class="pile"
 style="z-index: 3">
 This text will overlay the butterfly image.
 </DIV>

 <DIV id="text2">
 This text will be beneath everything.
 </DIV>

 <DIV id="text3" class="pile"
 style="z-index: 2">
 This text will underlay text1, but overlay the butterfly image
 </DIV>
 </BODY>
</HTML>

This example demonstrates the notion of transparency. The default behavior of
the background is to allow boxes behind it to be visible. In the example, each box
transparently overlays the boxes below it. This behavior can be overridden by using
one of the existing background properties [p. 224] .

9.10 Text direction: the ’direction’ and ’unicode-bidi’
properties
Conforming [p. 43] user agents that do not support bidirectional text may ignore the
’direction’ and ’unicode-bidi’ properties described in this section. This exception
includes UAs that render right-to-left characters simply because a font on the system
contains them but do not support the concept of right-to-left text direction.

The characters in certain scripts are written from right to left. In some documents,
in particular those written with the Arabic or Hebrew script, and in some
mixed-language contexts, text in a single (visually displayed) block may appear with
mixed directionality. This phenomenon is called bidirectionality, or "bidi" for short.

The Unicode standard ([UNICODE], section 3.11) defines a complex algorithm for
determining the proper directionality of text. The algorithm consists of an implicit part
based on character properties, as well as explicit controls for embeddings and
overrides. CSS 2.1 relies on this algorithm to achieve proper bidirectional rendering.
The ’direction’ and ’unicode-bidi’ properties allow authors to specify how the
elements and attributes of a document language map to this algorithm.

23 Apr 2009 15:57158

Visual formatting model

User agents that support bidirectional text must apply the Unicode bidirectional
algorithm to every sequence of inline boxes uninterrupted by a forced line break or
block boundary. This sequence forms the "paragraph" unit in the bidirectional
algorithm. The paragraph embedding level is set according to the value of the
’direction’ property of the containing block rather than by the heuristic given in steps
P2 and P3 of the Unicode algorithm.

Because the directionality of a text depends on the structure and semantics of the
document language, these properties should in most cases be used only by
designers of document type descriptions (DTDs), or authors of special documents. If
a default style sheet specifies these properties, authors and users should not specify
rules to override them.

The HTML 4 specification ([HTML4], section 8.2) defines bidirectionality behavior
for HTML elements. The style sheet rules that would achieve the bidi behavior
specified in [HTML4] are given in the sample style sheet [p. 390] . The HTML 4
specification also contains more information on bidirectionality issues.

’direction’

Value: ltr | rtl | inherit
Initial: ltr
Applies to: all elements, but see prose
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

This property specifies the base writing direction of blocks and the direction of
embeddings and overrides (see ’unicode-bidi’) for the Unicode bidirectional
algorithm. In addition, it specifies the direction of table [p. 257] column layout, the
direction of horizontal overflow [p. 187] , and the position of an incomplete last line in
a block in case of ’text-align: justify’.

Values for this property have the following meanings:

ltr
Left-to-right direction.

rtl
Right-to-left direction.

For the ’direction’ property to affect reordering in inline-level elements, the
’unicode-bidi’ property’s value must be ’embed’ or ’override’.

Note. The ’direction’ property, when specified for table column elements, is not
inherited by cells in the column since columns are not the ancestors of the cells in
the document tree. Thus, CSS cannot easily capture the "dir" attribute inheritance
rules described in [HTML4], section 11.3.2.1.

15923 Apr 2009 15:57

Visual formatting model

’unicode-bidi’

Value: normal | embed | bidi-override | inherit
Initial: normal
Applies to: all elements, but see prose
Inherited: no
Percentages: N/A
Media: visual
Computed value: as specified

Values for this property have the following meanings:

normal
The element does not open an additional level of embedding with respect to the
bidirectional algorithm. For inline-level elements, implicit reordering works
across element boundaries.

embed
If the element is inline-level, this value opens an additional level of embedding
with respect to the bidirectional algorithm. The direction of this embedding level
is given by the ’direction’ property. Inside the element, reordering is done
implicitly. This corresponds to adding a LRE (U+202A; for ’direction: ltr’) or RLE
(U+202B; for ’direction: rtl’) at the start of the element and a PDF (U+202C) at
the end of the element.

bidi-override
For inline-level elements this creates an override. For block-level, table-cell,
table-caption, or inline-block elements this creates an override for inline-level
descendents not within another block-level, table-cell, table-caption, or
inline-block element. This means that inside the element, reordering is strictly in
sequence according to the ’direction’ property; the implicit part of the
bidirectional algorithm is ignored. This corresponds to adding a LRO (U+202D;
for ’direction: ltr’) or RLO (U+202E; for ’direction: rtl’) at the start of the element
or at the start of each anonymous child block box, if any, and a PDF (U+202C)
at the end of the element.

The final order of characters in each block-level element is the same as if the bidi
control codes had been added as described above, markup had been stripped, and
the resulting character sequence had been passed to an implementation of the
Unicode bidirectional algorithm for plain text that produced the same line-breaks as
the styled text. In this process, non-textual entities such as images are treated as
neutral characters, unless their ’unicode-bidi’ property has a value other than
’normal’, in which case they are treated as strong characters in the ’direction’
specified for the element.

Please note that in order to be able to flow inline boxes in a uniform direction
(either entirely left-to-right or entirely right-to-left), more inline boxes (including
anonymous inline boxes) may have to be created, and some inline boxes may have
to be split up and reordered before flowing.

23 Apr 2009 15:57160

Visual formatting model

Because the Unicode algorithm has a limit of 61 levels of embedding, care should
be taken not to use ’unicode-bidi’ with a value other than ’normal’ unless appropriate.
In particular, a value of ’inherit’ should be used with extreme caution. However, for
elements that are, in general, intended to be displayed as blocks, a setting of
’unicode-bidi: embed’ is preferred to keep the element together in case display is
changed to inline (see example below).

The following example shows an XML document with bidirectional text. It
illustrates an important design principle: DTD designers should take bidi into account
both in the language proper (elements and attributes) and in any accompanying style
sheets. The style sheets should be designed so that bidi rules are separate from
other style rules. The bidi rules should not be overridden by other style sheets so
that the document language’s or DTD’s bidi behavior is preserved.

Example(s):

In this example, lowercase letters stand for inherently left-to-right characters and
uppercase letters represent inherently right-to-left characters:

<HEBREW>
 <PAR>HEBREW1 HEBREW2 english3 HEBREW4 HEBREW5</PAR>
 <PAR>HEBREW6 <EMPH>HEBREW7</EMPH> HEBREW8</PAR>
</HEBREW>
<ENGLISH>
 <PAR>english9 english10 english11 HEBREW12 HEBREW13</PAR>
 <PAR>english14 english15 english16</PAR>
 <PAR>english17 <HE-QUO>HEBREW18 english19 HEBREW20</HE-QUO></PAR>
</ENGLISH>

Since this is XML, the style sheet is responsible for setting the writing direction.
This is the style sheet:

/* Rules for bidi */
HEBREW, HE-QUO {direction: rtl; unicode-bidi: embed}
ENGLISH {direction: ltr; unicode-bidi: embed}

/* Rules for presentation */
HEBREW, ENGLISH, PAR {display: block}
EMPH {font-weight: bold}

The HEBREW element is a block with a right-to-left base direction, the ENGLISH
element is a block with a left-to-right base direction. The PARs are blocks that inherit
the base direction from their parents. Thus, the first two PARs are read starting at
the top right, the final three are read starting at the top left. Please note that
HEBREW and ENGLISH are chosen as element names for explicitness only; in
general, element names should convey structure without reference to language.

The EMPH element is inline-level, and since its value for ’unicode-bidi’ is ’normal’
(the initial value), it has no effect on the ordering of the text. The HE-QUO element,
on the other hand, creates an embedding.

16123 Apr 2009 15:57

Visual formatting model

The formatting of this text might look like this if the line length is long:

 5WERBEH 4WERBEH english3 2WERBEH 1WERBEH

 8WERBEH 7WERBEH 6WERBEH

english9 english10 english11 13WERBEH 12WERBEH

english14 english15 english16

english17 20WERBEH english19 18WERBEH

Note that the HE-QUO embedding causes HEBREW18 to be to the right of
english19.

If lines have to be broken, it might be more like this:

 2WERBEH 1WERBEH
 -EH 4WERBEH english3
 5WERB

 -EH 7WERBEH 6WERBEH
 8WERB

english9 english10 en-
glish11 12WERBEH
13WERBEH

english14 english15
english16

english17 18WERBEH
20WERBEH english19

Because HEBREW18 must be read before english19, it is on the line above
english19. Just breaking the long line from the earlier formatting would not have
worked. Note also that the first syllable from english19 might have fit on the previous
line, but hyphenation of left-to-right words in a right-to-left context, and vice versa, is
usually suppressed to avoid having to display a hyphen in the middle of a line.

23 Apr 2009 15:57162

Visual formatting model

10 Visual formatting model details
Contents

........... 16310.1 Definition of "containing block"

.......... 16610.2 Content width: the ’width’ property

........... 16710.3 Calculating widths and margins

......... 16810.3.1 Inline, non-replaced elements

........... 16810.3.2 Inline, replaced elements

..... 16810.3.3 Block-level, non-replaced elements in normal flow

...... 16910.3.4 Block-level, replaced elements in normal flow

......... 16910.3.5 Floating, non-replaced elements

.......... 16910.3.6 Floating, replaced elements

...... 16910.3.7 Absolutely positioned, non-replaced elements

....... 17110.3.8 Absolutely positioned, replaced elements

.... 17210.3.9 ’Inline-block’, non-replaced elements in normal flow

..... 17210.3.10 ’Inline-block’, replaced elements in normal flow

.... 17210.4 Minimum and maximum widths: ’min-width’ and ’max-width’

.......... 17410.5 Content height: the ’height’ property

.......... 17610.6 Calculating heights and margins

......... 17610.6.1 Inline, non-replaced elements
10.6.2 Inline replaced elements, block-level replaced elements in normal
flow, ’inline-block’ replaced elements in normal flow and floating replaced

................ 177elements
10.6.3 Block-level non-replaced elements in normal flow when ’overflow’

............. 177computes to ’visible’

...... 17810.6.4 Absolutely positioned, non-replaced elements

....... 17910.6.5 Absolutely positioned, replaced elements

............ 17910.6.6 Complicated cases

..... 18010.6.7 ’Auto’ heights for block formatting context roots

... 18010.7 Minimum and maximum heights: ’min-height’ and ’max-height’

.18210.8 Line height calculations: the ’line-height’ and ’vertical-align’ properties

........... 18210.8.1 Leading and half-leading

10.1 Definition of "containing block"
The position and size of an element’s box(es) are sometimes calculated relative to a
certain rectangle, called the containing block of the element. The containing block of
an element is defined as follows:

1. The containing block in which the root element [p. 41] lives is a rectangle called
the initial containing block. For continuous media, it has the dimensions of the
viewport [p. 122] and is anchored at the canvas origin; it is the page area

16323 Apr 2009 15:57

Visual formatting model details

[p. 214] for paged media. The ’direction’ property of the initial containing block is
the same as for the root element.

2. For other elements, if the element’s position is ’relative’ or ’static’, the containing
block is formed by the content edge of the nearest block-level [p. 123] , table
cell or inline-block ancestor box.

3. If the element has ’position: fixed’, the containing block is established by the
viewport [p. 122] in the case of continuous media or the page area in the case of
paged media.

4. If the element has ’position: absolute’, the containing block is established by the
nearest ancestor with a ’position’ of ’absolute’, ’relative’ or ’fixed’, in the following
way:

1. In the case that the ancestor is inline-level, the containing block depends on
the ’direction’ property of the ancestor:

1. If the ’direction’ is ’ltr’, the top and left of the containing block are the
top and left padding edges of the first box generated by the ancestor,
and the bottom and right are the bottom and right padding edges of the
last box of the ancestor.

2. If the ’direction’ is ’rtl’, the top and right are the top and right padding
edges of the first box generated by the ancestor, and the bottom and
left are the bottom and left padding edges of the last box of the
ancestor.

Note: This may cause the containing block’s width to be negative.

2. Otherwise, the containing block is formed by the padding edge [p. 106] of
the ancestor.

If there is no such ancestor, the containing block is the initial containing block.

In paged media, an absolutely positioned element is positioned relative to its
containing block ignoring any page breaks (as if the document were continuous).
The element may subsequently be broken over several pages.

For absolutely positioned content that resolves to a position on a page other than
the page being laid out (the current page), or resolves to a position on the current
page which has already been rendered for printing, printers may place the content

on another location on the current page,
on a subsequent page, or
may omit it.

Note that a block-level element that is split over several pages may have a
different width on each page and that there may be device-specific limits.

Example(s):

With no positioning, the containing blocks (C.B.) in the following document:

23 Apr 2009 15:57164

Visual formatting model details

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
 <HEAD>
 <TITLE>Illustration of containing blocks</TITLE>
 </HEAD>
 <BODY id="body">
 <DIV id="div1">
 <P id="p1">This is text in the first paragraph...</P>
 <P id="p2">This is text <EM id="em1"> in the
 <STRONG id="strong1">second paragraph.</P>
 </DIV>
 </BODY>
</HTML>

are established as follows:

For box generated by C.B. is established by

html initial C.B. (UA-dependent)

body html

div1 body

p1 div1

p2 div1

em1 p2

strong1 p2

If we position "div1":

 #div1 { position: absolute; left: 50px; top: 50px }

its containing block is no longer "body"; it becomes the initial containing block
(since there are no other positioned ancestor boxes).

If we position "em1" as well:

 #div1 { position: absolute; left: 50px; top: 50px }
 #em1 { position: absolute; left: 100px; top: 100px }

the table of containing blocks becomes:

16523 Apr 2009 15:57

Visual formatting model details

For box generated by C.B. is established by

html initial C.B. (UA-dependent)

body html

div1 initial C.B.

p1 div1

p2 div1

em1 div1

strong1 em1

By positioning "em1", its containing block becomes the nearest positioned
ancestor box (i.e., that generated by "div1").

10.2 Content width: the ’width’ property
’width’

Value: <length> | <percentage> | auto | inherit
Initial: auto
Applies to: all elements but non-replaced inline elements, table rows, and

row groups
Inherited: no
Percentages: refer to width of containing block
Media: visual
Computed value: the percentage or ’auto’ as specified or the absolute length;

’auto’ if the property does not apply

This property specifies the content width [p. 107] of boxes generated by
block-level and replaced [p. 40] elements.

This property does not apply to non-replaced inline-level [p. 125] elements. The
content width of a non-replaced inline element’s boxes is that of the rendered
content within them (before any relative offset of children). Recall that inline boxes
flow into line boxes [p. 133] . The width of line boxes is given by the their containing
block [p. 122] , but may be shorted by the presence of floats [p. 136] .

The width of a replaced element’s box is intrinsic [p. 41] and may be scaled by the
user agent if the value of this property is different than ’auto’.

Values have the following meanings:

<length>
Specifies the width of the content area using a length unit.

23 Apr 2009 15:57166

Visual formatting model details

<percentage>
Specifies a percentage width. The percentage is calculated with respect to the
width of the generated box’s containing block [p. 122] . If the containing block’s
width depends on this element’s width, then the resulting layout is undefined in
CSS 2.1. Note: For absolutely positioned elements whose containing block is
based on a block-level element, the percentage is calculated with respect to the
width of the padding box of that element. This is a change from CSS1, where
the percentage width was always calculated with respect to the content box of
the parent element.

auto
The width depends on the values of other properties. See the sections below.

Negative values for ’width’ are illegal.

Example(s):

For example, the following rule fixes the content width of paragraphs at 100 pixels:

p { width: 100px }

10.3 Calculating widths and margins
The values of an element’s ’width’, ’margin-left’, ’margin-right’, ’left’ and ’right’
properties as used for layout depend on the type of box generated and on each
other. (The value used for layout is sometimes referred to as the used value [p. 94] .)
In principle, the values used are the same as the computed values, with ’auto’
replaced by some suitable value, and percentages calculated based on the
containing block, but there are exceptions. The following situations need to be
distinguished:

1. inline, non-replaced elements
2. inline, replaced elements
3. block-level, non-replaced elements in normal flow
4. block-level, replaced elements in normal flow
5. floating, non-replaced elements
6. floating, replaced elements
7. absolutely positioned, non-replaced elements
8. absolutely positioned, replaced elements
9. ’inline-block’, non-replaced elements in normal flow

10. ’inline-block’, replaced elements in normal flow

For Points 1-6 and 9-10, the values of ’left’ and ’right’ in the case of relatively
positioned elements are determined by the rules in section 9.4.3. [p. 135]

16723 Apr 2009 15:57

Visual formatting model details

10.3.1 Inline, non-replaced elements
The ’width’ property does not apply. A computed value of ’auto’ for ’margin-left’ or
’margin-right’ becomes a used value of ’0’.

10.3.2 Inline, replaced elements
A computed value of ’auto’ for ’margin-left’ or ’margin-right’ becomes a used value of
’0’.

If ’height’ and ’width’ both have computed values of ’auto’ and the element also
has an intrinsic width, then that intrinsic width is the used value of ’width’.

If ’height’ and ’width’ both have computed values of ’auto’ and the element has no
intrinsic width, but does have an intrinsic height and intrinsic ratio; or if ’width’ has a
computed value of ’auto’, ’height’ has some other computed value, and the element
does have an intrinsic ratio; then the used value of ’width’ is:

(used height) * (intrinsic ratio)

If ’height’ and ’width’ both have computed values of ’auto’ and the element has an
intrinsic ratio but no intrinsic height or width and the containing block’s width doesn’t
itself depend on the replaced element’s width, then the used value of ’width’ is
calculated from the constraint equation used for block-level, non-replaced elements
in normal flow.

Otherwise, if ’width’ has a computed value of ’auto’, and the element has an
intrinsic width, then that intrinsic width is the used value of ’width’.

Otherwise, if ’width’ has a computed value of ’auto’, but none of the conditions
above are met, then the used value of ’width’ becomes 300px. If 300px is too wide to
fit the device, UAs should use the width of the largest rectangle that has a 2:1 ratio
and fits the device instead.

Percentage intrinsic widths are first evaluated with respect to the containing
block’s width, if that width doesn’t itself depend on the replaced element’s width. If it
does, then the resulting layout is undefined in CSS 2.1.

10.3.3 Block-level, non-replaced elements in normal flow
The following constraints must hold among the used values of the other properties:

’margin-left’ + ’border-left-width’ + ’padding-left’ + ’width’ + ’padding-right’ +
’border-right-width’ + ’margin-right’ = width of containing block [p. 163]

If ’width’ is not ’auto’ and ’border-left-width’ + ’padding-left’ + ’width’ +
’padding-right’ + ’border-right-width’ (plus any of ’margin-left’ or ’margin-right’ that are
not ’auto’) is larger than the width of the containing block, then any ’auto’ values for
’margin-left’ or ’margin-right’ are, for the following rules, treated as zero.

23 Apr 2009 15:57168

Visual formatting model details

If all of the above have a computed value other than ’auto’, the values are said to
be "over-constrained" and one of the used values will have to be different from its
computed value. If the ’direction’ property of the containing block has the value ’ltr’,
the specified value of ’margin-right’ is ignored and the value is calculated so as to
make the equality true. If the value of ’direction’ is ’rtl’, this happens to ’margin-left’
instead.

If there is exactly one value specified as ’auto’, its used value follows from the
equality.

If ’width’ is set to ’auto’, any other ’auto’ values become ’0’ and ’width’ follows from
the resulting equality.

If both ’margin-left’ and ’margin-right’ are ’auto’, their used values are equal. This
horizontally centers the element with respect to the edges of the containing block.

10.3.4 Block-level, replaced elements in normal flow
The used value of ’width’ is determined as for inline replaced elements [p. 168] .
Then the rules for non-replaced block-level elements [p. 168] are applied to
determine the margins.

10.3.5 Floating, non-replaced elements
If ’margin-left’, or ’margin-right’ are computed as ’auto’, their used value is ’0’.

If ’width’ is computed as ’auto’, the used value is the "shrink-to-fit" width.

Calculation of the shrink-to-fit width is similar to calculating the width of a table cell
using the automatic table layout algorithm. Roughly: calculate the preferred width by
formatting the content without breaking lines other than where explicit line breaks
occur, and also calculate the preferred minimum width, e.g., by trying all possible
line breaks. CSS 2.1 does not define the exact algorithm. Thirdly, find the available
width: in this case, this is the width of the containing block minus the used values of
’margin-left’, ’border-left-width’, ’padding-left’, ’padding-right’, ’border-right-width’,
’margin-right’, and the widths of any relevant scroll bars.

Then the shrink-to-fit width is: min(max(preferred minimum width, available width),
preferred width).

10.3.6 Floating, replaced elements
If ’margin-left’ or ’margin-right’ are computed as ’auto’, their used value is ’0’. The
used value of ’width’ is determined as for inline replaced elements [p. 168] .

10.3.7 Absolutely positioned, non-replaced elements
For the purposes of this section and the next, the term "static position" (of an
element) refers, roughly, to the position an element would have had in the normal
flow. More precisely:

16923 Apr 2009 15:57

Visual formatting model details

The static-position containing block is the containing block of a hypothetical box
that would have been the first box of the element if its specified ’position’ value
had been ’static’ and its specified ’float’ had been ’none’. (Note that due to the
rules in section 9.7 [p. 146] this hypothetical calculation might require also
assuming a different computed value for ’display’.)
The static position for ’left’ is the distance from the left edge of the containing
block to the left margin edge of a hypothetical box that would have been the first
box of the element if its ’position’ property had been ’static’ and ’float’ had been
’none’. The value is negative if the hypothetical box is to the left of the
containing block.
The static position for ’right’ is the distance from the right edge of the containing
block to the right margin edge of the same hypothetical box as above. The value
is positive if the hypothetical box is to the left of the containing block’s edge.

But rather than actually calculating the dimensions of that hypothetical box, user
agents are free to make a guess at its probable position.

For the purposes of calculating the static position, the containing block of fixed
positioned elements is the initial containing block instead of the viewport, and all
scrollable boxes should be assumed to be scrolled to their origin.

The constraint that determines the used values for these elements is:

’left’ + ’margin-left’ + ’border-left-width’ + ’padding-left’ + ’width’ +
’padding-right’ + ’border-right-width’ + ’margin-right’ + ’right’ = width of containing
block

If all three of ’left’, ’width’, and ’right’ are ’auto’: First set any ’auto’ values for
’margin-left’ and ’margin-right’ to 0. Then, if the ’direction’ property of the element
establishing the static-position containing block is ’ltr’ set ’left’ to the static position
[p. 169] and apply rule number three below; otherwise, set ’right’ to the static position
[p. 169] and apply rule number one below.

If none of the three is ’auto’: If both ’margin-left’ and ’margin-right’ are ’auto’, solve
the equation under the extra constraint that the two margins get equal values, unless
this would make them negative, in which case when direction of the containing block
is ’ltr’ (’rtl’), set ’margin-left’ (’margin-right’) to zero and solve for ’margin-right’
(’margin-left’). If one of ’margin-left’ or ’margin-right’ is ’auto’, solve the equation for
that value. If the values are over-constrained, ignore the value for ’left’ (in case the
’direction’ property of the containing block is ’rtl’) or ’right’ (in case ’direction’ is ’ltr’)
and solve for that value.

Otherwise, set ’auto’ values for ’margin-left’ and ’margin-right’ to 0, and pick the
one of the following six rules that applies.

1. ’left’ and ’width’ are ’auto’ and ’right’ is not ’auto’, then the width is shrink-to-fit.
Then solve for ’left’

2. ’left’ and ’right’ are ’auto’ and ’width’ is not ’auto’, then if the ’direction’ property
of the element establishing the static-position containing block is ’ltr’ set ’left’ to

23 Apr 2009 15:57170

Visual formatting model details

the static position [p. 169] , otherwise set ’right’ to the static position [p. 169] .
Then solve for ’left’ (if ’direction is ’rtl’) or ’right’ (if ’direction’ is ’ltr’).

3. ’width’ and ’right’ are ’auto’ and ’left’ is not ’auto’, then the width is shrink-to-fit .
Then solve for ’right’

4. ’left’ is ’auto’, ’width’ and ’right’ are not ’auto’, then solve for ’left’
5. ’width’ is ’auto’, ’left’ and ’right’ are not ’auto’, then solve for ’width’
6. ’right’ is ’auto’, ’left’ and ’width’ are not ’auto’, then solve for ’right’

Calculation of the shrink-to-fit width is similar to calculating the width of a table cell
using the automatic table layout algorithm. Roughly: calculate the preferred width by
formatting the content without breaking lines other than where explicit line breaks
occur, and also calculate the preferred minimum width, e.g., by trying all possible
line breaks. CSS 2.1 does not define the exact algorithm. Thirdly, calculate the
available width: this is found by solving for ’width’ after setting ’left’ (in case 1) or
’right’ (in case 3) to 0.

Then the shrink-to-fit width is: min(max(preferred minimum width, available width),
preferred width).

10.3.8 Absolutely positioned, replaced elements
In this case, section 10.3.7 [p. 169] applies up through and including the constraint
equation, but the rest of section 10.3.7 [p. 169] is replaced by the following rules:

1. The used value of ’width’ is determined as for inline replaced elements [p. 168] .
If ’margin-left’ or ’margin-right’ is specified as ’auto’ its used value is determined
by the rules below.

2. If both ’left’ and ’right’ have the value ’auto’, then if the ’direction’ property of the
element establishing the static-position containing block is ’ltr’, set ’left’ to the
static position; else if ’direction’ is ’rtl’, set ’right’ to the static position.

3. If ’left’ or ’right’ are ’auto’, replace any ’auto’ on ’margin-left’ or ’margin-right’ with
’0’.

4. If at this point both ’margin-left’ and ’margin-right’ are still ’auto’, solve the
equation under the extra constraint that the two margins must get equal values,
unless this would make them negative, in which case when the direction of the
containing block is ’ltr’ (’rtl’), set ’margin-left’ (’margin-right’) to zero and solve for
’margin-right’ (’margin-left’).

5. If at this point there is an ’auto’ left, solve the equation for that value.
6. If at this point the values are over-constrained, ignore the value for either ’left’

(in case the ’direction’ property of the containing block is ’rtl’) or ’right’ (in case
’direction’ is ’ltr’) and solve for that value.

17123 Apr 2009 15:57

Visual formatting model details

10.3.9 ’Inline-block’, non-replaced elements in normal flow
If ’width’ is ’auto’, the used value is the shrink-to-fit [p. 169] width as for floating
elements.

A computed value of ’auto’ for ’margin-left’ or ’margin-right’ becomes a used value
of ’0’.

10.3.10 ’Inline-block’, replaced elements in normal flow
Exactly as inline replaced elements. [p. 168]

10.4 Minimum and maximum widths: ’min-width’ and
’max-width’
’min-width’

Value: <length> | <percentage> | inherit
Initial: 0
Applies to: all elements but non-replaced inline elements, table rows, and

row groups
Inherited: no
Percentages: refer to width of containing block
Media: visual
Computed value: the percentage as specified or the absolute length

’max-width’

Value: <length> | <percentage> | none | inherit
Initial: none
Applies to: all elements but non-replaced inline elements, table rows, and

row groups
Inherited: no
Percentages: refer to width of containing block
Media: visual
Computed value: the percentage as specified or the absolute length or ’none’

These two properties allow authors to constrain content widths to a certain range.
Values have the following meanings:

<length>
Specifies a fixed minimum or maximum used width.

<percentage>
Specifies a percentage for determining the used value. The percentage is
calculated with respect to the width of the generated box’s containing block
[p. 122] . If the containing block’s width is negative, the used value is zero. If the

23 Apr 2009 15:57172

Visual formatting model details

containing block’s width depends on this element’s width, then the resulting
layout is undefined in CSS 2.1.

none
(Only on ’max-width’) No limit on the width of the box.

Negative values for ’min-width’ and ’max-width’ are illegal.

The following algorithm describes how the two properties influence the used value
[p. 94] of the ’width’ property:

1. The tentative used width is calculated (without ’min-width’ and ’max-width’)
following the rules under "Calculating widths and margins" [p. 167] above.

2. If the tentative used width is greater than ’max-width’, the rules above [p. 167]
are applied again, but this time using the computed value of ’max-width’ as the
computed value for ’width’.

3. If the resulting width is smaller than ’min-width’, the rules above [p. 167] are
applied again, but this time using the value of ’min-width’ as the computed value
for ’width’.

These steps do not affect the real computed values of the above properties.

However, for replaced elements with an intrinsic ratio and both ’width’ and ’height’
specified as ’auto’, the algorithm is as follows:

Select from the table the resolved height and width values for the appropriate
constraint violation. Take the max-width and max-height as max(min, max) so that
min ≤ max holds true. In this table w and h stand for the results of the width and
height computations ignoring the ’min-width’, ’min-height’, ’max-width’ and
’max-height’ properties. Normally these are the intrinsic width and height, but they
may not be in the case of replaced elements with intrinsic ratios.

Note: In cases where an explicit width or height is set and the other dimension is
auto, applying a minimum or maximum constraint on the auto side can cause an
over-constrained situation. The spec is clear in the behavior but it might not be what
the author expects. The CSS3 image-fit property can be used to obtain different
results in this situation.

17323 Apr 2009 15:57

Visual formatting model details

Constraint Violation Resolved Width Resolved Height

none w h

w > max-width max-width
max(max-width * h/w,
min-height)

w < min-width min-width
min(min-width * h/w,
max-height)

h > max-height
max(max-height * w/h,
min-width)

max-height

h < min-height
min(min-height * w/h,
max-width)

min-height

(w > max-width) and
(h > max-height), where
(max-width/w ≤ max-height/h)

max-width
max(min-height,
max-width * h/w)

(w > max-width) and
(h > max-height), where
(max-width/w > max-height/h)

max(min-width,
max-height * w/h)

max-height

(w < min-width) and
(h < min-height), where
(min-width/w ≤ min-height/h)

min(max-width,
min-height * w/h)

min-height

(w < min-width) and
(h < min-height), where
(min-width/w > min-height/h)

min-width
min(max-height,
min-width * h/w)

(w < min-width) and
(h > max-height)

min-width max-height

(w > max-width) and
(h < min-height)

max-width min-height

Then apply the rules under "Calculating widths and margins" [p. 167] above, as if
’width’ were computed as this value.

10.5 Content height: the ’height’ property
’height’

23 Apr 2009 15:57174

Visual formatting model details

Value: <length> | <percentage> | auto | inherit
Initial: auto
Applies to: all elements but non-replaced inline elements, table columns,

and column groups
Inherited: no
Percentages: see prose
Media: visual
Computed value: the percentage or ’auto’ (see prose under <percentage>) or

the absolute length; ’auto’ if the property does not apply

This property specifies the content height [p. 107] of boxes generated by
block-level, inline-block and replaced [p. 40] elements.

This property does not apply to non-replaced inline-level [p. 125] elements. See
the section on computing heights and margins for non-replaced inline elements
[p. 176] for the rules used instead.

Values have the following meanings:

<length>
Specifies the height of the content area using a length value.

<percentage>
Specifies a percentage height. The percentage is calculated with respect to the
height of the generated box’s containing block [p. 122] . If the height of the
containing block is not specified explicitly (i.e., it depends on content height),
and this element is not absolutely positioned, the value computes to ’auto’. A
percentage height on the root element [p. 41] is relative to the initial containing
block [p. 163] . Note: For absolutely positioned elements whose containing block
is based on a block-level element, the percentage is calculated with respect to
the height of the padding box of that element. This is a change from CSS1,
where the percentage was always calculated with respect to the content box of
the parent element.

auto
The height depends on the values of other properties. See the prose below.

Note that the height of the containing block of an absolutely positioned element is
independent of the size of the element itself, and thus a percentage height on such
an element can always be resolved. However, it may be that the height is not known
until elements that come later in the document have been processed.

Negative values for ’height’ are illegal.

Example(s):

For example, the following rule sets the content height of paragraphs to 100
pixels:

p { height: 100px }

17523 Apr 2009 15:57

Visual formatting model details

Paragraphs of which the height of the contents exceeds 100 pixels will overflow
[p. 187] according to the ’overflow’ property.

10.6 Calculating heights and margins
For calculating the values of ’top’, ’margin-top’, ’height’, ’margin-bottom’, and ’bottom’
a distinction must be made between various kinds of boxes:

1. inline, non-replaced elements
2. inline, replaced elements
3. block-level, non-replaced elements in normal flow
4. block-level, replaced elements in normal flow
5. floating, non-replaced elements
6. floating, replaced elements
7. absolutely positioned, non-replaced elements
8. absolutely positioned, replaced elements
9. ’inline-block’, non-replaced elements in normal flow

10. ’inline-block’, replaced elements in normal flow

For Points 1-6 and 9-10, the used values of ’top’ and ’bottom’ are determined by
the rules in section 9.4.3.

Note: these rules apply to the root element just as to any other element.

10.6.1 Inline, non-replaced elements
The ’height’ property doesn’t apply. The height of the content area should be based
on the font, but this specification does not specify how. A UA may, e.g., use the
em-box or the maximum ascender and descender of the font. (The latter would
ensure that glyphs with parts above or below the em-box still fall within the content
area, but leads to differently sized boxes for different fonts; the former would ensure
authors can control background styling relative to the ’line-height’, but leads to
glyphs painting outside their content area.)

Note: level 3 of CSS will probably include a property to select which measure of
the font is used for the content height.

The vertical padding, border and margin of an inline, non-replaced box start at the
top and bottom of the content area, not the ’line-height’. But only the ’line-height’ is
used when calculating the height of the line box.

If more than one font is used (this could happen when glyphs are found in different
fonts), the height of the content area is not defined by this specification. However,
we suggest that the height is chosen such that the content area is just high enough
for either (1) the em-boxes, or (2) the maximum ascenders and descenders, of all
the fonts in the element. Note that this may be larger than any of the font sizes
involved, depending on the baseline alignment of the fonts.

23 Apr 2009 15:57176

Visual formatting model details

10.6.2 Inline replaced elements, block-level replaced
elements in normal flow, ’inline-block’ replaced elements in
normal flow and floating replaced elements
If ’margin-top’, or ’margin-bottom’ are ’auto’, their used value is 0.

If ’height’ and ’width’ both have computed values of ’auto’ and the element also
has an intrinsic height, then that intrinsic height is the used value of ’height’.

Otherwise, if ’height’ has a computed value of ’auto’, and the element has an
intrinsic ratio then the used value of ’height’ is:

(used width) / (intrinsic ratio)

Otherwise, if ’height’ has a computed value of ’auto’, and the element has an
intrinsic height, then that intrinsic height is the used value of ’height’.

Otherwise, if ’height’ has a computed value of ’auto’, but none of the conditions
above are met, then the used value of ’height’ must be set to the height of the largest
rectangle that has a 2:1 ratio, has a height not greater than 150px, and has a width
not greater than the device width.

Percentage intrinsic heights are evaluated with respect to the containing block’s
height, if that height is specified explicitly, or if the replaced element is absolutely
positioned. If neither of these conditions is met, then percentage values on such
replaced elements can’t be resolved and such elements are assumed to have no
intrinsic height.

For ’inline’ and ’inline-block’ elements, the margin box is used when calculating the
height of the line box.

10.6.3 Block-level non-replaced elements in normal flow when
’overflow’ computes to ’visible’
This section also applies to block-level non-replaced elements in normal flow when
’overflow’ does not compute to ’visible’ but has been propagated to the viewport.

If ’margin-top’, or ’margin-bottom’ are ’auto’, their used value is 0. If ’height’ is
’auto’, the height depends on whether the element has any block-level children and
whether it has padding or borders:

If it only has inline-level children, the height is the distance between the top of the
topmost line box and the bottom of the bottommost line box.

If it has block-level children, the height is the distance between the top
border-edge of the topmost block-level child box that doesn’t have margins collapsed
through it [p. 111] and the bottom border-edge of the bottommost block-level child
box that doesn’t have margins collapsed through it. However, if the element has a
non-zero top padding and/or top border, or is the root element, then the content
starts at the top margin edge of the topmost child. (The first case expresses the fact
that the top and bottom margins of the element collapse [p. 111] with those of the

17723 Apr 2009 15:57

Visual formatting model details

topmost and bottommost children, while in the second case the presence of the
padding/border prevents the top margins from collapsing [p. 111] .) Similarly, if the
bottom margin of the block does not collapse with the bottom margin of its last
in-flow child, then the content ends at the bottom margin edge of the bottommost
child.

Only children in the normal flow are taken into account (i.e., floating boxes and
absolutely positioned boxes are ignored, and relatively positioned boxes are
considered without their offset). Note that the child box may be an anonymous block
box. [p. 123]

10.6.4 Absolutely positioned, non-replaced elements
For the purposes of this section and the next, the term "static position" (of an
element) refers, roughly, to the position an element would have had in the normal
flow. More precisely, the static position for ’top’ is the distance from the top edge of
the containing block to the top margin edge of a hypothetical box that would have
been the first box of the element if its specified ’position’ value had been ’static’ and
its specified ’float’ had been ’none’ and ’clear’ had been ’none’. (Note that due to the
rules in section 9.7 [p. 146] this might require also assuming a different computed
value for ’display’.) The value is negative if the hypothetical box is above the
containing block.

But rather than actually calculating the dimensions of that hypothetical box, user
agents are free to make a guess at its probable position.

For the purposes of calculating the static position, the containing block of fixed
positioned elements is the initial containing block instead of the viewport.

For absolutely positioned elements, the used values of the vertical dimensions
must satisfy this constraint:

’top’ + ’margin-top’ + ’border-top-width’ + ’padding-top’ + ’height’ +
’padding-bottom’ + ’border-bottom-width’ + ’margin-bottom’ + ’bottom’ = height of
containing block

If all three of ’top’, ’height’, and ’bottom’ are auto, set ’top’ to the static position and
apply rule number three below.

If none of the three are ’auto’: If both ’margin-top’ and ’margin-bottom’ are ’auto’,
solve the equation under the extra constraint that the two margins get equal values.
If one of ’margin-top’ or ’margin-bottom’ is ’auto’, solve the equation for that value. If
the values are over-constrained, ignore the value for ’bottom’ and solve for that
value.

Otherwise, pick the one of the following six rules that applies.

1. ’top’ and ’height’ are ’auto’ and ’bottom’ is not ’auto’, then the height is based on
the content, [p. 180] set ’auto’ values for ’margin-top’ and ’margin-bottom’ to 0,
and solve for ’top’

2. ’top’ and ’bottom’ are ’auto’ and ’height’ is not ’auto’, then set ’top’ to the static

23 Apr 2009 15:57178

Visual formatting model details

position, set ’auto’ values for ’margin-top’ and ’margin-bottom’ to 0, and solve for
’bottom’

3. ’height’ and ’bottom’ are ’auto’ and ’top’ is not ’auto’, then the height is based on
the content, [p. 180] set ’auto’ values for ’margin-top’ and ’margin-bottom’ to 0,
and solve for ’bottom’

4. ’top’ is ’auto’, ’height’ and ’bottom’ are not ’auto’, then set ’auto’ values for
’margin-top’ and ’margin-bottom’ to 0, and solve for ’top’

5. ’height’ is ’auto’, ’top’ and ’bottom’ are not ’auto’, then ’auto’ values for
’margin-top’ and ’margin-bottom’ are set to 0 and solve for ’height’

6. ’bottom’ is ’auto’, ’top’ and ’height’ are not ’auto’, then set ’auto’ values for
’margin-top’ and ’margin-bottom’ to 0 and solve for ’bottom’

10.6.5 Absolutely positioned, replaced elements
This situation is similar to the previous one, except that the element has an intrinsic
[p. 41] height. The sequence of substitutions is now:

1. The used value of ’height’ is determined as for inline replaced elements [p. 177]
. If ’margin-top’ or ’margin-bottom’ is specified as ’auto’ its used value is
determined by the rules below.

2. If both ’top’ and ’bottom’ have the value ’auto’, replace ’top’ with the element’s
static position [p. 169] .

3. If ’bottom’ is ’auto’, replace any ’auto’ on ’margin-top’ or ’margin-bottom’ with ’0’.
4. If at this point both ’margin-top’ and ’margin-bottom’ are still ’auto’, solve the

equation under the extra constraint that the two margins must get equal values.
5. If at this point there is only one ’auto’ left, solve the equation for that value.
6. If at this point the values are over-constrained, ignore the value for ’bottom’ and

solve for that value.

10.6.6 Complicated cases
This section applies to:

Block-level, non-replaced elements in normal flow when ’overflow’ does not
compute to ’visible’ (except if the ’overflow’ property’s value has been
propagated to the viewport).
’Inline-block’, non-replaced elements.
Floating, non-replaced elements.

If ’margin-top’, or ’margin-bottom’ are ’auto’, their used value is 0. If ’height’ is
’auto’, the height depends on the element’s descendants. [p. 180]

For ’inline-block’ elements, the margin box is used when calculating the height of
the line box.

17923 Apr 2009 15:57

Visual formatting model details

10.6.7 ’Auto’ heights for block formatting context roots
In certain cases (see the preceding sections), the height of an element is computed
as follows:

If it only has inline-level children, the height is the distance between the top of the
topmost line box and the bottom of the bottommost line box.

If it has block-level children, the height is the distance between the top
margin-edge of the topmost block-level child box and the bottom margin-edge of the
bottommost block-level child box.

Absolutely positioned children are ignored, and relatively positioned boxes are
considered without their offset. Note that the child box may be an anonymous block
box. [p. 123]

In addition, if the element has any floating descendants whose bottom margin
edge is below the bottom, then the height is increased to include those edges. Only
floats that are children of the element itself or of descendants in the normal flow are
taken into account, e.g., floats inside absolutely positioned descendants or other
floats are not.

10.7 Minimum and maximum heights: ’min-height’ and
’max-height’
It is sometimes useful to constrain the height of elements to a certain range. Two
properties offer this functionality:

’min-height’

Value: <length> | <percentage> | inherit
Initial: 0
Applies to: all elements but non-replaced inline elements, table columns,

and column groups
Inherited: no
Percentages: see prose
Media: visual
Computed value: the percentage as specified or the absolute length

’max-height’

23 Apr 2009 15:57180

Visual formatting model details

Value: <length> | <percentage> | none | inherit
Initial: none
Applies to: all elements but non-replaced inline elements, table columns,

and column groups
Inherited: no
Percentages: see prose
Media: visual
Computed value: the percentage as specified or the absolute length or ’none’

These two properties allow authors to constrain box heights to a certain range.
Values have the following meanings:

<length>
Specifies a fixed minimum or maximum computed height.

<percentage>
Specifies a percentage for determining the used value. The percentage is
calculated with respect to the height of the generated box’s containing block
[p. 122] . If the height of the containing block is not specified explicitly (i.e., it
depends on content height), and this element is not absolutely positioned, the
percentage value is treated as ’0’ (for ’min-height’) or ’none’ (for ’max-height’).

none
(Only on ’max-height’) No limit on the height of the box.

Negative values for ’min-height’ and ’max-height’ are illegal.

The following algorithm describes how the two properties influence the used value
[p. 94] of the ’height’ property:

1. The tentative used height is calculated (without ’min-height’ and ’max-height’)
following the rules under "Calculating heights and margins" [p. 176] above.

2. If this tentative height is greater than ’max-height’, the rules above [p. 176] are
applied again, but this time using the value of ’max-height’ as the computed
value for ’height’.

3. If the resulting height is smaller than ’min-height’, the rules above [p. 176] are
applied again, but this time using the value of ’min-height’ as the computed
value for ’height’.

These steps do not affect the real computed values of the above properties. The
change of used ’height’ has no effect on margin collapsing except as specifically
required by rules for ’min-height’ or ’max-height’ in "Collapsing margins" (8.3.1).
[p. 111]

However, for replaced elements with both ’width’ and ’height’ computed as ’auto’,
use the algorithm under Minimum and maximum widths [p. 172] above to find the
used width and height. Then apply the rules under "Computing heights and margins"
[p. 176] above, using the resulting width and height as if they were the computed
values.

18123 Apr 2009 15:57

Visual formatting model details

10.8 Line height calculations: the ’line-height’ and
’vertical-align’ properties
As described in the section on inline formatting contexts [p. 133] , user agents flow
inline boxes into a vertical stack of line boxes [p. 133] . The height of a line box is
determined as follows:

1. The height of each inline box in the line box is calculated (see "Calculating
heights and margins" [p. 176] and the ’line-height’ property).

2. The inline boxes are aligned vertically according to their ’vertical-align’ property.
3. The line box height is the distance between the uppermost box top and the

lowermost box bottom.
4. If the resulting height is smaller than the minimal height of line boxes for this

block, as specified by the ’line-height’ property, the height is increased to be that
minimal height.

Empty inline elements generate empty inline boxes, but these boxes still have
margins, padding, borders and a line height, and thus influence these calculations
just like elements with content.

10.8.1 Leading and half-leading
Since the value of ’line-height’ may be different from the height of the content area
there may be space above and below rendered glyphs. The difference between the
content height and the used value of ’line-height’ is called the leading. Half the
leading is called the half-leading.

User agents center glyphs vertically in an inline box, adding half-leading on the top
and bottom. For example, if a piece of text is ’12px’ high and the ’line-height’ value is
’14px’, 2pxs of extra space should be added: 1px above and 1px below the letters.
(This applies to empty boxes as well, as if the empty box contained an infinitely
narrow letter.)

When the ’line-height’ value is less than the content height, the final inline box
height will be less than the font size and the rendered glyphs will "bleed" outside the
box. If such a box touches the edge of a line box, the rendered glyphs will also
"bleed" into the adjoining line box.

Although margins, borders, and padding of non-replaced elements do not enter
into the line box calculation, they are still rendered around inline boxes. This means
that if the height specified by ’line-height’ is less than the content height of contained
boxes, backgrounds and colors of padding and borders may "bleed" into adjoining
line boxes. User agents should render the boxes in document order. This will cause
the borders on subsequent lines to paint over the borders and text of previous lines.

’line-height’

23 Apr 2009 15:57182

Visual formatting model details

Value: normal | <number> | <length> | <percentage> | inherit
Initial: normal
Applies to: all elements
Inherited: yes
Percentages: refer to the font size of the element itself
Media: visual
Computed value: for <length> and <percentage> the absolute value; otherwise

as specified

On a block-level [p. 123] , table-cell, table-caption or inline-block element whose
content is composed of inline-level [p. 125] elements, ’line-height’ specifies the
minimal height of line boxes within the element. The minimum height consists of a
minimum height above the block’s baseline and a minimum depth below it, exactly
as if each line box starts with a zero-width inline box with the block’s font and line
height properties (what TEX calls a "strut").

On an inline-level [p. 125] element, ’line-height’ specifies the height that is used in
the calculation of the line box height (except for inline replaced [p. 40] elements,
where the height of the box is given by the ’height’ property).

Values for this property have the following meanings:

normal
Tells user agents to set the used value to a "reasonable" value based on the
font of the element. The value has the same meaning as <number>. We
recommend a used value for ’normal’ between 1.0 to 1.2. The computed value
[p. 94] is ’normal’.

<length>
The specified length is used in the calculation of the line box height. Negative
values are illegal.

<number>
The used value of the property is this number multiplied by the element’s font
size. Negative values are illegal. The computed value [p. 94] is the same as the
specified value.

<percentage>
The computed value [p. 94] of the property is this percentage multiplied by the
element’s computed font size. Negative values are illegal.

Example(s):

The three rules in the example below have the same resultant line height:

div { line-height: 1.2; font-size: 10pt } /* number */
div { line-height: 1.2em; font-size: 10pt } /* length */
div { line-height: 120%; font-size: 10pt } /* percentage */

When an element contains text that is rendered in more than one font, user agents
may determine the ’line-height’ value according to the largest font size.

18323 Apr 2009 15:57

Visual formatting model details

Generally, when there is only one value of ’line-height’ for all inline boxes in a
paragraph (and no tall images), the above will ensure that baselines of successive
lines are exactly ’line-height’ apart. This is important when columns of text in
different fonts have to be aligned, for example in a table.

’vertical-align’

Value: baseline | sub | super | top | text-top | middle | bottom |
text-bottom | <percentage> | <length> | inherit

Initial: baseline
Applies to: inline-level and ’table-cell’ elements
Inherited: no
Percentages: refer to the ’line-height’ of the element itself
Media: visual
Computed value: for <percentage> and <length> the absolute length, otherwise

as specified

This property affects the vertical positioning inside a line box of the boxes
generated by an inline-level element.

Note. Values of this property have different meanings in the context of tables.
Please consult the section on table height algorithms [p. 272] for details.

The following values only have meaning with respect to a parent inline-level
element, or to the strut [p. 183] of a parent block-level [p. 123] , table-cell,
table-caption or inline-block element.

baseline
Align the baseline of the box with the baseline of the parent box. If the box
doesn’t have a baseline, align the bottom margin edge with the parent’s
baseline.

middle
Align the vertical midpoint of the box with the baseline of the parent box plus
half the x-height of the parent.

sub
Lower the baseline of the box to the proper position for subscripts of the
parent’s box. (This value has no effect on the font size of the element’s text.)

super
Raise the baseline of the box to the proper position for superscripts of the
parent’s box. (This value has no effect on the font size of the element’s text.)

text-top
Align the top of the box with the top of the parent’s content area (see 10.6.1
[p. 176]).

text-bottom
Align the bottom of the box with the bottom of the parent’s content area (see
10.6.1 [p. 176]).

23 Apr 2009 15:57184

Visual formatting model details

<percentage>
Raise (positive value) or lower (negative value) the box by this distance (a
percentage of the ’line-height’ value). The value ’0%’ means the same as
’baseline’.

<length>
Raise (positive value) or lower (negative value) the box by this distance. The
value ’0cm’ means the same as ’baseline’.

The following values align the element relative to the line box. Since the element
may have children aligned relative to it (which in turn may have descendants aligned
relative to them), these values use the bounds of the aligned subtree. The aligned
subtree of an inline element contains that element and the aligned subtrees of all
children inline elements whose computed ’vertical-align’ value is not ’top’ or ’bottom’.
The top of the aligned subtree is the highest of the tops of the boxes in the subtree,
and the bottom is analogous.

top
Align the top of the aligned subtree with the top of the line box.

bottom
Align the bottom of the aligned subtree with the bottom of the line box.

The baseline of an ’inline-table’ is the baseline of the first row of the table.

The baseline of an ’inline-block’ is the baseline of its last line box in the normal
flow, unless it has either no in-flow line boxes or if its ’overflow’ property has a
computed value other than ’visible’, in which case the baseline is the bottom margin
edge.

18523 Apr 2009 15:57

Visual formatting model details

23 Apr 2009 15:57186

Visual formatting model details

11 Visual effects
Contents

............. 18711.1 Overflow and clipping

......... 18711.1.1 Overflow: the ’overflow’ property

.......... 19011.1.2 Clipping: the ’clip’ property

........... 19211.2 Visibility: the ’visibility’ property

11.1 Overflow and clipping
Generally, the content of a block box is confined to the content edges of the box. In
certain cases, a box may overflow, meaning its content lies partly or entirely outside
of the box, e.g.:

A line cannot be broken, causing the line box to be wider than the block box.
A block-level box is too wide for the containing block. This may happen when an
element’s ’width’ property has a value that causes the generated block box to
spill over sides of the containing block.
An element’s height exceeds an explicit height assigned to the containing block
(i.e., the containing block’s height is determined by the ’height’ property, not by
content height).
A descendent box is positioned absolutely [p. 144] , partly outside the box. Such
boxes are not always clipped by the overflow property on their ancestors.
A descendent box has negative margins [p. 109] , causing it to be positioned
partly outside the box.
The ’text-indent’ property causes an inline box to hang off either the left or right
edge of the block box.

Whenever overflow occurs, the ’overflow’ property specifies whether a box is
clipped to its padding edge, and if so, whether a scrolling mechanism is provided to
access any clipped out content.

11.1.1 Overflow: the ’overflow’ property

’overflow’

18723 Apr 2009 15:57

Visual effects

Value: visible | hidden | scroll | auto | inherit
Initial: visible
Applies to: non-replaced block-level elements, table cells, and

inline-block elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: as specified

This property specifies whether content of a block-level element is clipped when it
overflows the element’s box. It affects the clipping of all of the element’s content
except any descendant elements (and their respective content and descendants)
whose containing block is the viewport or an ancestor of the element. Values have
the following meanings:

visible
This value indicates that content is not clipped, i.e., it may be rendered outside
the block box.

hidden
This value indicates that the content is clipped and that no scrolling user
interface should be provided to view the content outside the clipping region.

scroll
This value indicates that the content is clipped and that if the user agent uses a
scrolling mechanism that is visible on the screen (such as a scroll bar or a
panner), that mechanism should be displayed for a box whether or not any of its
content is clipped. This avoids any problem with scrollbars appearing and
disappearing in a dynamic environment. When this value is specified and the
target medium is ’print’, overflowing content may be printed.

auto
The behavior of the ’auto’ value is user agent-dependent, but should cause a
scrolling mechanism to be provided for overflowing boxes.

Even if ’overflow’ is set to ’visible’, content may be clipped to a UA’s document
window by the native operating environment.

UAs must apply the ’overflow’ property set on the root element to the viewport.
When the root element is an HTML "HTML" element or an XHTML "html" element,
and that element has an HTML "BODY" element or an XHTML "body" element as a
child, user agents must instead apply the ’overflow’ property from the first such child
element to the viewport, if the value on the root element is ’visible’. The ’visible’
value when used for the viewport must be interpreted as ’auto’. The element from
which the value is propagated must have a used value for ’overflow’ of ’visible’.

In the case of a scrollbar being placed on an edge of the element’s box, it should
be inserted between the inner border edge and the outer padding edge. Any space
taken up by the scrollbars should be taken out of (subtracted from the dimensions of)
the containing block formed by the element with the scrollbars.

23 Apr 2009 15:57188

Visual effects

Example(s):

Consider the following example of a block quotation (<blockquote>) that is too
big for its containing block (established by a <div>). Here is the source:

<div>
<blockquote>
<p>I didn’t like the play, but then I saw
it under adverse conditions - the curtain was up.</p>
<cite>- Groucho Marx</cite>
</blockquote>
</div>

Here is the style sheet controlling the sizes and style of the generated boxes:

div { width : 100px; height: 100px;
 border: thin solid red;
 }

blockquote { width : 125px; height : 100px;
 margin-top: 50px; margin-left: 50px;
 border: thin dashed black
 }

cite { display: block;
 text-align : right;
 border: none
 }

The initial value of ’overflow’ is ’visible’, so the <blockquote> would be formatted
without clipping, something like this:

DIV

BLOCKQUOTE

I didn’t like the play,
but then I saw it
under adverse
conditions − the
curtain was up.
 − Groucho Marx

Setting ’overflow’ to ’hidden’ for the <div> , on the other hand, causes the
<blockquote> to be clipped by the containing block:

18923 Apr 2009 15:57

Visual effects

I didn’t li
but then
under ad
condition

A value of ’scroll’ would tell UAs that support a visible scrolling mechanism to
display one so that users could access the clipped content.

Finally, consider this case where an absolutely positioned element is mixed with
an overflow parent.

Style sheet:

 container { position: relative; border: solid; }
 scroller { overflow: scroll; height: 5em; margin: 5em; }
 satellite { position: absolute; top: 0; }
 body { height: 10em; }

Document fragment:

 <container>
 <scroller>
 <satellite/>
 <body/>
 </scroller>
 </container>

In this example, the "scroller" element will not scroll the "satellite" element,
because the latter’s containing block is outside the element whose overflow is being
clipped and scrolled.

11.1.2 Clipping: the ’clip’ property
A clipping region defines what portion of an element’s border box is visible. By
default, the element is not clipped. However, the clipping region may be explicitly set
with the ’clip’ property.

’clip’

Value: <shape> | auto | inherit
Initial: auto
Applies to: absolutely positioned elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: For rectangle values, a rectangle consisting of four computed

lengths; otherwise, as specified

23 Apr 2009 15:57190

Visual effects

The ’clip’ property applies only to absolutely positioned elements. Values have the
following meanings:

auto
The element does not clip.

<shape>
In CSS 2.1, the only valid <shape> value is: rect(<top>, <right>, <bottom>,
<left>) where <top> and <bottom> specify offsets from the top border edge of
the box, and <right>, and <left> specify offsets from the left border edge of the
box in left-to-right text and from the right border edge of the box in right-to-left
text. Authors should separate offset values with commas. User agents must
support separation with commas, but may also support separation without
commas (but not a combination), because a previous revision of this
specification was ambiguous in this respect.

<top>, <right>, <bottom>, and <left> may either have a <length> value or
’auto’. Negative lengths are permitted. The value ’auto’ means that a given edge
of the clipping region will be the same as the edge of the element’s generated
border box (i.e., ’auto’ means the same as ’0’ for <top> and <left> (in left-to-right
text, <right> in right-to-left text), the same as the computed value of the height
plus the sum of vertical padding and border widths for <bottom>, and the same
as the computed value of the width plus the sum of the horizontal padding and
border widths for <right> (in left-to-right text, <left> in right-to-left text), such that
four ’auto’ values result in the clipping region being the same as the element’s
border box).

When coordinates are rounded to pixel coordinates, care should be taken that
no pixels remain visible when <left> and <right> have the same value (or <top>
and <bottom> have the same value), and conversely that no pixels within the
element’s border box remain hidden when these values are ’auto’.

An element’s clipping region clips out any aspect of the element (e.g. content,
children, background, borders, text decoration, outline and visible scrolling
mechanism — if any) that is outside the clipping region. Content that has been
clipped does not cause overflow.

The element’s ancestors may also clip portions of their content (e.g. via their own
’clip’ property and/or if their ’overflow’ property is not ’visible’); what is rendered is the
cumulative intersection.

If the clipping region exceeds the bounds of the UA’s document window, content
may be clipped to that window by the native operating environment.

Example(s):

The following two rules:

p { clip: rect(5px, 40px, 45px, 5px); }
p { clip: rect(5px, 55px, 45px, 5px); }

19123 Apr 2009 15:57

Visual effects

will create the rectangular clipping regions delimited by the dashed lines in the
following illustrations:

(0, 0) (50, 0)

(0, 55)

clip region

(0, 0) (50, 0)

(0, 55)

clip region

P’s block box

P’s block box

Note. In CSS 2.1, all clipping regions are rectangular. We anticipate future
extensions to permit non-rectangular clipping. Future updates may also reintroduce
a syntax for offsetting shapes from each edge instead of offsetting from a point.

11.2 Visibility: the ’visibility’ property
’visibility’

23 Apr 2009 15:57192

Visual effects

Value: visible | hidden | collapse | inherit
Initial: visible
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

The ’visibility’ property specifies whether the boxes generated by an element are
rendered. Invisible boxes still affect layout (set the ’display’ property to ’none’ to
suppress box generation altogether). Values have the following meanings:

visible
The generated box is visible.

hidden
The generated box is invisible (fully transparent, nothing is drawn), but still
affects layout. Furthermore, descendents of the element will be visible if they
have ’visibility: visible’.

collapse
Please consult the section on dynamic row and column effects [p. 274] in tables.
If used on elements other than rows, row groups, columns, or column groups,
’collapse’ has the same meaning as ’hidden’.

This property may be used in conjunction with scripts to create dynamic effects.

In the following example, pressing either form button invokes an author-defined
script function that causes the corresponding box to become visible and the other to
be hidden. Since these boxes have the same size and position, the effect is that one
replaces the other. (The script code is in a hypothetical script language. It may or
may not have any effect in a CSS-capable UA.)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
<HEAD><TITLE>Dynamic visibility example</TITLE>
<META
 http-equiv="Content-Script-Type"
 content="application/x-hypothetical-scripting-language">
<STYLE type="text/css">
<!--
 #container1 { position: absolute;
 top: 2in; left: 2in; width: 2in }
 #container2 { position: absolute;
 top: 2in; left: 2in; width: 2in;
 visibility: hidden; }
-->
</STYLE>
</HEAD>
<BODY>
<P>Choose a suspect:</P>
<DIV id="container1">
 <IMG alt="Al Capone"

19323 Apr 2009 15:57

Visual effects

 width="100" height="100"
 src="suspect1.png">
 <P>Name: Al Capone</P>
 <P>Residence: Chicago</P>
</DIV>

<DIV id="container2">
 <IMG alt="Lucky Luciano"
 width="100" height="100"
 src="suspect2.png">
 <P>Name: Lucky Luciano</P>
 <P>Residence: New York</P>
</DIV>

<FORM method="post"
 action="http://www.suspect.org/process-bums">
 <P>
 <INPUT name="Capone" type="button"
 value="Capone"
 onclick=’show("container1");hide("container2")’>
 <INPUT name="Luciano" type="button"
 value="Luciano"
 onclick=’show("container2");hide("container1")’>
</FORM>
</BODY>
</HTML>

23 Apr 2009 15:57194

Visual effects

12 Generated content, automatic numbering,
and lists
Contents

......... 19512.1 The :before and :after pseudo-elements

............. 19712.2 The ’content’ property

.............. 19912.3 Quotation marks

...... 19912.3.1 Specifying quotes with the ’quotes’ property

...... 20112.3.2 Inserting quotes with the ’content’ property

.......... 20212.4 Automatic counters and numbering

.......... 20412.4.1 Nested counters and scope

............. 20612.4.2 Counter styles

....... 20612.4.3 Counters in elements with ’display: none’

................. 20612.5 Lists
12.5.1 Lists: the ’list-style-type’, ’list-style-image’, ’list-style-position’, and

.............. 207’list-style’ properties

In some cases, authors may want user agents to render content that does not
come from the document tree [p. 41] . One familiar example of this is a numbered
list; the author does not want to list the numbers explicitly, he or she wants the user
agent to generate them automatically. Similarly, authors may want the user agent to
insert the word "Figure" before the caption of a figure, or "Chapter 7" before the
seventh chapter title. For audio or braille in particular, user agents should be able to
insert these strings.

In CSS 2.1, content may be generated by two mechanisms:

The ’content’ property, in conjunction with the :before and :after
pseudo-elements.
Elements with a value of ’list-item’ for the ’display’ property.

12.1 The :before and :after pseudo-elements
Authors specify the style and location of generated content with the :before and
:after pseudo-elements. As their names indicate, the :before and :after
pseudo-elements specify the location of content before and after an element’s
document tree [p. 41] content. The ’content’ property, in conjunction with these
pseudo-elements, specifies what is inserted.

Example(s):

For example, the following rule inserts the string "Note: " before the content of
every P element whose "class" attribute has the value "note":

19523 Apr 2009 15:57

Generated content, automatic numbering, and lists

p.note:before { content: "Note: " }

The formatting objects (e.g., boxes) generated by an element include generated
content. So, for example, changing the above style sheet to:

p.note:before { content: "Note: " }
p.note { border: solid green }

would cause a solid green border to be rendered around the entire paragraph,
including the initial string.

The :before and :after pseudo-elements inherit [p. 94] any inheritable properties
from the element in the document tree to which they are attached.

Example(s):

For example, the following rules insert an open quote mark before every Q
element. The color of the quote mark will be red, but the font will be the same as the
font of the rest of the Q element:

q:before {
 content: open-quote;
 color: red
}

In a :before or :after pseudo-element declaration, non-inherited properties take
their initial values [p. 27] .

Example(s):

So, for example, because the initial value of the ’display’ property is ’inline’, the
quote in the previous example is inserted as an inline box (i.e., on the same line as
the element’s initial text content). The next example explicitly sets the ’display’
property to ’block’, so that the inserted text becomes a block:

body:after {
 content: "The End";
 display: block;
 margin-top: 2em;
 text-align: center;
}

The :before and :after pseudo-elements elements interact with other boxes, such
as run-in boxes, as if they were real elements inserted just inside their associated
element.

Example(s):

For example, the following document fragment and style sheet:

<h2> Header </h2> h2 { display: run-in; }
<p> Text </p> p:before { display: block; content: ’Some’; }

...would render in exactly the same way as the following document fragment and
style sheet:

23 Apr 2009 15:57196

Generated content, automatic numbering, and lists

<h2> Header </h2> h2 { display: run-in; }
<p>Some Text </p> span { display: block }

Similarly, the following document fragment and style sheet:

<h2> Header </h2> h2 { display: run-in; }
 h2:after { display: block; content: ’Thing’; }
<p> Text </p>

...would render in exactly the same way as the following document fragment and
style sheet:

<h2> Header Thing</h2> h2 { display: block; }
 span { display: block; }
<p> Text </p>

Note. This specification does not fully define the interaction of :before and :after
with replaced elements (such as IMG in HTML). This will be defined in more detail in
a future specification.

12.2 The ’content’ property
’content’

Value: normal | none | [<string> | <uri> | <counter> | attr(<identifier>)
| open-quote | close-quote | no-open-quote | no-close-quote
]+ | inherit

Initial: normal
Applies to: :before and :after pseudo-elements
Inherited: no
Percentages: N/A
Media: all
Computed value: On elements, always computes to ’normal’. On :before and

:after, if ’normal’ is specified, computes to ’none’. Otherwise,
for URI values, the absolute URI; for attr() values, the
resulting string; for other keywords, as specified.

This property is used with the :before and :after pseudo-elements to generate
content in a document. Values have the following meanings:

none
The pseudo-element is not generated.

normal
Computes to ’none’ for the :before and :after pseudo-elements.

<string>
Text content (see the section on strings [p. 65]).

<uri>
The value is a URI that designates an external resource (such as an image). If
the user agent cannot display the resource it must either leave it out as if it were

19723 Apr 2009 15:57

Generated content, automatic numbering, and lists

not specified or display some indication that the resource cannot be displayed.
<counter>

Counters [p. 62] may be specified with two different functions: ’counter()’ or
’counters()’. The former has two forms: ’counter(name)’ or ’counter(name,
style)’. The generated text is the value of the innermost counter of the given
name in scope at this pseudo-element; it is formatted in the indicated style
[p. 206] (’decimal’ by default). The latter function also has two forms:
’counters(name, string)’ or ’counters(name, string, style)’. The generated text is
the value of all counters with the given name in scope at this pseudo-element,
from outermost to innermost separated by the specified string. The counters are
rendered in the indicated style [p. 206] (’decimal’ by default). See the section on
automatic counters and numbering [p. 202] for more information. The name
must not be ’none’, ’inherit’ or ’initial’. Such a name causes the declaration to be
ignored.

open-quote and close-quote
These values are replaced by the appropriate string from the ’quotes’ property.

no-open-quote and no-close-quote
Introduces no content, but increments (decrements) the level of nesting for
quotes.

attr(X)
This function returns as a string the value of attribute X for the subject of the
selector. The string is not parsed by the CSS processor. If the subject of the
selector doesn’t have an attribute X, an empty string is returned. The
case-sensitivity of attribute names depends on the document language.

Note. In CSS 2.1, it is not possible to refer to attribute values for other elements than
the subject of the selector.

The ’display’ property controls whether the content is placed in a block or inline
box.

Example(s):

The following rule causes the string "Chapter: " to be generated before each H1
element:

H1:before {
 content: "Chapter: ";
 display: inline;
}

Authors may include newlines in the generated content by writing the "\A" escape
sequence in one of the strings after the ’content’ property. This inserted line break is
still subject to the ’white-space’ property. See "Strings" [p. 65] and "Characters and
case" [p. 51] for more information on the "\A" escape sequence.

Example(s):

23 Apr 2009 15:57198

Generated content, automatic numbering, and lists

h1:before {
 display: block;
 text-align: center;
 white-space: pre;
 content: "chapter\A hoofdstuk\A chapitre"
}

Generated content does not alter the document tree. In particular, it is not fed back
to the document language processor (e.g., for reparsing).

12.3 Quotation marks
In CSS 2.1, authors may specify, in a style-sensitive and context-dependent manner,
how user agents should render quotation marks. The ’quotes’ property specifies
pairs of quotation marks for each level of embedded quotation. The ’content’
property gives access to those quotation marks and causes them to be inserted
before and after a quotation.

12.3.1 Specifying quotes with the ’quotes’ property

’quotes’

Value: [<string> <string>]+ | none | inherit
Initial: depends on user agent
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

This property specifies quotation marks for any number of embedded quotations.
Values have the following meanings:

none
The ’open-quote’ and ’close-quote’ values of the ’content’ property produce no
quotation marks.

[<string> <string>]+
Values for the ’open-quote’ and ’close-quote’ values of the ’content’ property are
taken from this list of pairs of quotation marks (opening and closing). The first
(leftmost) pair represents the outermost level of quotation, the second pair the
first level of embedding, etc. The user agent must apply the appropriate pair of
quotation marks according to the level of embedding.

Example(s):

For example, applying the following style sheet:

19923 Apr 2009 15:57

Generated content, automatic numbering, and lists

/* Specify pairs of quotes for two levels in two languages */
q:lang(en) { quotes: ’"’ ’"’ "’" "’" }
q:lang(no) { quotes: "«" "»" ’"’ ’"’ }

/* Insert quotes before and after Q element content */
q:before { content: open-quote }
q:after { content: close-quote }

to the following HTML fragment:

<HTML lang="en">
 <HEAD>
 <TITLE>Quotes</TITLE>
 </HEAD>
 <BODY>
 <P><Q>Quote me!</Q>
 </BODY>
</HTML>

would allow a user agent to produce:

"Quote me!"

while this HTML fragment:

<HTML lang="no">
 <HEAD>
 <TITLE>Quotes</TITLE>
 </HEAD>
 <BODY>
 <P><Q>Trøndere gråter når <Q>Vinsjan på kaia</Q> blir deklamert.</Q>
 </BODY>
</HTML>

would produce:

«Trøndere gråter når "Vinsjan på kaia" blir deklamert.»

Note. While the quotation marks specified by ’quotes’ in the previous examples
are conveniently located on computer keyboards, high quality typesetting would
require different ISO 10646 characters. The following informative table lists some of
the ISO 10646 quotation mark characters:

23 Apr 2009 15:57200

Generated content, automatic numbering, and lists

Character
Approximate

rendering
ISO 10646
code (hex)

Description

" " 0022
QUOTATION MARK [the ASCII
double quotation mark]

’ ’ 0027
APOSTROPHE [the ASCII single
quotation mark]

‹ < 2039
SINGLE LEFT-POINTING ANGLE
QUOTATION MARK

› > 203A
SINGLE RIGHT-POINTING
ANGLE QUOTATION MARK

« « 00AB
LEFT-POINTING DOUBLE ANGLE
QUOTATION MARK

» » 00BB
RIGHT-POINTING DOUBLE
ANGLE QUOTATION MARK

‘ ‘ 2018
LEFT SINGLE QUOTATION MARK
[single high-6]

’ ’ 2019
RIGHT SINGLE QUOTATION
MARK [single high-9]

“ ‘‘ 201C
LEFT DOUBLE QUOTATION
MARK [double high-6]

” ’’ 201D
RIGHT DOUBLE QUOTATION
MARK [double high-9]

„ ,, 201E
DOUBLE LOW-9 QUOTATION
MARK [double low-9]

12.3.2 Inserting quotes with the ’content’ property
Quotation marks are inserted in appropriate places in a document with the
’open-quote’ and ’close-quote’ values of the ’content’ property. Each occurrence of
’open-quote’ or ’close-quote’ is replaced by one of the strings from the value of
’quotes’, based on the depth of nesting.

’Open-quote’ refers to the first of a pair of quotes, ’close-quote’ refers to the
second. Which pair of quotes is used depends on the nesting level of quotes: the
number of occurrences of ’open-quote’ in all generated text before the current
occurrence, minus the number of occurrences of ’close-quote’. If the depth is 0, the
first pair is used, if the depth is 1, the second pair is used, etc. If the depth is greater
than the number of pairs, the last pair is repeated. A ’close-quote’ or ’no-close-quote’
that would make the depth negative is in error and is ignored (at rendering time): the

20123 Apr 2009 15:57

Generated content, automatic numbering, and lists

depth stays at 0 and no quote mark is rendered (although the rest of the ’content’
property’s value is still inserted).

Note. The quoting depth is independent of the nesting of the source document or
the formatting structure.

Some typographic styles require open quotation marks to be repeated before
every paragraph of a quote spanning several paragraphs, but only the last
paragraph ends with a closing quotation mark. In CSS, this can be achieved by
inserting "phantom" closing quotes. The keyword ’no-close-quote’ decrements the
quoting level, but does not insert a quotation mark.

Example(s):

The following style sheet puts opening quotation marks on every paragraph in a
BLOCKQUOTE, and inserts a single closing quote at the end:

blockquote p:before { content: open-quote }
blockquote p:after { content: no-close-quote }
blockquote p.last:after { content: close-quote }

This relies on the last paragraph being marked with a class "last".

For symmetry, there is also a ’no-open-quote’ keyword, which inserts nothing, but
increments the quotation depth by one.

12.4 Automatic counters and numbering
Automatic numbering in CSS 2.1 is controlled with two properties,
’counter-increment’ and ’counter-reset’. The counters defined by these properties are
used with the counter() and counters() functions of the the ’content’ property.

’counter-reset’

Value: [<identifier> <integer>?]+ | none | inherit
Initial: none
Applies to: all elements
Inherited: no
Percentages: N/A
Media: all
Computed value: as specified

’counter-increment’

23 Apr 2009 15:57202

Generated content, automatic numbering, and lists

Value: [<identifier> <integer>?]+ | none | inherit
Initial: none
Applies to: all elements
Inherited: no
Percentages: N/A
Media: all
Computed value: as specified

The ’counter-increment’ property accepts one or more names of counters
(identifiers), each one optionally followed by an integer. The integer indicates by how
much the counter is incremented for every occurrence of the element. The default
increment is 1. Zero and negative integers are allowed.

The ’counter-reset’ property also contains a list of one or more names of counters,
each one optionally followed by an integer. The integer gives the value that the
counter is set to on each occurrence of the element. The default is 0.

The keywords ’none’, ’inherit’ and ’initial’ must not be used as counter names. A
value of ’none’ on its own means no counters are reset, resp. incremented. ’Inherit’
on its own has its usual meaning (see 6.2.1 [p. 95]). ’Initial’ is reserved for future
use.

Example(s):

This example shows a way to number chapters and sections with "Chapter 1",
"1.1", "1.2", etc.

BODY {
 counter-reset: chapter; /* Create a chapter counter scope */
}
H1:before {
 content: "Chapter " counter(chapter) ". ";
 counter-increment: chapter; /* Add 1 to chapter */
}
H1 {
 counter-reset: section; /* Set section to 0 */
}
H2:before {
 content: counter(chapter) "." counter(section) " ";
 counter-increment: section;
}

If an element increments/resets a counter and also uses it (in the ’content’
property of its :before or :after pseudo-element), the counter is used after being
incremented/reset.

If an element both resets and increments a counter, the counter is reset first and
then incremented.

If the same counter is specified more than once in the value of the ’counter-reset’
and ’counter-increment’ properties, each reset/increment of the counter is processed
in the order specified.

20323 Apr 2009 15:57

Generated content, automatic numbering, and lists

Example(s):

The following example will reset the ’section’ counter to 0:

H1 { counter-reset: section 2 section }

The following example will increment the ’chapter’ counter by 3:

H1 { counter-increment: chapter chapter 2 }

The ’counter-reset’ property follows the cascading rules. Thus, due to cascading,
the following style sheet:

H1 { counter-reset: section -1 }
H1 { counter-reset: imagenum 99 }

will only reset ’imagenum’. To reset both counters, they have to be specified
together:

H1 { counter-reset: section -1 imagenum 99 }

12.4.1 Nested counters and scope
Counters are "self-nesting", in the sense that resetting a counter in a descendant
element or pseudo-element automatically creates a new instance of the counter.
This is important for situations like lists in HTML, where elements can be nested
inside themselves to arbitrary depth. It would be impossible to define uniquely
named counters for each level.

Example(s):

Thus, the following suffices to number nested list items. The result is very similar
to that of setting ’display:list-item’ and ’list-style: inside’ on the LI element:

OL { counter-reset: item }
LI { display: block }
LI:before { content: counter(item) ". "; counter-increment: item }

The scope of a counter starts at the first element in the document that has a
’counter-reset’ for that counter and includes the element’s descendants and its
following siblings with their descendants. However, it does not include any elements
in the scope of a counter with the same name created by a ’counter-reset’ on a later
sibling of the element or by a later ’counter-reset’ on the same element.

If ’counter-increment’ or ’content’ on an element or pseudo-element refers to a
counter that is not in the scope of any ’counter-reset’, implementations should
behave as though a ’counter-reset’ had reset the counter to 0 on that element or
pseudo-element.

In the example above, an OL will create a counter, and all children of the OL will
refer to that counter.

23 Apr 2009 15:57204

Generated content, automatic numbering, and lists

If we denote by item[n] the n th instance of the "item" counter, and by "{" and "}" the
beginning and end of a scope, then the following HTML fragment will use the
indicated counters. (We assume the style sheet as given in the example above).

 <!-- {item[0]=0 -->
 item <!-- item[0]++ (=1) -->
 item <!-- item[0]++ (=2) -->
 <!-- {item[1]=0 -->
 item <!-- item[1]++ (=1) -->
 item <!-- item[1]++ (=2) -->
 item <!-- item[1]++ (=3) -->
 <!-- {item[2]=0 -->
 item <!-- item[2]++ (=1) -->
 <!-- -->
 <!-- }{item[2]=0 -->
 item <!-- item[2]++ (=1) -->
 <!-- -->
 <!-- } -->
 item <!-- item[1]++ (=4) -->
 <!-- -->
 <!-- } -->
 item <!-- item[0]++ (=3) -->
 item <!-- item[0]++ (=4) -->
 <!-- -->
 <!-- }{item[0]=0 -->
 item <!-- item[0]++ (=1) -->
 item <!-- item[0]++ (=2) -->
 <!-- -->

Example(s):

Another example, showing how scope works when counters are used on elements
that are not nested, is the following. This shows how the style rules given above to
number chapters and sections would apply to the markup given.

 <!--"chapter" counter|"section" counter -->
<body> <!-- {chapter=0 | -->
 <h1>About CSS</h1> <!-- chapter++ (=1) | {section=0 -->
 <h2>CSS 2</h2> <!-- | section++ (=1) -->
 <h2>CSS 2.1</h2> <!-- | section++ (=2) -->
 <h1>Style</h1> <!-- chapter++ (=2) |}{ section=0 -->
</body> <!-- | } -->

The ’counters()’ function generates a string composed of all of the counters with
the same name that are in scope, separated by a given string.

Example(s):

The following style sheet numbers nested list items as "1", "1.1", "1.1.1", etc.

OL { counter-reset: item }
LI { display: block }
LI:before { content: counters(item, ".") " "; counter-increment: item }

20523 Apr 2009 15:57

Generated content, automatic numbering, and lists

12.4.2 Counter styles
By default, counters are formatted with decimal numbers, but all the styles available
for the ’list-style-type’ property are also available for counters. The notation is:

counter(name)

for the default style, or:

counter(name, <’list-style-type’>)

All the styles are allowed, including ’disc’, ’circle’, ’square’, and ’none’.

Example(s):

H1:before { content: counter(chno, upper-latin) ". " }
H2:before { content: counter(section, upper-roman) " - " }
BLOCKQUOTE:after { content: " [" counter(bq, lower-greek) "]" }
DIV.note:before { content: counter(notecntr, disc) " " }
P:before { content: counter(p, none) }

12.4.3 Counters in elements with ’display: none’
An element that is not displayed (’display’ set to ’none’) cannot increment or reset a
counter.

Example(s):

For example, with the following style sheet, H2s with class "secret" do not
increment ’count2’.

H2.secret {counter-increment: count2; display: none}

Pseudo-elements that are not generated also cannot increment or reset a counter.

Example(s):

For example, the following does not increment ’heading’:

h1::before {
 content: normal;
 counter-increment: heading;
}

Elements with ’visibility’ set to ’hidden’, on the other hand, do increment counters.

12.5 Lists
CSS 2.1 offers basic visual formatting of lists. An element with ’display: list-item’
generates a principal box [p. 123] for the element’s content and an optional marker
box as a visual indication that the element is a list item.

The list properties describe basic visual formatting of lists: they allow style sheets
to specify the marker type (image, glyph, or number), and the marker position with
respect to the principal box (outside it or within it before content). They do not allow

23 Apr 2009 15:57206

Generated content, automatic numbering, and lists

authors to specify distinct style (colors, fonts, alignment, etc.) for the list marker or
adjust its position with respect to the principal box; these may be derived from the
principal box.

The background properties [p. 224] apply to the principal box only; an ’outside’
marker box is transparent.

12.5.1 Lists: the ’list-style-type’, ’list-style-image’,
’list-style-position’, and ’list-style’ properties

’list-style-type’

Value: disc | circle | square | decimal | decimal-leading-zero |
lower-roman | upper-roman | lower-greek | lower-latin |
upper-latin | armenian | georgian | lower-alpha | upper-alpha |
none | inherit

Initial: disc
Applies to: elements with ’display: list-item’
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

This property specifies appearance of the list item marker if ’list-style-image’ has
the value ’none’ or if the image pointed to by the URI cannot be displayed. The value
’none’ specifies no marker, otherwise there are three types of marker: glyphs,
numbering systems, and alphabetic systems.

Glyphs are specified with disc , circle , and square . Their exact rendering depends
on the user agent.

Numbering systems are specified with:

decimal
Decimal numbers, beginning with 1.

decimal-leading-zero
Decimal numbers padded by initial zeros (e.g., 01, 02, 03, ..., 98, 99).

lower-roman
Lowercase roman numerals (i, ii, iii, iv, v, etc.).

upper-roman
Uppercase roman numerals (I, II, III, IV, V, etc.).

georgian
Traditional Georgian numbering (an, ban, gan, ..., he, tan, in, in-an, ...).

armenian
Traditional Armenian numbering.

20723 Apr 2009 15:57

Generated content, automatic numbering, and lists

Alphabetic systems are specified with:

lower-latin or lower-alpha
Lowercase ascii letters (a, b, c, ... z).

upper-latin or upper-alpha
Uppercase ascii letters (A, B, C, ... Z).

lower-greek
Lowercase classical Greek alpha, beta, gamma, ... (α, β, γ, ...)

This specification does not define how alphabetic systems wrap at the end of the
alphabet. For instance, after 26 list items, ’lower-latin’ rendering is undefined.
Therefore, for long lists, we recommend that authors specify true numbers.

For example, the following HTML document:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
 <HEAD>
 <TITLE>Lowercase latin numbering</TITLE>
 <STYLE type="text/css">
 ol { list-style-type: lower-roman }
 </STYLE>
 </HEAD>
 <BODY>

 This is the first item.
 This is the second item.
 This is the third item.

 </BODY>
</HTML>

might produce something like this:

 i This is the first item.
 ii This is the second item.
iii This is the third item.

The list marker alignment (here, right justified) depends on the user agent.

’list-style-image’

Value: <uri> | none | inherit
Initial: none
Applies to: elements with ’display: list-item’
Inherited: yes
Percentages: N/A
Media: visual
Computed value: absolute URI or ’none’

23 Apr 2009 15:57208

Generated content, automatic numbering, and lists

This property sets the image that will be used as the list item marker. When the
image is available, it will replace the marker set with the ’list-style-type’ marker.

The size of the image is calculated from the following rules:

1. If the image has an intrinsic width or height, then that intrinsic width/height
becomes the image’s used width/height.

2. If the image’s intrinsic width or height is given as a percentage, then that
percentage is resolved against 1em.

3. If the image has no intrinsic ratio and a ratio cannot be calculated from its width
and height, then its intrinsic ratio is assumed to be 1:1.

4. If the image has a width but no height, its height is calculated from the intrinsic
ratio.

5. If the image’s height cannot be resolved from the rules above, then the image’s
height is assumed to be 1em.

6. If the image has no intrinsic width, then its width is calculated from the resolved
height and the intrinsic ratio.

Example(s):

The following example sets the marker at the beginning of each list item to be the
image "ellipse.png".

ul { list-style-image: url("http://png.com/ellipse.png") }

’list-style-position’

Value: inside | outside | inherit
Initial: outside
Applies to: elements with ’display: list-item’
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

This property specifies the position of the marker box in the principal block box.
Values have the following meanings:

outside
The marker box is outside the principal block box. CSS 2.1 does not specify the
precise location of the marker box, but does require that for list items whose
’direction’ property is ’ltr’ the marker box be on the left side of the content and
for elements whose ’direction’ property is ’rtl’ the marker box be on the right side
of the content. ’overflow’ on the element does not clip the marker box. The
marker box is fixed with respect to the principal block box’s border and does not
scroll with the principal block box’s content. The size or contents of the marker
box may affect the height of the principal block box and/or the height of its first
line box, and in some cases may cause the creation of a new line box. Note:

20923 Apr 2009 15:57

Generated content, automatic numbering, and lists

This interaction may be more precisely defined in a future level of CSS.
inside

The marker box is the first inline box in the principal block box, after which the
element’s content flows. CSS 2.1 does not specify the precise location of the
marker box.

For example:

<HTML>
 <HEAD>
 <TITLE>Comparison of inside/outside position</TITLE>
 <STYLE type="text/css">
 ul { list-style: outside }
 ul.compact { list-style: inside }
 </STYLE>
 </HEAD>
 <BODY>

 first list item comes first
 second list item comes second

 <UL class="compact">
 first list item comes first
 second list item comes second

 </BODY>
</HTML>

The above example may be formatted as:

first list item
comes first

second list item
comes second

 first list
item comes first

 second list
item comes second

The left sides of the
list item boxes are not
affected by marker placement

In right-to-left text, the markers would have been on the right side of the box.

23 Apr 2009 15:57210

Generated content, automatic numbering, and lists

’list-style’

Value: [<’list-style-type’> || <’list-style-position’> || <’list-style-image’>
] | inherit

Initial: see individual properties
Applies to: elements with ’display: list-item’
Inherited: yes
Percentages: N/A
Media: visual
Computed value: see individual properties

The ’list-style’ property is a shorthand notation for setting the three properties
’list-style-type’, ’list-style-image’, and ’list-style-position’ at the same place in the style
sheet.

Example(s):

ul { list-style: upper-roman inside } /* Any "ul" element */
ul > li > ul { list-style: circle outside } /* Any "ul" child
 of an "li" child
 of a "ul" element */

Although authors may specify ’list-style’ information directly on list item elements
(e.g., "li" in HTML), they should do so with care. The following rules look similar, but
the first declares a descendant selector [p. 74] and the second a (more specific)
child selector. [p. 75]

ol.alpha li { list-style: lower-alpha } /* Any "li" descendant of an "ol" */
ol.alpha > li { list-style: lower-alpha } /* Any "li" child of an "ol" */

Authors who use only the descendant selector [p. 74] may not achieve the results
they expect. Consider the following rules:

<HTML>
 <HEAD>
 <TITLE>WARNING: Unexpected results due to cascade</TITLE>
 <STYLE type="text/css">
 ol.alpha li { list-style: lower-alpha }
 ul li { list-style: disc }
 </STYLE>
 </HEAD>
 <BODY>
 <OL class="alpha">
 level 1

 level 2

 </BODY>
</HTML>

21123 Apr 2009 15:57

Generated content, automatic numbering, and lists

The desired rendering would have level 1 list items with ’lower-alpha’ labels and
level 2 items with ’disc’ labels. However, the cascading order [p. 97] will cause the
first style rule (which includes specific class information) to mask the second. The
following rules solve the problem by employing a child selector [p. 75] instead:

ol.alpha > li { list-style: lower-alpha }
ul li { list-style: disc }

Another solution would be to specify ’list-style’ information only on the list type
elements:

ol.alpha { list-style: lower-alpha }
ul { list-style: disc }

Inheritance will transfer the ’list-style’ values from OL and UL elements to LI
elements. This is the recommended way to specify list style information.

Example(s):

A URI value may be combined with any other value, as in:

ul { list-style: url("http://png.com/ellipse.png") disc }

In the example above, the ’disc’ will be used when the image is unavailable.

A value of ’none’ within the ’list-style’ property sets whichever of ’list-style-type’
and ’list-style-image’ are not otherwise specified to ’none’. However, if both are
otherwise specified, the declaration is in error (and thus ignored).

Example(s):

For example, a value of ’none’ for the ’list-style’ property sets both ’list-style-type’
and ’list-style-image’ to ’none’:

ul { list-style: none }

The result is that no list-item marker is displayed.

23 Apr 2009 15:57212

Generated content, automatic numbering, and lists

13 Paged media
Contents

........... 21313.1 Introduction to paged media

........... 21413.2 Page boxes: the @page rule

............. 21413.2.1 Page margins

.... 21613.2.2 Page selectors: selecting left, right, and first pages

......... 21613.2.3 Content outside the page box

............... 21713.3 Page breaks
13.3.1 Page break properties: ’page-break-before’, ’page-break-after’,

.............. 217’page-break-inside’

...... 21813.3.2 Breaks inside elements: ’orphans’, ’widows’

............ 21913.3.3 Allowed page breaks

............ 22013.3.4 Forced page breaks

............ 22013.3.5 "Best" page breaks

........... 22113.4 Cascading in the page context

13.1 Introduction to paged media
Paged media (e.g., paper, transparencies, pages that are displayed on computer
screens, etc.) differ from continuous media [p. 104] in that the content of the
document is split into one or more discrete pages. To handle pages, CSS 2.1
describes how page margins are set on page boxes [p. 214] , and how page breaks
[p. 217] are declared.

The user agent is responsible for transferring the page boxes of a document onto
the real sheets where the document will ultimately be rendered (paper, transparency,
screen, etc.). There is often a 1-to-1 relationship between a page box and a sheet,
but this is not always the case. Transfer possibilities include:

Transferring one page box to one sheet (e.g., single-sided printing).
Transferring two page boxes to both sides of the same sheet (e.g., double-sided
printing).
Transferring N (small) page boxes to one sheet (called "n-up").
Transferring one (large) page box to N x M sheets (called "tiling").
Creating signatures. A signature is a group of pages printed on a sheet, which,
when folded and trimmed like a book, appear in their proper sequence.
Printing one document to several output trays.
Outputting to a file.

21323 Apr 2009 15:57

Paged media

13.2 Page boxes: the @page rule
The page box is a rectangular region that contains two areas:

The page area. The page area includes the boxes laid out on that page. The
edges of the first page area establish the rectangle that is the initial containing
block [p. 163] of the document. The canvas background is painted within and
covers the page area.
The margin area, which surrounds the page area. The page margin area is
transparent.

The size of a page box cannot be specified in CSS 2.1.

Authors can specify the margins of a page box inside an @page rule. An @page
rule consists of the keyword "@page", followed by an optional page selector,
followed by a block of declarations. The declarations in an @page rule are said to be
in the page context.

The page selector specifies for which pages the declarations apply. In CSS 2.1,
page selectors may designate the first page, all left pages, or all right pages

13.2.1 Page margins
In CSS 2.1, only the margin properties [p. 109] (’margin-top’, ’margin-right’,
’margin-bottom’, ’margin-left’, and ’margin’) apply within the page context [p. 214] .
The following diagram shows the relationships between the sheet, page box, and
page margins:

23 Apr 2009 15:57214

Paged media

Page box

Page area

Margin area

Sheet

Sheet

transfer

transfer

transfer

Sheet

Example(s):

Here is a simple example which sets all page margins on all pages:

@page {
 margin: 3cm;
}

The page context [p. 214] has no notion of fonts, so ’em’ and ’ex’ units are not
allowed. Percentage values on the margin properties are relative to the dimensions
of the page box [p. 214] ; for left and right margins, they refer to the width of the
page box while for top and bottom margins, they refer to the height of the page box.
All other units associated with the respective CSS 2.1 properties are allowed.

Due to negative margin values (either on the page box or on elements) or absolute
positioning [p. 144] content may end up outside the page box, but this content may
be "cut" — by the user agent, the printer, or ultimately, the paper cutter.

21523 Apr 2009 15:57

Paged media

13.2.2 Page selectors: selecting left, right, and first pages
When printing double-sided documents, the page boxes [p. 214] on left and right
pages may be different. This can be expressed through two CSS pseudo-classes
that may be used in page selectors.

All pages are automatically classified by user agents into either the :left or :right
pseudo-class.

Example(s):

@page :left {
 margin-left: 4cm;
 margin-right: 3cm;
}

@page :right {
 margin-left: 3cm;
 margin-right: 4cm;
}

If different declarations have been given for left and right pages, the user agent
must honor these declarations even if the user agent does not transfer the page
boxes to left and right sheets (e.g., a printer that only prints single-sided).

Authors may also specify style for the first page of a document with the :first
pseudo-class:

Example(s):

@page { margin: 2cm } /* All margins set to 2cm */

@page :first {
 margin-top: 10cm /* Top margin on first page 10cm */
}

Properties specified in a :left or :right @page rule override those specified in an
@page rule that has no pseudo-class specified. Properties specified in a :first
@page rule override those specified in :left or :right @page rules.

Margin declarations on left, right, and first pages may result in different page area
[p. 214] widths. To simplify implementations, user agents may use a single page
area width on left, right, and first pages. In this case, the page area width of the first
page should be used.

13.2.3 Content outside the page box
When formatting content in the page model, some content may end up outside the
current page box. For example, an element whose ’white-space’ property has the
value ’pre’ may generate a box that is wider than the page box. As another example,
when boxes are positioned absolutely or relatively, they may end up in
"inconvenient" locations. For example, images may be placed on the edge of the
page box or 100,000 meters below the page box.

23 Apr 2009 15:57216

Paged media

The exact formatting of such elements lies outside the scope of this specification.
However, we recommend that authors and user agents observe the following
general principles concerning content outside the page box:

Content should be allowed slightly beyond the page box to allow pages to
"bleed".
User agents should avoid generating a large number of empty page boxes to
honor the positioning of elements (e.g., you don’t want to print 100 blank
pages).
Authors should not position elements in inconvenient locations just to avoid
rendering them.
User agents may handle boxes positioned outside the page box in several
ways, including discarding them or creating page boxes for them at the end of
the document.

13.3 Page breaks
This section describes page breaks in CSS 2.1. Five properties indicate where the
user agent may or should break pages, and on what page (left or right) the
subsequent content should resume. Each page break ends layout in the current
page box [p. 214] and causes remaining pieces of the document tree [p. 41] to be
laid out in a new page box.

13.3.1 Page break properties: ’page-break-before’,
’page-break-after’, ’page-break-inside’

’page-break-before’

Value: auto | always | avoid | left | right | inherit
Initial: auto
Applies to: block-level elements (but see text)
Inherited: no
Percentages: N/A
Media: visual, paged
Computed value: as specified

’page-break-after’

Value: auto | always | avoid | left | right | inherit
Initial: auto
Applies to: block-level elements (but see text)
Inherited: no
Percentages: N/A
Media: visual, paged
Computed value: as specified

21723 Apr 2009 15:57

Paged media

’page-break-inside’

Value: avoid | auto | inherit
Initial: auto
Applies to: block-level elements (but see text)
Inherited: no
Percentages: N/A
Media: visual, paged
Computed value: as specified

Values for these properties have the following meanings:

auto
Neither force nor forbid a page break before (after, inside) the generated box.

always
Always force a page break before (after) the generated box.

avoid
Avoid a page break before (after, inside) the generated box.

left
Force one or two page breaks before (after) the generated box so that the next
page is formatted as a left page.

right
Force one or two page breaks before (after) the generated box so that the next
page is formatted as a right page.

Whether the first page of a document is :left or :right depends on the major writing
direction of the document. A conforming user agent may interpret the values ’left’
and ’right’ as ’always’.

A potential page break location is typically under the influence of the parent
element’s ’page-break-inside’ property, the ’page-break-after’ property of the
preceding element, and the ’page-break-before’ property of the following element.
When these properties have values other than ’auto’, the values ’always’, ’left’, and
’right’ take precedence over ’avoid’.

User Agents must apply these properties to block-level elements in the normal
flow of the root element. User agents may also apply these properties to other
elements, e.g., ’table-row’ elements.

When a page break splits a box, the box’s margins, borders, and padding have no
visual effect where the split occurs.

13.3.2 Breaks inside elements: ’orphans’, ’widows’

’orphans’

23 Apr 2009 15:57218

Paged media

Value: <integer> | inherit
Initial: 2
Applies to: block-level elements
Inherited: yes
Percentages: N/A
Media: visual, paged
Computed value: as specified

’widows’

Value: <integer> | inherit
Initial: 2
Applies to: block-level elements
Inherited: yes
Percentages: N/A
Media: visual, paged
Computed value: as specified

The ’orphans’ property specifies the minimum number of lines in a block element
that must be left at the bottom of a page. The ’widows’ property specifies the
minimum number of lines in a block element that must be left at the top of a page.
Examples of how they are used to control page breaks are given below.

Only positive values are allowed.

For information about paragraph formatting, please consult the section on line
boxes [p. 133] .

13.3.3 Allowed page breaks
In the normal flow, page breaks can occur at the following places:

1. In the vertical margin between block boxes. When an unforced page break
occurs here, the used values [p. 94] of the relevant ’margin-top’ and
’margin-bottom’ properties are set to ’0’. When a forced page break occurs here,
the used value of the relevant ’margin-bottom’ property is set to ’0’; the relevant
’margin-top’ used value may either be set to ’0’ or retained.

2. Between line boxes [p. 133] inside a block [p. 123] box.

Note: It is expected that CSS3 will specify that the relevant ’margin-top’ applies
(i.e., is not set to ’0’) after a forced page break.

These breaks are subject to the following rules:

Rule A: Breaking at (1) is allowed only if the ’page-break-after’ and
’page-break-before’ properties of all the elements generating boxes that meet at
this margin allow it, which is when at least one of them has the value ’always’,
’left’, or ’right’, or when all of them are ’auto’.

21923 Apr 2009 15:57

Paged media

Rule B: However, if all of them are ’auto’ and a common ancestor of all the
elements has a ’page-break-inside’ value of ’avoid’, then breaking here is not
allowed.
Rule C: Breaking at (2) is allowed only if the number of line boxes [p. 133]
between the break and the start of the enclosing block box is the value of
’orphans’ or more, and the number of line boxes between the break and the end
of the box is the value of ’widows’ or more.
Rule D: In addition, breaking at (2) is allowed only if the ’page-break-inside’
property of the element and all its ancestors is ’auto’.

If the above doesn’t provide enough break points to keep content from overflowing
the page boxes, then rules A, B and D are dropped in order to find additional
breakpoints.

If that still does not lead to sufficient break points, rule C is dropped as well, to find
still more break points.

13.3.4 Forced page breaks
A page break must occur at (1) if, among the ’page-break-after’ and
’page-break-before’ properties of all the elements generating boxes that meet at this
margin, there is at least one with the value ’always’, ’left’, or ’right’.

13.3.5 "Best" page breaks
CSS 2.1 does not define which of a set of allowed page breaks must be used;
CSS 2.1 does not forbid a user agent from breaking at every possible break point, or
not to break at all. But CSS 2.1 does recommend that user agents observe the
following heuristics (while recognizing that they are sometimes contradictory):

Break as few times as possible.
Make all pages that don’t end with a forced break appear to have about the
same height.
Avoid breaking inside a replaced element.

Example(s):

Suppose, for example, that the style sheet contains ’orphans: 4’, ’widows: 2’, and
there are 20 lines (line boxes [p. 133]) available at the bottom of the current page:

If a paragraph at the end of the current page contains 20 lines or fewer, it should
be placed on the current page.
If the paragraph contains 21 or 22 lines, the second part of the paragraph must
not violate the ’widows’ constraint, and so the second part must contain exactly
two lines
If the paragraph contains 23 lines or more, the first part should contain 20 lines
and the second part the remaining lines.

23 Apr 2009 15:57220

Paged media

Now suppose that ’orphans’ is ’10’, ’widows’ is ’20’, and there are 8 lines available
at the bottom of the current page:

If a paragraph at the end of the current page contains 8 lines or fewer, it should
be placed on the current page.
If the paragraph contains 9 lines or more, it cannot be split (that would violate
the orphan constraint), so it should move as a block to the next page.

13.4 Cascading in the page context
Declarations in the page context [p. 214] obey the cascade [p. 93] just like normal
CSS declarations.

Example(s):

Consider the following example:

@page {
 margin-left: 3cm;
}

@page :left {
 margin-left: 4cm;
}

Due to the higher specificity [p. 97] of the pseudo-class selector, the left margin on
left pages will be ’4cm’ and all other pages (i.e., the right pages) will have a left
margin of ’3cm’.

22123 Apr 2009 15:57

Paged media

23 Apr 2009 15:57222

Paged media

14 Colors and Backgrounds
Contents

......... 22314.1 Foreground color: the ’color’ property

.............. 22314.2 The background
14.2.1 Background properties: ’background-color’, ’background-image’,
’background-repeat’, ’background-attachment’, ’background-position’, and

............... 224’background’

.............. 23014.3 Gamma correction

CSS properties allow authors to specify the foreground color and background of
an element. Backgrounds may be colors or images. Background properties allow
authors to position a background image, repeat it, and declare whether it should be
fixed with respect to the viewport [p. 122] or scrolled along with the document.

See the section on color units [p. 63] for the syntax of valid color values.

14.1 Foreground color: the ’color’ property
’color’

Value: <color> | inherit
Initial: depends on user agent
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

This property describes the foreground color of an element’s text content. There
are different ways to specify red:

Example(s):

em { color: red } /* predefined color name */
em { color: rgb(255,0,0) } /* RGB range 0-255 */

14.2 The background
Authors may specify the background of an element (i.e., its rendering surface) as
either a color or an image. In terms of the box model [p. 105] , "background" refers to
the background of the content [p. 105] , padding [p. 105] and border [p. 105] areas.
Border colors and styles are set with the border properties [p. 114] . Margins are
always transparent.

22323 Apr 2009 15:57

Colors and backgrounds

Background properties are not inherited, but the parent box’s background will
shine through by default because of the initial ’transparent’ value on
’background-color’.

The background of the root element becomes the background of the canvas and
covers the entire canvas [p. 36] , anchored (for ’background-position’) at the same
point as it would be if it was painted only for the root element itself. The root element
does not paint this background again.

For HTML documents, however, we recommend that authors specify the
background for the BODY element rather than the HTML element. For documents
whose root element is an HTML "HTML" element or an XHTML "html" element that
has computed values of ’transparent’ for ’background-color’ and ’none’ for
’background-image’, user agents must instead use the computed value of the
background properties from that element’s first HTML "BODY" element or XHTML
"body" element child when painting backgrounds for the canvas, and must not paint
a background for that child element. Such backgrounds must also be anchored at
the same point as they would be if they were painted only for the root element.

According to these rules, the canvas underlying the following HTML document will
have a "marble" background:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
 <TITLE>Setting the canvas background</TITLE>
 <STYLE type="text/css">
 BODY { background: url("http://example.com/marble.png") }
 </STYLE>
 <P>My background is marble.

Note that the rule for the BODY element will work even though the BODY tag has
been omitted in the HTML source since the HTML parser will infer the missing tag.

Backgrounds of elements that form a stacking context (see the ’z-index’ property)
are painted at the bottom of the element’s stacking context, below anything in that
stacking context.

14.2.1 Background properties: ’background-color’,
’background-image’, ’background-repeat’,
’background-attachment’, ’background-position’, and
’background’

’background-color’

23 Apr 2009 15:57224

Colors and backgrounds

Value: <color> | transparent | inherit
Initial: transparent
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: as specified

This property sets the background color of an element, either a <color> value or
the keyword ’transparent’, to make the underlying colors shine through.

Example(s):

h1 { background-color: #F00 }

’background-image’

Value: <uri> | none | inherit
Initial: none
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: absolute URI or none

This property sets the background image of an element. When setting a
background image, authors should also specify a background color that will be used
when the image is unavailable. When the image is available, it is rendered on top of
the background color. (Thus, the color is visible in the transparent parts of the
image).

Values for this property are either <uri>, to specify the image, or ’none’, when no
image is used.

Example(s):

body { background-image: url("marble.png") }
p { background-image: none }

Intrinsic dimensions expressed as percentages must be resolved relative to the
dimensions of the rectangle that establishes the coordinate system for the
’background-position’ property.

If the image has one of either an intrinsic width or an intrinsic height and an
intrinsic aspect ratio, then the missing dimension is calculated from the given
dimension and the ratio.

If the image has one of either an intrinsic width or an intrinsic height and no
intrinsic aspect ratio, then the missing dimension is assumed to be the size of the
rectangle that establishes the coordinate system for the ’background-position’
property.

22523 Apr 2009 15:57

Colors and backgrounds

If the image has no intrinsic dimensions and has an intrinsic ratio the dimensions
must be assumed to be the largest dimensions at that ratio such that neither
dimension exceeds the dimensions of the rectangle that establishes the coordinate
system for the ’background-position’ property.

If the image has no intrinsic ratio either, then the dimensions must be assumed to
be the rectangle that establishes the coordinate system for the ’background-position’
property.

’background-repeat’

Value: repeat | repeat-x | repeat-y | no-repeat | inherit
Initial: repeat
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: as specified

If a background image is specified, this property specifies whether the image is
repeated (tiled), and how. All tiling covers the content [p. 105] , padding [p. 105] and
border [p. 105] areas of a box.

The tiling and positioning of the background-image on inline elements is undefined
in this specification. A future level of CSS may define the tiling and positioning of the
background-image on inline elements.

Values have the following meanings:

repeat
The image is repeated both horizontally and vertically.

repeat-x
The image is repeated horizontally only.

repeat-y
The image is repeated vertically only.

no-repeat
The image is not repeated: only one copy of the image is drawn.

Example(s):

body {
 background: white url("pendant.png");
 background-repeat: repeat-y;
 background-position: center;
}

23 Apr 2009 15:57226

Colors and backgrounds

body text body text body text body text body
text body text body text.

body text body text body text body text
body text

body text body text body text body text body
text body text body text body text body text
body text body text

body text body text body text body text body
text body text body text.

body text body text body text body text
body text

body text body text body text body text body
text body text body text body text body text
body text body text

body text body text body text body text body
text body text body text.

body text body text body text body text
body text

body text body text body text body text body
text body text body text body text body text
body text body text

center image

One copy of the background image is centered, and other copies are put above
and below it to make a vertical band behind the element.

’background-attachment’

Value: scroll | fixed | inherit
Initial: scroll
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: as specified

If a background image is specified, this property specifies whether it is fixed with
regard to the viewport [p. 122] (’fixed’) or scrolls along with the containing block
(’scroll’).

Note that there is only one viewport per view. If an element has a scrolling
mechanism (see ’overflow’), a ’fixed’ background doesn’t move with the element,
and a ’scroll’ background doesn’t move with the scrolling mechanism.

22723 Apr 2009 15:57

Colors and backgrounds

Even if the image is fixed, it is still only visible when it is in the content, padding or
border area of the element. Thus, unless the image is tiled (’background-repeat:
repeat’), it may be invisible.

Example(s):

This example creates an infinite vertical band that remains "glued" to the viewport
when the element is scrolled.

body {
 background: red url("pendant.png");
 background-repeat: repeat-y;
 background-attachment: fixed;
}

User agents that do not support ’fixed’ backgrounds (for example due to limitations
of the hardware platform) should ignore declarations with the keyword ’fixed’. For
example:

body {
 background: white url(paper.png) scroll; /* for all UAs */
 background: white url(ledger.png) fixed; /* for UAs that do fixed backgrounds */
}

See the section on conformance [p. 43] for details.

’background-position’

Value: [[<percentage> | <length> | left | center | right] [
<percentage> | <length> | top | center | bottom]?] | [[left |
center | right] || [top | center | bottom]] | inherit

Initial: 0% 0%
Applies to: all elements
Inherited: no
Percentages: refer to the size of the box itself
Media: visual
Computed value: for <length> the absolute value, otherwise a percentage

If a background image has been specified, this property specifies its initial
position. If only one value is specified, the second value is assumed to be ’center’. If
at least one value is not a keyword, then the first value represents the horizontal
position and the second represents the vertical position. Negative <percentage> and
<length> values are allowed.

<percentage>
A percentage X aligns the point X% across (for horizontal) or down (for vertical)
the image with the point X% across (for horizontal) or down (for vertical) the
element’s padding box. For example, with a value pair of ’0% 0%’,the upper left
corner of the image is aligned with the upper left corner of the padding box. A
value pair of ’100% 100%’ places the lower right corner of the image in the
lower right corner of the padding box. With a value pair of ’14% 84%’, the point

23 Apr 2009 15:57228

Colors and backgrounds

14% across and 84% down the image is to be placed at the point 14% across
and 84% down the padding box.

<length>
A length L aligns the top left corner of the image a distance L to the right of (for
horizontal) or below (for vertical) the top left corner of the element’s padding
box. For example, with a value pair of ’2cm 1cm’, the upper left corner of the
image is placed 2cm to the right and 1cm below the upper left corner of the
padding box.

top
Equivalent to ’0%’ for the vertical position.

right
Equivalent to ’100%’ for the horizontal position.

bottom
Equivalent to ’100%’ for the vertical position.

left
Equivalent to ’0%’ for the horizontal position.

center
Equivalent to ’50%’ for the horizontal position if it is not otherwise given, or
’50%’ for the vertical position if it is.

Example(s):

body { background: url("banner.jpeg") right top } /* 100% 0% */
body { background: url("banner.jpeg") top center } /* 50% 0% */
body { background: url("banner.jpeg") center } /* 50% 50% */
body { background: url("banner.jpeg") bottom } /* 50% 100% */

The tiling and positioning of the background-image on inline elements is undefined
in this specification. A future level of CSS may define the tiling and positioning of the
background-image on inline elements.

If the background image is fixed within the viewport (see the
’background-attachment’ property), the image is placed relative to the viewport
instead of the element’s padding box. For example,

Example(s):

body {
 background-image: url("logo.png");
 background-attachment: fixed;
 background-position: 100% 100%;
 background-repeat: no-repeat;
}

In the example above, the (single) image is placed in the lower-right corner of the
viewport.

’background’

22923 Apr 2009 15:57

Colors and backgrounds

Value: [<’background-color’> || <’background-image’> ||
<’background-repeat’> || <’background-attachment’> ||
<’background-position’>] | inherit

Initial: see individual properties
Applies to: all elements
Inherited: no
Percentages: allowed on ’background-position’
Media: visual
Computed value: see individual properties

The ’background’ property is a shorthand property for setting the individual
background properties (i.e., ’background-color’, ’background-image’,
’background-repeat’, ’background-attachment’ and ’background-position’) at the
same place in the style sheet.

Given a valid declaration, the ’background’ property first sets all the individual
background properties to their initial values, then assigns explicit values given in the
declaration.

Example(s):

In the first rule of the following example, only a value for ’background-color’ has
been given and the other individual properties are set to their initial value. In the
second rule, all individual properties have been specified.

BODY { background: red }
P { background: url("chess.png") gray 50% repeat fixed }

14.3 Gamma correction
For information about gamma issues, please consult the Gamma Tutorial in the PNG
specification ([PNG]).

Note. In the computation of gamma correction, UAs displaying on a CRT may
assume an ideal CRT and ignore any effects on apparent gamma caused by
dithering. That means the minimal handling they need to do on current platforms is:

PC using MS-Windows
none

Unix using X11
none

Mac using QuickDraw
apply gamma 1.45 [ICC42] (ColorSync-savvy applications may simply pass the
sRGB ICC profile to ColorSync to perform correct color correction)

SGI using X
apply the gamma value from /etc/config/system.glGammaVal (the
default value being 1.70; applications running on Irix 6.2 or above may simply
pass the sRGB ICC profile to the color management system)

23 Apr 2009 15:57230

Colors and backgrounds

NeXT using NeXTStep
apply gamma 2.22

"Applying gamma" means that each of the three R, G and B must be converted to
R’=Rgamma , G’=Ggamma , B’=Bgamma , before being handed to the OS.

This may be done rapidly by building a 256-element lookup table once per
browser invocation thus:

for i := 0 to 255 do
 raw := i / 255.0;
 corr := pow (raw, gamma);
 table[i] := trunc (0.5 + corr * 255.0)
end

which then avoids any need to do transcendental math per color attribute, far less
per pixel.

23123 Apr 2009 15:57

Colors and backgrounds

23 Apr 2009 15:57232

Colors and backgrounds

15 Fonts
Contents

............... 23315.1 Introduction

............ 23315.2 Font matching algorithm

......... 23415.3 Font family: the ’font-family’ property

............ 23615.3.1 Generic font families

.............. 23615.3.1.1 serif

............. 23715.3.1.2 sans-serif

............. 23815.3.1.3 cursive

............. 23815.3.1.4 fantasy

............ 23815.3.1.5 monospace

.......... 23915.4 Font styling: the ’font-style’ property

......... 23915.5 Small-caps: the ’font-variant’ property

........ 24015.6 Font boldness: the ’font-weight’ property

.......... 24215.7 Font size: the ’font-size’ property

........ 24415.8 Shorthand font property: the ’font’ property

15.1 Introduction
Setting font properties will be among the most common uses of style sheets.
Unfortunately, there exists no well-defined and universally accepted taxonomy for
classifying fonts, and terms that apply to one font family may not be appropriate for
others. E.g. ’italic’ is commonly used to label slanted text, but slanted text may also
be labeled as being Oblique, Slanted, Incline, Cursive or Kursiv. Therefore it is not a
simple problem to map typical font selection properties to a specific font.

15.2 Font matching algorithm
Because there is no accepted, universal taxonomy of font properties, matching of
properties to font faces must be done carefully. The properties are matched in a
well-defined order to insure that the results of this matching process are as
consistent as possible across UAs (assuming that the same library of font faces is
presented to each of them).

1. The User Agent makes (or accesses) a database of relevant CSS 2.1 properties
of all the fonts of which the UA is aware. If there are two fonts with exactly the
same properties, the user agent selects one of them.

2. At a given element and for each character in that element, the UA assembles
the font properties applicable to that element. Using the complete set of
properties, the UA uses the ’font-family’ property to choose a tentative font
family. The remaining properties are tested against the family according to the
matching criteria described with each property. If there are matches for all the

23323 Apr 2009 15:57

Fonts

remaining properties, then that is the matching font face for the given element or
character.

3. If there is no matching font face within the ’font-family’ being processed by step
2, and if there is a next alternative ’font-family’ in the font set, then repeat step 2
with the next alternative ’font-family’.

4. If there is a matching font face, but it doesn’t contain a glyph for the current
character, and if there is a next alternative ’font-family’ in the font sets, then
repeat step 2 with the next alternative ’font-family’.

5. If there is no font within the family selected in 2, then use a UA-dependent
default ’font-family’ and repeat step 2, using the best match that can be obtained
within the default font. If a particular character cannot be displayed using this
font, then the UA may use other means to determine a suitable font for that
character. The UA should map each character for which it has no suitable font
to a visible symbol chosen by the UA, preferably a "missing character" glyph
from one of the font faces available to the UA.

(The above algorithm can be optimized to avoid having to revisit the CSS 2.1
properties for each character.)

The per-property matching rules from (2) above are as follows:

1. ’font-style’ is tried first. ’italic’ will be satisfied if there is either a face in the UA’s
font database labeled with the CSS keyword ’italic’ (preferred) or ’oblique’.
Otherwise the values must be matched exactly or font-style will fail.

2. ’font-variant’ is tried next. ’small-caps’ matches (1) a font labeled as ’small-caps’,
(2) a font in which the small caps are synthesized, or (3) a font where all
lowercase letters are replaced by upper case letters. A small-caps font may be
synthesized by electronically scaling uppercase letters from a normal font.
’normal’ matches a font’s normal (non-small-caps) variant. A font cannot fail to
have a normal variant. A font that is only available as small-caps shall be
selectable as either a ’normal’ face or a ’small-caps’ face.

3. ’font-weight’ is matched next, it will never fail. (See ’font-weight’ below.)
4. ’font-size’ must be matched within a UA-dependent margin of tolerance.

(Typically, sizes for scalable fonts are rounded to the nearest whole pixel, while
the tolerance for bitmapped fonts could be as large as 20%.) Further
computations, e.g. by ’em’ values in other properties, are based on the
computed value of ’font-size’.

15.3 Font family: the ’font-family’ property
’font-family’

23 Apr 2009 15:57234

Fonts

Value: [[<family-name> | <generic-family>] [, <family-name>|
<generic-family>]*] | inherit

Initial: depends on user agent
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

The value is a prioritized list of font family names and/or generic family names.
[p. 236] Unlike most other CSS properties, values are separated by a comma to
indicate that they are alternatives:

body { font-family: Gill, Helvetica, sans-serif }

Although many fonts provide the "missing character" glyph, typically an open box,
as its name implies this should not be considered a match for characters that cannot
be found in the font. (It should, however, be considered a match for U+FFFD, the
"missing character" character’s code point).

There are two types of font family names:

<family-name>
The name of a font family of choice. In the last example, "Gill" and "Helvetica"
are font families.

<generic-family>
In the example above, the last value is a generic family name. The following
generic families are defined:

’serif’ (e.g. Times)
’sans-serif’ (e.g. Helvetica)
’cursive’ (e.g. Zapf-Chancery)
’fantasy’ (e.g. Western)
’monospace’ (e.g. Courier)

Style sheet designers are encouraged to offer a generic font family as a last
alternative. Generic font family names are keywords and must NOT be quoted.

If an unquoted font family name contains parentheses, brackets, and/or braces,
they must still be escaped per CSS grammar rules. Similarly, quotation marks (both
single and double), semicolons, exclamation marks, commas, and leading slashes
within unquoted font family names must be escaped. Font names containing any
such characters or white space should be quoted:

body { font-family: "New Century Schoolbook", serif }

<BODY STYLE="font-family: ’My own font’, fantasy">

23523 Apr 2009 15:57

Fonts

If quoting is omitted, any white space characters before and after the font name
are ignored and any sequence of white space characters inside the font name is
converted to a single space. Font family names that happen to be the same as a
keyword value (e.g. ’initial’, ’inherit’, ’default’, ’serif’, ’sans-serif’, ’monospace’,
’fantasy’, and ’cursive’) must be quoted to prevent confusion with the keywords with
the same names. UAs must not consider these keywords as matching the
’<family-name>’ type.

15.3.1 Generic font families
Generic font families are a fallback mechanism, a means of preserving some of the
style sheet author’s intent in the worst case when none of the specified fonts can be
selected. For optimum typographic control, particular named fonts should be used in
style sheets.

All five generic font families are defined to exist in all CSS implementations (they
need not necessarily map to five distinct actual fonts). User agents should provide
reasonable default choices for the generic font families, which express the
characteristics of each family as well as possible within the limits allowed by the
underlying technology.

User agents are encouraged to allow users to select alternative choices for the
generic fonts.

15.3.1.1 serif

Glyphs of serif fonts, as the term is used in CSS, have finishing strokes, flared or
tapering ends, or have actual serifed endings (including slab serifs). Serif fonts are
typically proportionately-spaced. They often display a greater variation between thick
and thin strokes than fonts from the ’sans-serif’ generic font family. CSS uses the
term ’serif’ to apply to a font for any script, although other names may be more
familiar for particular scripts, such as Mincho (Japanese), Sung or Song (Chinese),
Totum or Kodig (Korean). Any font that is so described may be used to represent the
generic ’serif’ family.

Examples of fonts that fit this description include:

23 Apr 2009 15:57236

Fonts

Latin fonts
Times New Roman, Bodoni, Garamond, Minion Web, ITC Stone
Serif, MS Georgia, Bitstream Cyberbit

Greek fonts Bitstream Cyberbit

Cyrillic fonts
Adobe Minion Cyrillic, Excelcior Cyrillic Upright, Monotype Albion
70, Bitstream Cyberbit, ER Bukinst

Hebrew
fonts

New Peninim, Raanana, Bitstream Cyberbit

Japanese
fonts

Ryumin Light-KL, Kyokasho ICA, Futo Min A101

Arabic fonts Bitstream Cyberbit

Cherokee
fonts

Lo Cicero Cherokee

15.3.1.2 sans-serif

Glyphs in sans-serif fonts, as the term is used in CSS, have stroke endings that are
plain -- without any flaring, cross stroke, or other ornamentation. Sans-serif fonts are
typically proportionately-spaced. They often have little variation between thick and
thin strokes, compared to fonts from the ’serif’ family. CSS uses the term ’sans-serif’
to apply to a font for any script, although other names may be more familiar for
particular scripts, such as Gothic (Japanese), Kai (Chinese), or Pathang (Korean).
Any font that is so described may be used to represent the generic ’sans-serif’
family.

Examples of fonts that fit this description include:

Latin fonts
MS Trebuchet, ITC Avant Garde Gothic, MS Arial, MS Verdana,
Univers, Futura, ITC Stone Sans, Gill Sans, Akzidenz Grotesk,
Helvetica

Greek fonts
Attika, Typiko New Era, MS Tahoma, Monotype Gill Sans 571,
Helvetica Greek

Cyrillic fonts Helvetica Cyrillic, ER Univers, Lucida Sans Unicode, Bastion

Hebrew
fonts

Arial Hebrew, MS Tahoma

Japanese
fonts

Shin Go, Heisei Kaku Gothic W5

Arabic fonts MS Tahoma

23723 Apr 2009 15:57

Fonts

15.3.1.3 cursive

Glyphs in cursive fonts, as the term is used in CSS, generally have either joining
strokes or other cursive characteristics beyond those of italic typefaces. The glyphs
are partially or completely connected, and the result looks more like handwritten pen
or brush writing than printed letterwork. Fonts for some scripts, such as Arabic, are
almost always cursive. CSS uses the term ’cursive’ to apply to a font for any script,
although other names such as Chancery, Brush, Swing and Script are also used in
font names.

Examples of fonts that fit this description include:

Latin fonts
Caflisch Script, Adobe Poetica, Sanvito, Ex Ponto, Snell
Roundhand, Zapf-Chancery

Cyrillic
fonts

ER Architekt

Hebrew
fonts

Corsiva

Arabic
fonts

DecoType Naskh, Monotype Urdu 507

15.3.1.4 fantasy

Fantasy fonts, as used in CSS, are primarily decorative while still containing
representations of characters (as opposed to Pi or Picture fonts, which do not
represent characters). Examples include:

Latin fonts Alpha Geometrique, Critter, Cottonwood, FB Reactor, Studz

15.3.1.5 monospace

The sole criterion of a monospace font is that all glyphs have the same fixed width.
(This can make some scripts, such as Arabic, look most peculiar.) The effect is
similar to a manual typewriter, and is often used to set samples of computer code.

Examples of fonts which fit this description include:

Latin fonts Courier, MS Courier New, Prestige, Everson Mono

Greek Fonts MS Courier New, Everson Mono

Cyrillic fonts ER Kurier, Everson Mono

Japanese fonts Osaka Monospaced

Cherokee fonts Everson Mono

23 Apr 2009 15:57238

Fonts

15.4 Font styling: the ’font-style’ property
’font-style’

Value: normal | italic | oblique | inherit
Initial: normal
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

The ’font-style’ property selects between normal (sometimes referred to as
"roman" or "upright"), italic and oblique faces within a font family.

A value of ’normal’ selects a font that is classified as ’normal’ in the UA’s font
database, while ’oblique’ selects a font that is labeled ’oblique’. A value of ’italic’
selects a font that is labeled ’italic’, or, if that is not available, one labeled ’oblique’.

The font that is labeled ’oblique’ in the UA’s font database may actually have been
generated by electronically slanting a normal font.

Fonts with Oblique, Slanted or Incline in their names will typically be labeled
’oblique’ in the UA’s font database. Fonts with Italic, Cursive or Kursiv in their names
will typically be labeled ’italic’.

h1, h2, h3 { font-style: italic }
h1 em { font-style: normal }

In the example above, emphasized text within ’H1’ will appear in a normal face.

15.5 Small-caps: the ’font-variant’ property
’font-variant’

Value: normal | small-caps | inherit
Initial: normal
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

Another type of variation within a font family is the small-caps. In a small-caps font
the lower case letters look similar to the uppercase ones, but in a smaller size and
with slightly different proportions. The ’font-variant’ property selects that font.

23923 Apr 2009 15:57

Fonts

A value of ’normal’ selects a font that is not a small-caps font, ’small-caps’ selects
a small-caps font. It is acceptable (but not required) in CSS 2.1 if the small-caps font
is a created by taking a normal font and replacing the lower case letters by scaled
uppercase characters. As a last resort, uppercase letters will be used as
replacement for a small-caps font.

The following example results in an ’H3’ element in small-caps, with any
emphasized words in oblique, and any emphasized words within an ’H3’ oblique
small-caps:

h3 { font-variant: small-caps }
em { font-style: oblique }

There may be other variants in the font family as well, such as fonts with old-style
numerals, small-caps numerals, condensed or expanded letters, etc. CSS 2.1 has
no properties that select those.

Note: insofar as this property causes text to be transformed to uppercase, the
same considerations as for ’text-transform’ apply.

15.6 Font boldness: the ’font-weight’ property
’font-weight’

Value: normal | bold | bolder | lighter | 100 | 200 | 300 | 400 | 500 |
600 | 700 | 800 | 900 | inherit

Initial: normal
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: see text

The ’font-weight’ property selects the weight of the font. The values ’100’ to ’900’
form an ordered sequence, where each number indicates a weight that is at least as
dark as its predecessor. The keyword ’normal’ is synonymous with ’400’, and ’bold’
is synonymous with ’700’. Keywords other than ’normal’ and ’bold’ have been shown
to be often confused with font names and a numerical scale was therefore chosen
for the 9-value list.

p { font-weight: normal } /* 400 */
h1 { font-weight: 700 } /* bold */

The ’bolder’ and ’lighter’ values select font weights that are relative to the weight
inherited from the parent:

strong { font-weight: bolder }

23 Apr 2009 15:57240

Fonts

Fonts (the font data) typically have one or more properties whose values are
names that are descriptive of the "weight" of a font. There is no accepted, universal
meaning to these weight names. Their primary role is to distinguish faces of differing
darkness within a single font family. Usage across font families is quite variant; for
example, a font that one might think of as being bold might be described as being
Regular, Roman, Book, Medium, Semi- or DemiBold, Bold, or Black, depending on
how black the "normal" face of the font is within the design. Because there is no
standard usage of names, the weight property values in CSS 2.1 are given on a
numerical scale in which the value ’400’ (or ’normal’) corresponds to the "normal"
text face for that family. The weight name associated with that face will typically be
Book, Regular, Roman, Normal or sometimes Medium.

The association of other weights within a family to the numerical weight values is
intended only to preserve the ordering of darkness within that family. However, the
following heuristics tell how the assignment is done in typical cases:

If the font family already uses a numerical scale with nine values (like e.g.
OpenType does), the font weights should be mapped directly.
If there is both a face labeled Medium and one labeled Book, Regular, Roman
or Normal, then the Medium is normally assigned to the ’500’.
The font labeled "Bold" will often correspond to the weight value ’700’.
If there are fewer then 9 weights in the family, the default algorithm for filling the
"holes" is as follows. If ’500’ is unassigned, it will be assigned the same font as
’400’. If any of the values ’600’, ’700’, ’800’ or ’900’ remains unassigned, they
are assigned to the same face as the next darker assigned keyword, if any, or
the next lighter one otherwise. If any of ’300’, ’200’ or ’100’ remains unassigned,
it is assigned to the next lighter assigned keyword, if any, or the next darker
otherwise.

The following two examples show typical mappings.

Assume four weights in the "Rattlesnake" family, from lightest to darkest: Regular,
Medium, Bold, Heavy.

First example of font-weight mapping

Available faces Assignments Filling the holes

"Rattlesnake Regular" 400 100, 200, 300

"Rattlesnake Medium" 500

"Rattlesnake Bold" 700 600

"Rattlesnake Heavy" 800 900

Assume six weights in the "Ice Prawn" family: Book, Medium, Bold, Heavy, Black,
ExtraBlack. Note that in this instance the user agent has decided not to assign a
numeric value to "Ice Prawn ExtraBlack".

24123 Apr 2009 15:57

Fonts

Second example of font-weight mapping

Available faces Assignments Filling the holes

"Ice Prawn Book" 400 100, 200, 300

"Ice Prawn Medium" 500

"Ice Prawn Bold" 700 600

"Ice Prawn Heavy" 800

"Ice Prawn Black" 900

"Ice Prawn ExtraBlack" (none)

Since the intent of the relative keywords ’bolder’ and ’lighter’ is to darken or lighten
the face within the family and because a family may not have faces aligned with all
the symbolic weight values, the matching of ’bolder’ is to the next darker face
available on the client within the family and the matching of ’lighter’ is to the next
lighter face within the family. To be precise, the meaning of the relative keywords
’bolder’ and ’lighter’ is as follows:

’bolder’ selects the next weight that is assigned to a font that is darker than the
inherited one.
’lighter’ is similar, but works in the opposite direction: it selects the next lighter
keyword with a different font from the inherited one.

There is no guarantee that there will be a darker face for each of the ’font-weight’
values; for example, some fonts may have only a normal and a bold face, while
others may have eight face weights. There is no guarantee on how a UA will map
font faces within a family to weight values. The only guarantee is that a face of a
given value will be no less dark than the faces of lighter values.

Note: A set of nested elements that mix ’bolder’ and ’lighter’ will give unpredictable
results depending on the UA, OS, and font availability. This behavior will be more
precisely defined in CSS3.

CSS 2.1 does not specify how the computed value of font-weight is represented
internally or externally.

15.7 Font size: the ’font-size’ property
’font-size’

23 Apr 2009 15:57242

Fonts

Value: <absolute-size> | <relative-size> | <length> | <percentage> |
inherit

Initial: medium
Applies to: all elements
Inherited: yes
Percentages: refer to parent element’s font size
Media: visual
Computed value: absolute length

The font size corresponds to the em square, a concept used in typography. Note
that certain glyphs may bleed outside their em squares. Values have the following
meanings:

<absolute-size>
An <absolute-size> keyword is an index to a table of font sizes computed and
kept by the UA. Possible values are:

[xx-small | x-small | small | medium | large | x-large | xx-large]

The following table provides user agent guidelines for the absolute-size
mapping to HTML heading and absolute font-sizes. The ’medium’ value is the
user’s preferred font size and is used as the reference middle value.

CSS
absolute-size

values
xx-small x-small small medium large x-large xx-large

HTML font
sizes

1 2 3 4 5 6 7

Note: implementation experience has demonstrated that a fixed ratio between
adjacent absolute-size keywords is problematic, and this specification does
NOT recommend such a fixed ratio, in contrast to previous specifications (CSS1
suggested 1.5 [p. ??] , and CSS2 suggested 1.2 [p. ??]).

Implementors should build a table of scaling factors for absolute-size
keywords relative to the ’medium’ font size and the particular device and its
characteristics (e.g. the resolution of the device).

Different media may need different scaling factors. Also, the UA should take
the quality and availability of fonts into account when computing the table. The
table may be different from one font family to another.

Note 1. To preserve readability, a UA applying these guidelines should
nevertheless avoid creating font-size resulting in less than 9 pixels per EM unit
on a computer display.

24323 Apr 2009 15:57

Fonts

Note 2. In CSS1, the suggested scaling factor between adjacent indexes was
1.5 which user experience proved to be too large. In CSS2, the suggested
scaling factor for computer screen between adjacent indexes was 1.2 which still
created issues for the small sizes. The new scaling factor varies between each
index to provide better readability.

<relative-size>
A <relative-size> keyword is interpreted relative to the table of font sizes and the
font size of the parent element. Possible values are: [larger | smaller]. For
example, if the parent element has a font size of ’medium’, a value of ’larger’ will
make the font size of the current element be ’large’. If the parent element’s size
is not close to a table entry, the UA is free to interpolate between table entries or
round off to the closest one. The UA may have to extrapolate table values if the
numerical value goes beyond the keywords.

Length and percentage values should not take the font size table into account
when calculating the font size of the element.

Negative values are not allowed.

On all other properties, ’em’ and ’ex’ length values refer to the computed font size
of the current element. On the ’font-size’ property, these length units refer to the
computed font size of the parent element.

Note that an application may reinterpret an explicit size, depending on the context.
E.g., inside a VR scene a font may get a different size because of perspective
distortion.

Examples:

p { font-size: 16px; }
@media print {
 p { font-size: 12pt; }
}
blockquote { font-size: larger }
em { font-size: 150% }
em { font-size: 1.5em }

15.8 Shorthand font property: the ’font’ property
’font’

23 Apr 2009 15:57244

Fonts

Value: [[<’font-style’> || <’font-variant’> || <’font-weight’>]?
<’font-size’> [/ <’line-height’>]? <’font-family’>] | caption |
icon | menu | message-box | small-caption | status-bar |
inherit

Initial: see individual properties
Applies to: all elements
Inherited: yes
Percentages: see individual properties
Media: visual
Computed value: see individual properties

The ’font’ property is, except as described below [p. 246] , a shorthand property for
setting ’font-style’, ’font-variant’, ’font-weight’, ’font-size’, ’line-height’ and ’font-family’
at the same place in the style sheet. The syntax of this property is based on a
traditional typographical shorthand notation to set multiple properties related to fonts.

All font-related properties are first reset to their initial values, including those listed
in the preceding paragraph. Then, those properties that are given explicit values in
the ’font’ shorthand are set to those values. For a definition of allowed and initial
values, see the previously defined properties.

p { font: 12px/14px sans-serif }
p { font: 80% sans-serif }
p { font: x-large/110% "New Century Schoolbook", serif }
p { font: bold italic large Palatino, serif }
p { font: normal small-caps 120%/120% fantasy }

In the second rule, the font size percentage value (’80%’) refers to the font size of
the parent element. In the third rule, the line height percentage refers to the font size
of the element itself.

In the first three rules above, the ’font-style’, ’font-variant’ and ’font-weight’ are not
explicitly mentioned, which means they are all three set to their initial value
(’normal’). The fourth rule sets the ’font-weight’ to ’bold’, the ’font-style’ to ’italic’ and
implicitly sets ’font-variant’ to ’normal’.

The fifth rule sets the ’font-variant’ (’small-caps’), the ’font-size’ (120% of the
parent’s font), the ’line-height’ (120% times the font size) and the ’font-family’
(’fantasy’). It follows that the keyword ’normal’ applies to the two remaining
properties: ’font-style’ and ’font-weight’.

The following values refer to system fonts:

caption
The font used for captioned controls (e.g., buttons, drop-downs, etc.).

icon
The font used to label icons.

menu
The font used in menus (e.g., dropdown menus and menu lists).

24523 Apr 2009 15:57

Fonts

message-box
The font used in dialog boxes.

small-caption
The font used for labeling small controls.

status-bar
The font used in window status bars.

System fonts may only be set as a whole; that is, the font family, size, weight,
style, etc. are all set at the same time. These values may then be altered individually
if desired. If no font with the indicated characteristics exists on a given platform, the
user agent should either intelligently substitute (e.g., a smaller version of the
’caption’ font might be used for the ’small-caption’ font), or substitute a user agent
default font. As for regular fonts, if, for a system font, any of the individual properties
are not part of the operating system’s available user preferences, those properties
should be set to their initial values.

That is why this property is "almost" a shorthand property: system fonts can only
be specified with this property, not with ’font-family’ itself, so ’font’ allows authors to
do more than the sum of its subproperties. However, the individual properties such
as ’font-weight’ are still given values taken from the system font, which can be
independently varied.

Example(s):

button { font: 300 italic 1.3em/1.7em "FB Armada", sans-serif }
button p { font: menu }
button p em { font-weight: bolder }

If the font used for dropdown menus on a particular system happened to be, for
example, 9-point Charcoal, with a weight of 600, then P elements that were
descendants of BUTTON would be displayed as if this rule were in effect:

button p { font: 600 9px Charcoal }

Because the ’font’ shorthand property resets any property not explicitly given a
value to its initial value, this has the same effect as this declaration:

button p {
 font-family: Charcoal;
 font-style: normal;
 font-variant: normal;
 font-weight: 600;
 font-size: 9px;
 line-height: normal;
}

23 Apr 2009 15:57246

Fonts

16 Text
Contents

......... 24716.1 Indentation: the ’text-indent’ property

.......... 24816.2 Alignment: the ’text-align’ property

................ 24916.3 Decoration
16.3.1 Underlining, overlining, striking, and blinking: the ’text-decoration’

................ 249property
25116.4 Letter and word spacing: the ’letter-spacing’ and ’word-spacing’ properties

........ 25316.5 Capitalization: the ’text-transform’ property

......... 25416.6 White space: the ’white-space’ property

........ 25516.6.1 The ’white-space’ processing model

... 25616.6.2 Example of bidirectionality with white space collapsing

....... 25616.6.3 Control and combining characters’ details

The properties defined in the following sections affect the visual presentation of
characters, spaces, words, and paragraphs.

16.1 Indentation: the ’text-indent’ property
’text-indent’

Value: <length> | <percentage> | inherit
Initial: 0
Applies to: block-level elements, table cells and inline blocks
Inherited: yes
Percentages: refer to width of containing block
Media: visual
Computed value: the percentage as specified or the absolute length

This property specifies the indentation of the first line of text in a block. More
precisely, it specifies the indentation of the first box that flows into the block’s first
line box [p. 133] . The box is indented with respect to the left (or right, for right-to-left
layout) edge of the line box. User agents should render this indentation as blank
space.

Values have the following meanings:

<length>
The indentation is a fixed length.

<percentage>
The indentation is a percentage of the containing block width.

24723 Apr 2009 15:57

Text

The value of ’text-indent’ may be negative, but there may be
implementation-specific limits. If the value of ’text-indent’ is either negative or
exceeds the width of the block, that first box, described above, can overflow the
block. The value of ’overflow’ will affect whether such text that overflows the block is
visible.

Example(s):

The following example causes a ’3em’ text indent.

p { text-indent: 3em }

Note: Since the ’text-indent’ property inherits, when specified on a block element,
it will affect descendent inline-block elements. For this reason, it is often wise to
specify ’text-indent: 0 ’ on elements that are specified
’display:inline-block ’.

16.2 Alignment: the ’text-align’ property
’text-align’

Value: left | right | center | justify | inherit
Initial: a nameless value that acts as ’left’ if ’direction’ is ’ltr’, ’right’ if

’direction’ is ’rtl’
Applies to: block-level elements, table cells and inline blocks
Inherited: yes
Percentages: N/A
Media: visual
Computed value: the initial value or as specified

This property describes how inline content of a block is aligned. Values have the
following meanings:

left, right, center, justify
Left, right, center, and justify text, respectively, as described in the section on
inline formatting [p. 133] .

A block of text is a stack of line boxes [p. 133] . In the case of ’left’, ’right’ and
’center’, this property specifies how the inline boxes within each line box align with
respect to the line box’s left and right sides; alignment is not with respect to the
viewport [p. 122] . In the case of ’justify’, this property specifies that the inline boxes
are to be made flush with both sides of the block. (See also ’letter-spacing’ and
’word-spacing’.)

If the computed value of text-align is ’justify’ while the computed value of
white-space is ’pre’ or ’pre-line’, the actual value of text-align is set to the initial
value.

23 Apr 2009 15:57248

Text

Example(s):

In this example, note that since ’text-align’ is inherited, all block-level elements
inside DIV elements with a class name of ’important’ will have their inline content
centered.

div.important { text-align: center }

Note. The actual justification algorithm used depends on the user-agent and the
language/script of the text.

Conforming user agents [p. 43] may interpret the value ’justify’ as ’left’ or ’right’,
depending on whether the element’s default writing direction is left-to-right or
right-to-left, respectively.

16.3 Decoration

16.3.1 Underlining, overlining, striking, and blinking: the
’text-decoration’ property

’text-decoration’

Value: none | [underline || overline || line-through || blink] | inherit
Initial: none
Applies to: all elements
Inherited: no (see prose)
Percentages: N/A
Media: visual
Computed value: as specified

This property describes decorations that are added to the text of an element using
the element’s color. When specified on an inline element, it affects all the boxes
generated by that element; for all other elements, the decorations are propagated to
an anonymous inline box that wraps all the in-flow inline children of the element, and
to any block-level [p. 123] in-flow descendants. It is not, however, further propagated
to floating and absolutely positioned descendants, nor to the contents of ’inline-table’
and ’inline-block’ descendants.

Underlines, overlines, and line-throughs are applied only to text (including white
space, letter spacing, and word spacing): margins, borders, and padding are
skipped. If an element contains no text, user agents must refrain from rendering
these text decorations on the element. For example, images will not be underlined.

The ’text-decoration’ property on descendant elements cannot have any effect on
the decoration of the ancestor. In determining the position of and thickness of text
decoration lines, user agents may consider the font sizes of and dominant baselines
of descendants, but must use the same baseline and thickness on each line.
Relatively positioning a descendant moves all text decorations affecting it along with

24923 Apr 2009 15:57

Text

the descendant’s text; it does not affect calculation of the decoration’s initial position
on that line.

Values have the following meanings:

none
Produces no text decoration.

underline
Each line of text is underlined.

overline
Each line of text has a line above it.

line-through
Each line of text has a line through the middle.

blink
Text blinks (alternates between visible and invisible). Conforming user agents
[p. 43] may simply not blink the text. Note that not blinking the text is one
technique to satisfy checkpoint 3.3 of WAI-UAAG [p. ??] .

The color(s) required for the text decoration must be derived from the ’color’
property value of the element on which ’text-decoration’ is set. The color of
decorations must remain the same even if descendant elements have different
’color’ values.

Some user agents have implemented text-decoration by propagating the
decoration to the descendant elements as opposed to preserving a constant
thickness and line position as described above. This was arguably allowed by the
looser wording in CSS2. SVG1, CSS1-only, and CSS2-only user agents may
implement the older model and still claim conformance to this part of CSS 2.1. (This
does not apply to UAs developed after this specification was released.)

Example(s):

In the following example for HTML, the text content of all A elements acting as
hyperlinks (whether visited or not) will be underlined:

a:visited,a:link { text-decoration: underline }

Example(s):

In the following style sheet and document fragment:

 blockquote { text-decoration: underline; color: blue; }
 em { display: block; }
 cite { color: fuchsia; }

23 Apr 2009 15:57250

Text

 <blockquote>
 <p>

 Help, help!
 I am under a hat!
 <cite> —GwieF </cite>

 </p>
 </blockquote>

...the underlining for the blockquote element is propagated to an anonymous inline
element that surrounds the span element, causing the text "Help, help!" to be blue,
with the blue underlining from the anonymous inline underneath it, the color being
taken from the blockquote element. The text in the em block is also
underlined, as it is in an in-flow block to which the underline is propagated. The final
line of text is fuchsia, but the underline underneath it is still the blue underline from
the anonymous inline element.

This diagram shows the boxes involved in the example above. The rounded aqua
line represents the anonymous inline element wrapping the inline contents of the
paragraph element, the rounded blue line represents the span element, and the
orange lines represent the blocks.

16.4 Letter and word spacing: the ’letter-spacing’ and
’word-spacing’ properties
’letter-spacing’

Value: normal | <length> | inherit
Initial: normal
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: ’normal’ or absolute length

25123 Apr 2009 15:57

Text

This property specifies spacing behavior between text characters. Values have the
following meanings:

normal
The spacing is the normal spacing for the current font. This value allows the
user agent to alter the space between characters in order to justify text.

<length>
This value indicates inter-character space in addition to the default space
between characters. Values may be negative, but there may be
implementation-specific limits. User agents may not further increase or
decrease the inter-character space in order to justify text.

Character spacing algorithms are user agent-dependent.

Example(s):

In this example, the space between characters in BLOCKQUOTE elements is
increased by ’0.1em’.

blockquote { letter-spacing: 0.1em }

In the following example, the user agent is not permitted to alter inter-character
space:

blockquote { letter-spacing: 0cm } /* Same as ’0’ */

When the resultant space between two characters is not the same as the default
space, user agents should not use ligatures.

’word-spacing’

Value: normal | <length> | inherit
Initial: normal
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: for ’normal’ the value ’0’; otherwise the absolute length

This property specifies spacing behavior between words. Values have the
following meanings:

normal
The normal inter-word space, as defined by the current font and/or the UA.

<length>
This value indicates inter-word space in addition to the default space between
words. Values may be negative, but there may be implementation-specific limits.

23 Apr 2009 15:57252

Text

Word spacing algorithms are user agent-dependent. Word spacing is also
influenced by justification (see the ’text-align’ property). Word spacing affects each
space (U+0020), non-breaking space (U+00A0), and ideographic space (U+3000)
left in the text after the white space processing rules have been applied.

Example(s):

In this example, the word-spacing between each word in H1 elements is increased
by ’1em’.

h1 { word-spacing: 1em }

16.5 Capitalization: the ’text-transform’ property
’text-transform’

Value: capitalize | uppercase | lowercase | none | inherit
Initial: none
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

This property controls capitalization effects of an element’s text. Values have the
following meanings:

capitalize
Puts the first character of each word in uppercase; other characters are
unaffected.

uppercase
Puts all characters of each word in uppercase.

lowercase
Puts all characters of each word in lowercase.

none
No capitalization effects.

The actual transformation in each case is written language dependent. See RFC
3066 ([RFC3066]) for ways to find the language of an element.

Only characters belonging to "bicameral scripts" [UNICODE] are affected.

Example(s):

In this example, all text in an H1 element is transformed to uppercase text.

h1 { text-transform: uppercase }

25323 Apr 2009 15:57

Text

16.6 White space: the ’white-space’ property
’white-space’

Value: normal | pre | nowrap | pre-wrap | pre-line | inherit
Initial: normal
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

This property declares how white space inside the element is handled. Values
have the following meanings:

normal
This value directs user agents to collapse sequences of white space, and break
lines as necessary to fill line boxes.

pre
This value prevents user agents from collapsing sequences of white space.
Lines are only broken at newlines in the source, or at occurrences of "\A" in
generated content.

nowrap
This value collapses white space as for ’normal’, but suppresses line breaks
within text.

pre-wrap
This value prevents user agents from collapsing sequences of white space.
Lines are broken at newlines in the source, at occurrences of "\A" in generated
content, and as necessary to fill line boxes.

pre-line
This value directs user agents to collapse sequences of white space. Lines are
broken at newlines in the source, at occurrences of "\A" in generated content,
and as necessary to fill line boxes.

Newlines in the source can be represented by a carriage return (U+000D), a
linefeed (U+000A) or both (U+000D U+000A) or by some other mechanism that
identifies the beginning and end of document segments, such as the SGML
RECORD-START and RECORD-END tokens. The CSS ’white-space’ processing
model assumes all newlines have been normalized to line feeds.

Example(s):

The following examples show what white space [p. 49] behavior is expected from
the PRE and P elements and the "nowrap" attribute in HTML.

pre { white-space: pre }
p { white-space: normal }
td[nowrap] { white-space: nowrap }

23 Apr 2009 15:57254

Text

In addition, the effect of an HTML PRE element with the non-standard "wrap"
attribute is demonstrated by the following example:

pre[wrap] { white-space: pre-wrap }

16.6.1 The ’white-space’ processing model
Any text that is directly contained inside a block element (not inside an inline
element) should be treated as an anonymous inline element.

For each inline element (including anonymous inlines elements), the following
steps are performed, treating bidi formatting characters as if they were not there:

1. Each tab (U+0009), carriage return (U+000D), or space (U+0020) character
surrounding a linefeed (U+000A) character is removed if ’white-space’ is set to
’normal’, ’nowrap’, or ’pre-line’.

2. If ’white-space’ is set to ’pre’ or ’pre-wrap’, any sequence of spaces (U+0020)
unbroken by an element boundary is treated as a sequence of non-breaking
spaces. However, for ’pre-wrap’, a line breaking opportunity exists at the end of
the sequence.

3. If ’white-space’ is set to ’normal’ or ’nowrap’, linefeed characters are
transformed for rendering purpose into one of the following characters: a space
character, a zero width space character (U+200B), or no character (i.e. not
rendered), according to UA-specific algorithms based on the content script.

4. If ’white-space’ is set to ’normal’, ’nowrap’, or ’pre-line’,
1. every tab (U+0009) is converted to a space (U+0020)
2. any space (U+0020) following another space (U+0020) — even a space

before the inline, if that space also has ’white-space’ set to ’normal’,
’nowrap’ or ’pre-line’ — is removed.

Then, the entire block is rendered. Inlines are laid out, taking bidi reordering into
account, and wrapping as specified by the ’white-space’ property. When wrapping,
line breaking opportunities are determined based on the text prior to the white space
collapsing steps above.

As each line is laid out,

1. If a space (U+0020) at the beginning of a line has ’white-space’ set to ’normal’,
’nowrap’, or ’pre-line’, it is removed.

2. All tabs (U+0009) are rendered as a horizontal shift that lines up the start edge
of the next glyph with the next tab stop. Tab stops occur at points that are
mutiples of 8 times the width of a space (U+0020) rendered in the block’s font
from the block’s starting content edge.

3. If a space (U+0020) at the end of a line has ’white-space’ set to ’normal’,
’nowrap’, or ’pre-line’, it is also removed.

4. If spaces (U+0020) or tabs (U+0009) at the end of a line have ’white-space’ set
to ’pre-wrap’, UAs may visually collapse them.

25523 Apr 2009 15:57

Text

A float should not introduce a line break opportunity.

Note. CSS 2.1 does not fully define where line breaking opportunities occur.
Floated and absolutely-positioned elements do not introduce a line breaking
opportunity.

16.6.2 Example of bidirectionality with white space collapsing
Given the following markup fragment, taking special note of spaces (with varied
backgrounds and borders for emphasis and identification):

 <ltr>A <rtl> B </rtl> C</ltr>

...where the <ltr> element represents a left-to-right embedding and the <rtl>
element represents a right-to-left embedding, and assuming that the ’white-space’
property is set to ’normal’, the above processing model would result in the following:

The space before the B () would collapse with the space after the A ().
The space before the C () would collapse with the space after the B ().

This would leave two spaces, one after the A in the left-to-right embedding level,
and one after the B in the right-to-left embedding level. This is then rendered
according to the Unicode bidirectional algorithm, with the end result being:

 A BC

Note that there are two spaces between A and B, and none between B and C.
This can sometimes be avoided by using the natural bidirectionality of characters
instead of explicit embedding levels. Also, it is good to avoid spaces immediately
inside start and end tags, as these tend to do weird things when dealing with white
space collapsing.

16.6.3 Control and combining characters’ details
Control characters other than U+0009 (tab), U+000A (line feed), U+0020 (space),
and U+202x (bidi formatting characters) are treated as characters to render in the
same way as any normal character.

Combining characters should be treated as part of the character with which they
are supposed to combine. For example, :first-letter styles the entire glyph if you have
content like "ö "; it doesn’t just match the base character.

23 Apr 2009 15:57256

Text

17 Tables
Contents

............. 25717.1 Introduction to tables

............. 25917.2 The CSS table model

........... 26117.2.1 Anonymous table objects

................ 26217.3 Columns

......... 26317.4 Tables in the visual formatting model

......... 26417.4.1 Caption position and alignment

........... 26517.5 Visual layout of table contents

......... 26617.5.1 Table layers and transparency

..... 26917.5.2 Table width algorithms: the ’table-layout’ property

........... 27017.5.2.1 Fixed table layout

.......... 27117.5.2.2 Automatic table layout

........... 27217.5.3 Table height algorithms

......... 27417.5.4 Horizontal alignment in a column

......... 27417.5.5 Dynamic row and column effects

................ 27517.6 Borders

......... 27517.6.1 The separated borders model
17.6.1.1 Borders and Backgrounds around empty cells: the

............ 277’empty-cells’ property

.......... 27817.6.2 The collapsing border model

......... 27917.6.2.1 Border conflict resolution

............. 28117.6.3 Border styles

17.1 Introduction to tables
This chapter defines the processing model for tables in CSS. Part of this processing
model is the layout. For the layout, this chapter introduces two algorithms; the first,
the fixed table layout algorithm, is well-defined, but the second, the automatic table
layout algorithm, is not fully defined by this specification.

For the automatic table layout algorithm, some widely deployed implementations
have achieved relatively close interoperability.

Table layout can be used to represent tabular relationships between data. Authors
specify these relationships in the document language [p. 40] and can specify their
presentation using CSS 2.1.

In a visual medium, CSS tables can also be used to achieve specific layouts. In
this case, authors should not use table-related elements in the document language,
but should apply the CSS to the relevant structural elements to achieve the desired
layout.

25723 Apr 2009 15:57

Tables

Authors may specify the visual formatting of a table as a rectangular grid of cells.
Rows and columns of cells may be organized into row groups and column groups.
Rows, columns, row groups, column groups, and cells may have borders drawn
around them (there are two border models in CSS 2.1). Authors may align data
vertically or horizontally within a cell and align data in all cells of a row or column.

Example(s):

Here is a simple three-row, three-column table described in HTML 4:

<TABLE>
<CAPTION>This is a simple 3x3 table</CAPTION>
<TR id="row1">
 <TH>Header 1 <TD>Cell 1 <TD>Cell 2
<TR id="row2">
 <TH>Header 2 <TD>Cell 3 <TD>Cell 4
<TR id="row3">
 <TH>Header 3 <TD>Cell 5 <TD>Cell 6
</TABLE>

This code creates one table (the TABLE element), three rows (the TR elements),
three header cells (the TH elements), and six data cells (the TD elements). Note that
the three columns of this example are specified implicitly: there are as many
columns in the table as required by header and data cells.

The following CSS rule centers the text horizontally in the header cells and
presents the text in the header cells with a bold font weight:

th { text-align: center; font-weight: bold }

The next rules align the text of the header cells on their baseline and vertically
center the text in each data cell:

th { vertical-align: baseline }
td { vertical-align: middle }

The next rules specify that the top row will be surrounded by a 3px solid blue
border and each of the other rows will be surrounded by a 1px solid black border:

table { border-collapse: collapse }
tr#row1 { border: 3px solid blue }
tr#row2 { border: 1px solid black }
tr#row3 { border: 1px solid black }

Note, however, that the borders around the rows overlap where the rows meet.
What color (black or blue) and thickness (1px or 3px) will the border between row1
and row2 be? We discuss this in the section on border conflict resolution. [p. 279]

The following rule puts the table caption above the table:

caption { caption-side: top }

The preceding example shows how CSS works with HTML 4 elements; in HTML
4, the semantics of the various table elements (TABLE, CAPTION, THEAD, TBODY,
TFOOT, COL, COLGROUP, TH, and TD) are well-defined. In other document

23 Apr 2009 15:57258

Tables

languages (such as XML applications), there may not be pre-defined table elements.
Therefore, CSS 2.1 allows authors to "map" document language elements to table
elements via the ’display’ property. For example, the following rule makes the FOO
element act like an HTML TABLE element and the BAR element act like a CAPTION
element:

FOO { display : table }
BAR { display : table-caption }

We discuss the various table elements in the following section. In this
specification, the term table element refers to any element involved in the creation of
a table. An "internal" table element is one that produces a row, row group, column,
column group, or cell.

17.2 The CSS table model
The CSS table model is based on the HTML4 table model, in which the structure of a
table closely parallels the visual layout of the table. In this model, a table consists of
an optional caption and any number of rows of cells. The table model is said to be
"row primary" since authors specify rows, not columns, explicitly in the document
language. Columns are derived once all the rows have been specified -- the first cell
of each row belongs to the first column, the second to the second column, etc.).
Rows and columns may be grouped structurally and this grouping reflected in
presentation (e.g., a border may be drawn around a group of rows).

Thus, the table model consists of tables, captions, rows, row groups, columns,
column groups, and cells.

The CSS model does not require that the document language [p. 40] include
elements that correspond to each of these components. For document languages
(such as XML applications) that do not have pre-defined table elements, authors
must map document language elements to table elements; this is done with the
’display’ property. The following ’display’ values assign table formatting rules to an
arbitrary element:

table (In HTML: TABLE)
Specifies that an element defines a block-level [p. 123] table: it is a rectangular
block that participates in a block formatting context [p. 132] .

inline-table (In HTML: TABLE)
Specifies that an element defines an inline-level [p. 125] table: it is a rectangular
block that participates in an inline formatting context [p. 133]).

table-row (In HTML: TR)
Specifies that an element is a row of cells.

table-row-group (In HTML: TBODY)
Specifies that an element groups one or more rows.

table-header-group (In HTML: THEAD)
Like ’table-row-group’, but for visual formatting, the row group is always
displayed before all other rows and row groups and after any top captions. Print
user agents may repeat header rows on each page spanned by a table. If a

25923 Apr 2009 15:57

Tables

table contains multiple elements with ’display: table-header-group’, only the first
is rendered as a header; the others are treated as if they had ’display:
table-row-group’.

table-footer-group (In HTML: TFOOT)
Like ’table-row-group’, but for visual formatting, the row group is always
displayed after all other rows and row groups and before any bottom captions.
Print user agents may repeat footer rows on each page spanned by a table. If a
table contains multiple elements with ’display: table-footer-group’, only the first
is rendered as a footer; the others are treated as if they had ’display:
table-row-group’.

table-column (In HTML: COL)
Specifies that an element describes a column of cells.

table-column-group (In HTML: COLGROUP)
Specifies that an element groups one or more columns.

table-cell (In HTML: TD, TH)
Specifies that an element represents a table cell.

table-caption (In HTML: CAPTION)
Specifies a caption for the table. All elements with ’display: table-caption’ must
be rendered, as described in section 17.4. [p. 263]

Replaced elements with these ’display’ values are treated as their given display
types during layout. For example, an image that is set to ’display: table-cell’ will fill
the available cell space, and its dimensions might contribute towards the table sizing
algorithms, as with an ordinary cell.

Elements with ’display’ set to ’table-column’ or ’table-column-group’ are not
rendered (exactly as if they had ’display: none’), but they are useful, because they
may have attributes which induce a certain style for the columns they represent.

The default style sheet for HTML4 [p. 389] in the appendix illustrates the use of
these values for HTML4:

table { display: table }
tr { display: table-row }
thead { display: table-header-group }
tbody { display: table-row-group }
tfoot { display: table-footer-group }
col { display: table-column }
colgroup { display: table-column-group }
td, th { display: table-cell }
caption { display: table-caption }

User agents may ignore [p. 55] these ’display’ property values for HTML table
elements, since HTML tables may be rendered using other algorithms intended for
backwards compatible rendering. However, this is not meant to discourage the use
of ’display: table’ on other, non-table elements in HTML.

23 Apr 2009 15:57260

Tables

17.2.1 Anonymous table objects
Document languages other than HTML may not contain all the elements in the
CSS 2.1 table model. In these cases, the "missing" elements must be assumed in
order for the table model to work. Any table element will automatically generate
necessary anonymous table objects around itself, consisting of at least three nested
objects corresponding to a ’table’/’inline-table’ element, a ’table-row’ element, and a
’table-cell’ element. Missing elements generate anonymous [p. 125] objects (e.g.,
anonymous boxes in visual table layout) according to the following rules:

1. If the parent P of a ’table-cell’ box T is not a ’table-row’, a box corresponding to
a ’table-row’ will be generated between P and T. This box will span all
consecutive ’table-cell’ sibling boxes of T.

2. If the parent P of a ’table-row’ box T is not a ’table’, ’inline-table’,
’table-header-group’, ’table-footer-group’ or ’table-row-group’ box, a box
corresponding to a ’table’ element will be generated between P and T. If P is an
’inline’ box, then the generated box must be an ’inline-table’ box instead of a
’table’ box. This box will span all consecutive sibling boxes of T that require a
’table’ parent: ’table-row’, ’table-row-group’, ’table-header-group’,
’table-footer-group’, ’table-column’, ’table-column-group’, and ’table-caption’. T
and T’s siblings may also be anonymous ’table-row’ boxes generated by rule 1.

3. If the parent P of a ’table-column’ box T is not a ’table’, ’inline-table’, or
’table-column-group’ box, a box corresponding to a ’table’ element will be
generated between P and T. If P is an ’inline’ box, then the generated box must
be an ’inline-table’ box instead of a ’table’ box. This box will span all consecutive
sibling boxes of T that require a ’table’ parent: ’table-row’, ’table-row-group’,
’table-header-group’, ’table-footer-group’, ’table-column’, ’table-column-group’,
and ’table-caption’, including any anonymous ’table-row’ boxes generated by
rule 1.

4. If the parent P of a ’table-row-group’ (or ’table-header-group’,
’table-footer-group’, or ’table-column-group’ or ’table-caption’) box T is not a
’table’ or ’inline-table’, a box corresponding to a ’table’ element will be generated
between P and T. If P is an ’inline’ box, then the generated box must be an
’inline-table’ box instead of a ’table’ box. This box will span all consecutive
sibling boxes of T that require a ’table’ parent: ’table-row’, ’table-row-group’,
’table-header-group’, ’table-footer-group’, ’table-column’, ’table-column-group’,
and ’table-caption’, including any anonymous ’table-row’ boxes generated by
rule 1.

5. If a child T of a ’table’, ’inline-table’, ’table-row-group’, ’table-header-group’,
’table-footer-group’, or ’table-row’ box is an anonymous inline box that contains
only white space, then it is treated as if it had ’display: none’.

6. If a child T of a ’table’ box (or ’inline-table’) P is not a ’table-row-group’,
’table-header-group’, ’table-footer-group’, ’table-caption’, ’table-column’,
’table-column-group’ or ’table-row’ box, a box corresponding to a ’table-row’
element will be generated between P and T. This box spans all consecutive
siblings of T that are not ’table-row-group’, ’table-header-group’,

26123 Apr 2009 15:57

Tables

’table-footer-group’, ’table-caption’, ’table-column’, ’table-column-group’ or
’table-row’ boxes.

7. If a child T of a ’table-row-group’ box (or ’table-header-group’ or
’table-footer-group’) P is not a ’table-row’ box, a box corresponding to a
’table-row’ element will be generated between P and T. This box spans all
consecutive siblings of T that are not ’table-row’ boxes.

8. If a child T of a ’table-row’ box P is not a ’table-cell’ box, a box corresponding to
a ’table-cell’ element will be generated between P and T. This box spans all
consecutive siblings of T that are not ’table-cell’ boxes.

Example(s):

In this XML example, a ’table’ element is assumed to contain the HBOX element:

<HBOX>
 <VBOX>George</VBOX>
 <VBOX>4287</VBOX>
 <VBOX>1998</VBOX>
</HBOX>

because the associated style sheet is:

HBOX { display: table-row }
VBOX { display: table-cell }

Example(s):

In this example, three ’table-cell’ elements are assumed to contain the text in the
ROWs. Note that the text is further encapsulated in anonymous inline boxes, as
explained in visual formatting model [p. 125] :

<STACK>
 <ROW>This is the <D>top</D> row.</ROW>
 <ROW>This is the <D>middle</D> row.</ROW>
 <ROW>This is the <D>bottom</D> row.</ROW>
</STACK>

The style sheet is:

STACK { display: inline-table }
ROW { display: table-row }
D { display: inline; font-weight: bolder }

17.3 Columns
Table cells may belong to two contexts: rows and columns. However, in the source
document cells are descendants of rows, never of columns. Nevertheless, some
aspects of cells can be influenced by setting properties on columns.

The following properties apply to column and column-group elements:

23 Apr 2009 15:57262

Tables

’border’
The various border properties apply to columns only if ’border-collapse’ is set to
’collapse’ on the table element. In that case, borders set on columns and
column groups are input to the conflict resolution algorithm [p. 279] that selects
the border styles at every cell edge.

’background’
The background properties set the background for cells in the column, but only if
both the cell and row have transparent backgrounds. See "Table layers and
transparency." [p. 266]

’width’
The ’width’ property gives the minimum width for the column.

’visibility’
If the ’visibility’ of a column is set to ’collapse’, none of the cells in the column
are rendered, and cells that span into other columns are clipped. In addition, the
width of the table is diminished by the width the column would have taken up.
See "Dynamic effects" [p. 274] below. Other values for ’visibility’ have no effect.

Example(s):

Here are some examples of style rules that set properties on columns. The first
two rules together implement the "rules" attribute of HTML 4 with a value of "cols".
The third rule makes the "totals" column blue, the final two rules shows how to make
a column a fixed size, by using the fixed layout algorithm [p. 270] .

col { border-style: none solid }
table { border-style: hidden }
col.totals { background: blue }
table { table-layout: fixed }
col.totals { width: 5em }

17.4 Tables in the visual formatting model
In terms of the visual formatting model, a table can behave like a block-level [p. 123]
(for ’display: table’) or inline-level [p. 125] (for ’display: inline-table’) element.

In both cases, the table box generates an anonymous box that contains the table
box itself and any caption boxes (in document order). The caption boxes are
block-level boxes that retain their own content, padding, margin, and border areas,
and are rendered as normal blocks inside the anonymous box. Whether the caption
boxes are placed before or after the table box is decided by the ’caption-side’
property, as described below.

The anonymous box is a ’block’ box if the table is block-level, and an ’inline-block’
box if the table is inline-level. The anonymous box establishes a block formatting
context. The table box (not the anonymous box) is used when doing baseline vertical
alignment for an ’inline-table’. The width of the anonymous box is the border-edge
width of the table box inside it, as described by section 17.5.2. Percentages on
’width’ and ’height’ on the table are relative to the anonymous box’s containing block,
not the anonymous box itself.

26323 Apr 2009 15:57

Tables

The computed values of properties ’position’, ’float’, ’margin-*’, ’top’, ’right’,
’bottom’, and ’left’ on the table box are used on the anonymous box instead of the
table box. The table box uses the initial values for those properties.

Diagram of a table with a caption above it; the top margin of the caption is
collapsed with the top margin of the table.

17.4.1 Caption position and alignment

’caption-side’

Value: top | bottom | inherit
Initial: top
Applies to: ’table-caption’ elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

23 Apr 2009 15:57264

Tables

This property specifies the position of the caption box with respect to the table
box. Values have the following meanings:

top
Positions the caption box above the table box.

bottom
Positions the caption box below the table box.

Note: CSS2 described a different width and horizontal alignment behavior. That
behavior will be introduced in CSS3 using the values ’top-outside’ and
’bottom-outside’ on this property.

To align caption content horizontally within the caption box, use the ’text-align’
property.

Example(s):

In this example, the ’caption-side’ property places captions below tables. The
caption will be as wide as the parent of the table, and caption text will be
left-justified.

caption { caption-side: bottom;
 width: auto;
 text-align: left }

17.5 Visual layout of table contents
Internal table elements generate rectangular boxes [p. 105] with content and
borders. Cells have padding as well. Internal table elements do not have margins.

The visual layout of these boxes is governed by a rectangular, irregular grid of
rows and columns. Each box occupies a whole number of grid cells, determined
according to the following rules. These rules do not apply to HTML 4 or earlier HTML
versions; HTML imposes its own limitations on row and column spans.

1. Each row box occupies one row of grid cells. Together, the row boxes fill the
table from top to bottom in the order they occur in the source document (i.e., the
table occupies exactly as many grid rows as there are row elements).

2. A row group occupies the same grid cells as the rows it contains.
3. A column box occupies one or more columns of grid cells. Column boxes are

placed next to each other in the order they occur. The first column box may be
either on the left or on the right, depending on the value of the ’direction’
property of the table.

4. A column group box occupies the same grid cells as the columns it contains.
5. Cells may span several rows or columns. (Although CSS 2.1 doesn’t define how

the number of spanned rows or columns is determined, a user agent may have
special knowledge about the source document; a future update of CSS may
provide a way to express this knowledge in CSS syntax.) Each cell is thus a
rectangular box, one or more grid cells wide and high. The top row of this
rectangle is in the row specified by the cell’s parent. The rectangle must be as

26523 Apr 2009 15:57

Tables

far to the left as possible, but the part of the cell in the first column it occupies
must not overlap with any other cell box (i.e., a row-spanning cell starting in a
prior row), and the cell must be to the right of all cells in the same row that are
earlier in the source document. If this position would cause a column-spanning
cell to overlap a row-spanning cell from a prior row, CSS does not define the
results: implementations may either overlap the cells (as is done in many HTML
implementations) or may shift the later cell to the right to avoid such overlap.
(This constraint holds if the ’direction’ property of the table is ’ltr’; if the ’direction’
is ’rtl’, interchange "left" and "right" in the previous two sentences.)

6. A cell box cannot extend beyond the last row box of a table or row-group; the
user agents must shorten it until it fits.

The edges of the rows, columns, row groups and column groups in the collapsing
borders model [p. 278] coincide with the hypothetical grid lines on which the borders
of the cells are centered. (And thus, in this model, the rows together exactly cover
the table, leaving no gaps; ditto for the columns.) In the separated borders model,
[p. 275] the edges coincide with the border edges [p. 106] of cells. (And thus, in this
model, there may be gaps between the rows, columns, row groups or column
groups, corresponding to the ’border-spacing’ property.)

Note. Positioning and floating of table cells can cause them not to be table cells
anymore, according to the rules in section 9.7 [p. 146] . When floating is used, the
rules on anonymous table objects may cause an anonymous cell object to be
created as well.

Here is an example illustrating rule 5. The following illegal (X)HTML snippet
defines conflicting cells:

<table>
<tr><td>1 </td><td rowspan="2">2 </td><td>3 </td><td>4 </td></tr>
<tr><td colspan="2">5 </td></tr>
</table>

User agents are free to visually overlap the cells, as in the figure on the left, or to
shift the cell to avoid the visual overlap, as in the figure on the right.

1 2 3 4

5

1 2 3 4

5

Two possible renderings of an erroneous HTML table.

17.5.1 Table layers and transparency
For the purposes of finding the background of each table cell, the different table
elements may be thought of as being on six superimposed layers. The background
set on an element in one of the layers will only be visible if the layers above it have a
transparent background.

23 Apr 2009 15:57266

Tables

cells

rows

row groups

columns

table

column groups

Schema of table layers.

1. The lowest layer is a single plane, representing the table box itself. Like all
boxes, it may be transparent.

2. The next layer contains the column groups. Each column group extends from
the top of the cells in the top row to the bottom of the cells on the bottom row
and from the left edge of its leftmost column to the right edge of its rightmost
column. The background covers exactly the full area of all cells that originate in
the column group, even if they span outside the column group, but this
difference in area does not affect background image positioning.

3. On top of the column groups are the areas representing the column boxes.
Each column is as tall as the column groups and as wide as a normal
(single-column-spanning) cell in the column. The background covers exactly the
full area of all cells that originate in the column, even if they span outside the
column, but this difference in area does not affect background image
positioning.

4. Next is the layer containing the row groups. Each row group extends from the
top left corner of its topmost cell in the first column to the bottom right corner of
its bottommost cell in the last column.

5. The next to last layer contains the rows. Each row is as wide as the row groups
and as tall as a normal (single-row-spanning) cell in the row. As with columns,

26723 Apr 2009 15:57

Tables

the background covers exactly the full area of all cells that originate in the row,
even if they span outside the row, but this difference in area does not affect
background image positioning.

6. The topmost layer contains the cells themselves. As the figure shows, although
all rows contain the same number of cells, not every cell may have specified
content. In the separated borders model [p. 275] (’border-collapse’ is ’separate’),
if the value of their ’empty-cells’ property is ’hide’ these "empty" cells are
transparent through the cell, row, row group, column and column group
backgrounds, letting the table background show through.

A "missing cell" is a cell in the row/column grid that is not occupied by an element
or pseudo-element. Missing cells are rendered as if an anonymous table-cell box
occupied their position in the grid.

In the following example, the first row contains four non-empty cells, but the
second row contains only one non-empty cell, and thus the table background shines
through, except where a cell from the first row spans into this row. The following
HTML code and style rules

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
 <HEAD>
 <TITLE>Table example</TITLE>
 <STYLE type="text/css">
 TABLE { background: #ff0; border: solid black;
 empty-cells: hide }
 TR.top { background: red }
 TD { border: solid black }
 </STYLE>
 </HEAD>
 <BODY>
 <TABLE>
 <TR CLASS="top">
 <TD> 1
 <TD rowspan="2"> 2
 <TD> 3
 <TD> 4
 <TR>
 <TD> 5
 <TD>
 </TABLE>
 </BODY>
</HTML>

might be formatted as follows:

1 2 3 4

23 Apr 2009 15:57268

Tables

Table with empty cells in the bottom row.

Note that if the table has ’border-collapse: separate’, the background of the area
given by the ’border-spacing’ property is always the background of the table
element. See the separated borders model [p. 275] .

17.5.2 Table width algorithms: the ’table-layout’ property
CSS does not define an "optimal" layout for tables since, in many cases, what is
optimal is a matter of taste. CSS does define constraints that user agents must
respect when laying out a table. User agents may use any algorithm they wish to do
so, and are free to prefer rendering speed over precision, except when the "fixed
layout algorithm" is selected.

Note that this section overrides the rules that apply to calculating widths as
described in section 10.3 [p. 167] . In particular, if the margins of a table are set to ’0’
and the width to ’auto’, the table will not automatically size to fill its containing block.
However, once the calculated value of ’width’ for the table is found (using the
algorithms given below or, when appropriate, some other UA dependant algorithm)
then the other parts of section 10.3 do apply. Therefore a table can be centered
using left and right ’auto’ margins, for instance.

Future updates of CSS may introduce ways of making tables automatically fit their
containing blocks.

’table-layout’

Value: auto | fixed | inherit
Initial: auto
Applies to: ’table’ and ’inline-table’ elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: as specified

The ’table-layout’ property controls the algorithm used to lay out the table cells,
rows, and columns. Values have the following meaning:

fixed
Use the fixed table layout algorithm

auto
Use any automatic table layout algorithm

The two algorithms are described below.

26923 Apr 2009 15:57

Tables

17.5.2.1 Fixed table layout

With this (fast) algorithm, the horizontal layout of the table does not depend on the
contents of the cells; it only depends on the table’s width, the width of the columns,
and borders or cell spacing.

The table’s width may be specified explicitly with the ’width’ property. A value of
’auto’ (for both ’display: table’ and ’display: inline-table’) means use the automatic
table layout [p. 271] algorithm. However, if the table is a block-level table (’display:
table’) in normal flow, a UA may (but does not have to) use the algorithm of 10.3.3
[p. 168] to compute a width and apply fixed table layout even if the specified width is
’auto’.

Example(s):

If a UA supports fixed table layout when ’width’ is ’auto’, the following will create a
table that is 4em narrower than its containing block:

table { table-layout: fixed;
 margin-left: 2em;
 margin-right: 2em }

In the fixed table layout algorithm, the width of each column is determined as
follows:

1. A column element with a value other than ’auto’ for the ’width’ property sets the
width for that column.

2. Otherwise, a cell in the first row with a value other than ’auto’ for the ’width’
property determines the width for that column. If the cell spans more than one
column, the width is divided over the columns.

3. Any remaining columns equally divide the remaining horizontal table space
(minus borders or cell spacing).

The width of the table is then the greater of the value of the ’width’ property for the
table element and the sum of the column widths (plus cell spacing or borders). If the
table is wider than the columns, the extra space should be distributed over the
columns.

If a subsequent row has more columns than the greater of the number determined
by the table-column elements and the number determined by the first row, then
additional columns must not be rendered. When using ’table-layout: fixed’, authors
should not omit columns from the first row.

In this manner, the user agent can begin to lay out the table once the entire first
row has been received. Cells in subsequent rows do not affect column widths. Any
cell that has content that overflows uses the ’overflow’ property to determine whether
to clip the overflow content.

23 Apr 2009 15:57270

Tables

17.5.2.2 Automatic table layout

In this algorithm (which generally requires no more than two passes), the table’s
width is given by the width of its columns (and intervening borders [p. 275]). This
algorithm reflects the behavior of several popular HTML user agents at the writing of
this specification. UAs are not required to implement this algorithm to determine the
table layout in the case that ’table-layout’ is ’auto’; they can use any other algorithm
even if it results in different behavior.

Input to the automatic table layout must only include the width of the containing
block and the content of, and any CSS properties set on, the table and any of its
descendants.

Note. This may be defined in more detail in CSS3.

The remainder of this section is non-normative.

This algorithm may be inefficient since it requires the user agent to have access to
all the content in the table before determining the final layout and may demand more
than one pass.

Column widths are determined as follows:

1. Calculate the minimum content width (MCW) of each cell: the formatted content
may span any number of lines but may not overflow the cell box. If the specified
’width’ (W) of the cell is greater than MCW, W is the minimum cell width. A value
of ’auto’ means that MCW is the minimum cell width.

Also, calculate the "maximum" cell width of each cell: formatting the content
without breaking lines other than where explicit line breaks occur.

2. For each column, determine a maximum and minimum column width from the
cells that span only that column. The minimum is that required by the cell with
the largest minimum cell width (or the column ’width’, whichever is larger). The
maximum is that required by the cell with the largest maximum cell width (or the
column ’width’, whichever is larger).

3. For each cell that spans more than one column, increase the minimum widths of
the columns it spans so that together, they are at least as wide as the cell. Do
the same for the maximum widths. If possible, widen all spanned columns by
approximately the same amount.

4. For each column group element with a ’width’ other than ’auto’, increase the
minimum widths of the columns it spans, so that together they are at least as
wide as the column group’s ’width’.

This gives a maximum and minimum width for each column. Column widths
influence the final table width as follows:

1. If the ’table’ or ’inline-table’ element’s ’width’ property has a computed value (W)
other than ’auto’, the property’s value as used for layout is the greater of W and
the minimum width required by all the columns plus cell spacing or borders
(MIN). If W is greater than MIN, the extra width should be distributed over the

27123 Apr 2009 15:57

Tables

columns.
2. If the ’table’ or ’inline-table’ element has ’width: auto’, the table width used for

layout is the greater of the table’s containing block width and MIN. However, if
the maximum width required by the columns plus cell spacing or borders (MAX)
is less than that of the containing block, use MAX.

A percentage value for a column width is relative to the table width. If the table has
’width: auto’, a percentage represents a constraint on the column’s width, which a
UA should try to satisfy. (Obviously, this is not always possible: if the column’s width
is ’110%’, the constraint cannot be satisfied.)

Note. In this algorithm, rows (and row groups) and columns (and column groups)
both constrain and are constrained by the dimensions of the cells they contain.
Setting the width of a column may indirectly influence the height of a row, and vice
versa.

17.5.3 Table height algorithms
The height of a table is given by the ’height’ property for the ’table’ or ’inline-table’
element. A value of ’auto’ means that the height is the sum of the row heights plus
any cell spacing or borders. Any other value is treated as a minimum height. CSS
2.1 does not define how extra space is distributed when the ’height’ property causes
the table to be taller than it otherwise would be. Note. Future updates of CSS may
specify this further.

The height of a ’table-row’ element’s box is calculated once the user agent has all
the cells in the row available: it is the maximum of the row’s specified ’height’ and the
minimum height (MIN) required by the cells. A ’height’ value of ’auto’ for a ’table-row’
means the row height used for layout is MIN. MIN depends on cell box heights and
cell box alignment (much like the calculation of a line box [p. 182] height).
Percentage heights on table cells, table rows, and table row groups compute to
’auto’.

In CSS 2.1, the height of a cell box is the maximum of the table cell’s ’height’
property and the minimum height required by the content (MIN). A value of ’auto’ for
’height’ implies that the value MIN will be used for layout. CSS 2.1 does not define
what percentage values of ’height’ refer to when specified for table cells.

CSS 2.1 does not specify how cells that span more than one row affect row height
calculations except that the sum of the row heights involved must be great enough to
encompass the cell spanning the rows.

The ’vertical-align’ property of each table cell determines its alignment within the
row. Each cell’s content has a baseline, a top, a middle, and a bottom, as does the
row itself. In the context of tables, values for ’vertical-align’ have the following
meanings:

baseline
The baseline of the cell is put at the same height as the baseline of the first of
the rows it spans (see below for the definition of baselines of cells and rows).

23 Apr 2009 15:57272

Tables

top
The top of the cell box is aligned with the top of the first row it spans.

bottom
The bottom of the cell box is aligned with the bottom of the last row it spans.

middle
The center of the cell is aligned with the center of the rows it spans.

sub, super, text-top, text-bottom, <length>, <percentage>
These values do not apply to cells; the cell is aligned at the baseline instead.

The baseline of a cell is the baseline of the first in-flow line box [p. 133] in the cell,
or the first in-flow table-row in the cell, whichever comes first. If there is no such line
box or table-row, the baseline is the bottom of content edge of the cell box. For the
purposes of finding a baseline, in-flow boxes with a scrolling mechanisms (see the
’overflow’ property) must be considered as if scrolled to their origin position. Note
that the baseline of a cell may end up below its bottom border, see the example
[p. 274] below.

The maximum distance between the top of the cell box and the baseline over all
cells that have ’vertical-align: baseline’ is used to set the baseline of the row. Here is
an example:

middle

baseline

top

bottom

Text

 border

 content
 padding

’baseline’ ’baseline’ ’top’ ’bottom’

= added padding (to make cell as high as the row)

Text

2

3

4

’middle’

5

1

Diagram showing the effect of various values of ’vertical-align’ on table cells.

Cell boxes 1 and 2 are aligned at their baselines. Cell box 2 has the largest height
above the baseline, so that determines the baseline of the row.

If a row has no cell box aligned to its baseline, the baseline of that row is the
bottom content edge of the lowest cell in the row.

27323 Apr 2009 15:57

Tables

To avoid ambiguous situations, the alignment of cells proceeds in the following
order:

1. First the cells that are aligned on their baseline are positioned. This will
establish the baseline of the row. Next the cells with ’vertical-align: top’ are
positioned.

2. The row now has a top, possibly a baseline, and a provisional height, which is
the distance from the top to the lowest bottom of the cells positioned so far.
(See conditions on the cell padding below.)

3. If any of the remaining cells, those aligned at the bottom or the middle, have a
height that is larger than the current height of the row, the height of the row will
be increased to the maximum of those cells, by lowering the bottom.

4. Finally the remaining cells are positioned.

Cell boxes that are smaller than the height of the row receive extra top or bottom
padding.

The cell in this example has a baseline below its bottom border:

div { height: 0; overflow: hidden; }

<table>
 <tr>
 <td>
 <div> Test </div>
 </td>
 </tr>
</table>

17.5.4 Horizontal alignment in a column
The horizontal alignment of a cell’s inline content within a cell box can be specified
by the value of the ’text-align’ property on the cell.

17.5.5 Dynamic row and column effects
The ’visibility’ property takes the value ’collapse’ for row, row group, column, and
column group elements. This value causes the entire row or column to be removed
from the display, and the space normally taken up by the row or column to be made
available for other content. Contents of spanned rows and columns that intersect the
collapsed column or row are clipped. The suppression of the row or column,
however, does not otherwise affect the layout of the table. This allows dynamic
effects to remove table rows or columns without forcing a re-layout of the table in
order to account for the potential change in column constraints.

23 Apr 2009 15:57274

Tables

17.6 Borders
There are two distinct models for setting borders on table cells in CSS. One is most
suitable for so-called separated borders around individual cells, the other is suitable
for borders that are continuous from one end of the table to the other. Many border
styles can be achieved with either model, so it is often a matter of taste which one is
used.

’border-collapse’

Value: collapse | separate | inherit
Initial: separate
Applies to: ’table’ and ’inline-table’ elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

This property selects a table’s border model. The value ’separate’ selects the
separated borders border model. The value ’collapse’ selects the collapsing borders
model. The models are described below.

17.6.1 The separated borders model

’border-spacing’

Value: <length> <length>? | inherit
Initial: 0
Applies to: ’table’ and ’inline-table’ elements*
Inherited: yes
Percentages: N/A
Media: visual
Computed value: two absolute lengths

*) Note: user agents may also apply the ’border-spacing’ property to ’frameset’
elements. Which elements are ’frameset’ elements is not defined by this
specification and is up to the document language. For example, HTML4 defines a
<FRAMESET> element, and XHTML 1.0 defines a <frameset> element. The
’border-spacing’ property on a ’frameset’ element can be thus used as a valid
substitute for the non-standard ’framespacing’ attribute.

The lengths specify the distance that separates adjoining cell borders. If one
length is specified, it gives both the horizontal and vertical spacing. If two are
specified, the first gives the horizontal spacing and the second the vertical spacing.
Lengths may not be negative.

27523 Apr 2009 15:57

Tables

The distance between the table border and the borders of the cells on the edge of
the table is the table’s padding for that side, plus the relevant border spacing
distance. For example, on the right hand side, the distance is padding-right +
horizontal border-spacing.

The width of the table is the distance from the left inner padding edge to the right
inner padding edge (including the border spacing but excluding padding and border).

However, in HTML and XHTML1, the width of the <table> element is the distance
from the left border edge to the right border edge.

Note: In CSS3 this peculiar requirement will be defined in terms of UA style sheet
rules and the ’box-sizing’ property.

In this model, each cell has an individual border. The ’border-spacing’ property
specifies the distance between the borders of adjoining cells. In this space, the row,
column, row group, and column group backgrounds are invisible, allowing the table
background to show through. Rows, columns, row groups, and column groups
cannot have borders (i.e., user agents must ignore [p. 55] the border properties for
those elements).

Example(s):

The table in the figure below could be the result of a style sheet like this:

table { border: outset 10pt;
 border-collapse: separate;
 border-spacing: 15pt }
td { border: inset 5pt }
td.special { border: inset 10pt } /* The top-left cell */

23 Apr 2009 15:57276

Tables

table width

vertical
border−spacing

border−spacing
horizontal

table border
(outset)

cell width

cell border
(inset)

vertical
border−spacing
and padding

A table with ’border-spacing’ set to a length value. Note that each cell has its own
border, and the table has a separate border as well.

17.6.1.1 Borders and Backgrounds around empty cells: the
’empty-cells’ property

’empty-cells’

Value: show | hide | inherit
Initial: show
Applies to: ’table-cell’ elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

In the separated borders model, this property controls the rendering of borders
and backgrounds around cells that have no visible content. Empty cells and cells
with the ’visibility’ property set to ’hidden’ are considered to have no visible content.
Cells are empty unless they contain one or more of the following:

floating content (including empty elements),
in-flow content (including empty elements) other than white space that has been
collapsed away by the ’white-space’ property handling.

27723 Apr 2009 15:57

Tables

When this property has the value ’show’, borders and backgrounds are drawn
around/behind empty cells (like normal cells).

A value of ’hide’ means that no borders or backgrounds are drawn around/behind
empty cells (see point 6 in 17.5.1 [p. 266]). Furthermore, if all the cells in a row have
a value of ’hide’ and have no visible content, then the row has zero height and there
is vertical border-spacing on only one side of the row.

Example(s):

The following rule causes borders and backgrounds to be drawn around all cells:

table { empty-cells: show }

17.6.2 The collapsing border model
In the collapsing border model, it is possible to specify borders that surround all or
part of a cell, row, row group, column, and column group. Borders for HTML’s "rule"
attribute can be specified this way.

Borders are centered on the grid lines between the cells. User agents must find a
consistent rule for rounding off in the case of an odd number of discrete units
(screen pixels, printer dots).

The diagram below shows how the width of the table, the widths of the borders,
the padding, and the cell width interact. Their relation is given by the following
equation, which holds for every row of the table:

row-width = (0.5 * border-width0) + padding-left1 + width1 + padding-right1 +
border-width1 + padding-left2 +...+ padding-rightn + (0.5 * border-widthn)

Here n is the number of cells in the row, padding-left i and padding-right i refer to
the left (resp., right) padding of cell i, and border-width i refers to the border between
cells i and i + 1.

UAs must compute an initial left and right border width for the table by examining
the first and last cells in the first row of the table. The left border width of the table is
half of the first cell’s collapsed left border, and the right border width of the table is
half of the last cell’s collapsed right border. If subsequent rows have larger collapsed
left and right borders, then any excess spills into the margin area of the table.

The top border width of the table is computed by examining all cells who collapse
their top borders with the top border of the table. The top border width of the table is
equal to half of the maximum collapsed top border. The bottom border width is
computed by examining all cells whose bottom borders collapse with the bottom of
the table. The bottom border width is equal to half of the maximum collapsed bottom
border.

Any borders that spill into the margin are taken into account when determining if
the table overflows some ancestor (see ’overflow’).

23 Apr 2009 15:57278

Tables

Schema showing the widths of cells and borders and the padding of cells.

Note that in this model, the width of the table includes half the table border. Also,
in this model, a table doesn’t have padding (but does have margins).

CSS 2.1 does not define where the edge of a background on a table element lies.

17.6.2.1 Border conflict resolution

In the collapsing border model, borders at every edge of every cell may be specified
by border properties on a variety of elements that meet at that edge (cells, rows, row
groups, columns, column groups, and the table itself), and these borders may vary in
width, style, and color. The rule of thumb is that at each edge the most "eye
catching" border style is chosen, except that any occurrence of the style ’hidden’
unconditionally turns the border off.

The following rules determine which border style "wins" in case of a conflict:

1. Borders with the ’border-style’ of ’hidden’ take precedence over all other
conflicting borders. Any border with this value suppresses all borders at this
location.

2. Borders with a style of ’none’ have the lowest priority. Only if the border
properties of all the elements meeting at this edge are ’none’ will the border be
omitted (but note that ’none’ is the default value for the border style.)

3. If none of the styles are ’hidden’ and at least one of them is not ’none’, then
narrow borders are discarded in favor of wider ones. If several have the same

27923 Apr 2009 15:57

Tables

’border-width’ then styles are preferred in this order: ’double’, ’solid’, ’dashed’,
’dotted’, ’ridge’, ’outset’, ’groove’, and the lowest: ’inset’.

4. If border styles differ only in color, then a style set on a cell wins over one on a
row, which wins over a row group, column, column group and, lastly, table.
When two elements of the same type conflict, then the one further to the left (if
the table’s ’direction’ is ’ltr’; right, if it is ’rtl’) and further to the top wins.

Example(s):

The following example illustrates the application of these precedence rules. This
style sheet:

table { border-collapse: collapse;
 border: 5px solid yellow; }
*#col1 { border: 3px solid black; }
td { border: 1px solid red; padding: 1em; }
td.cell5 { border: 5px dashed blue; }
td.cell6 { border: 5px solid green; }

with this HTML source:

<TABLE>
<COL id="col1"><COL id="col2"><COL id="col3">
<TR id="row1">
 <TD> 1
 <TD> 2
 <TD> 3
</TR>
<TR id="row2">
 <TD> 4
 <TD class="cell5"> 5
 <TD class="cell6"> 6
</TR>
<TR id="row3">
 <TD> 7
 <TD> 8
 <TD> 9
</TR>
<TR id="row4">
 <TD> 10
 <TD> 11
 <TD> 12
</TR>
<TR id="row5">
 <TD> 13
 <TD> 14
 <TD> 15
</TR>
</TABLE>

would produce something like this:

23 Apr 2009 15:57280

Tables

11

4

2

15

12

9

14

8

13

10

7

1

5

3

6

An example of a table with collapsed borders.

Example(s):

Here is an example of hidden collapsing borders:

Table with two omitted internal borders.

HTML source:

<TABLE style="border-collapse: collapse; border: solid;">
<TR><TD style="border-right: hidden; border-bottom: hidden">foo</TD>
 <TD style="border: solid">bar</TD></TR>
<TR><TD style="border: none">foo</TD>
 <TD style="border: solid">bar</TD></TR>
</TABLE>

17.6.3 Border styles
Some of the values of the ’border-style’ have different meanings in tables than for
other elements. In the list below they are marked with an asterisk.

none
No border.

*hidden
Same as ’none’, but in the collapsing border model [p. 278] , also inhibits any
other border (see the section on border conflicts [p. 279]).

dotted
The border is a series of dots.

dashed
The border is a series of short line segments.

28123 Apr 2009 15:57

Tables

solid
The border is a single line segment.

double
The border is two solid lines. The sum of the two lines and the space between
them equals the value of ’border-width’.

groove
The border looks as though it were carved into the canvas.

ridge
The opposite of ’groove’: the border looks as though it were coming out of the
canvas.

*inset
In the separated borders model [p. 275] , the border makes the entire box look
as though it were embedded in the canvas. In the collapsing border model
[p. 278] , same as ’ridge’.

*outset
In the separated borders model [p. 275] , the border makes the entire box look
as though it were coming out of the canvas. In the collapsing border model
[p. 278] , same as ’groove’.

23 Apr 2009 15:57282

Tables

18 User interface
Contents

........... 28318.1 Cursors: the ’cursor’ property

............... 28418.2 System Colors

............ 28618.3 User preferences for fonts

......... 28618.4 Dynamic outlines: the ’outline’ property

........... 28818.4.1 Outlines and the focus

............... 28918.5 Magnification

18.1 Cursors: the ’cursor’ property
’cursor’

Value: [[<uri> ,]* [auto | crosshair | default | pointer | move | e-resize
| ne-resize | nw-resize | n-resize | se-resize | sw-resize |
s-resize | w-resize | text | wait | help | progress]] | inherit

Initial: auto
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: visual, interactive
Computed value: as specified, except with any relative URLs converted to

absolute

This property specifies the type of cursor to be displayed for the pointing device.
Values have the following meanings:

auto
The UA determines the cursor to display based on the current context.

crosshair
A simple crosshair (e.g., short line segments resembling a "+" sign).

default
The platform-dependent default cursor. Often rendered as an arrow.

pointer
The cursor is a pointer that indicates a link.

move
Indicates something is to be moved.

e-resize, ne-resize, nw-resize, n-resize, se-resize, sw-resize, s-resize, w-resize
Indicate that some edge is to be moved. For example, the ’se-resize’ cursor is
used when the movement starts from the south-east corner of the box.

28323 Apr 2009 15:57

User interface

text
Indicates text that may be selected. Often rendered as an I-beam.

wait
Indicates that the program is busy and the user should wait. Often rendered as
a watch or hourglass.

progress
A progress indicator. The program is performing some processing, but is
different from ’wait’ in that the user may still interact with the program. Often
rendered as a spinning beach ball, or an arrow with a watch or hourglass.

help
Help is available for the object under the cursor. Often rendered as a question
mark or a balloon.

<uri>
The user agent retrieves the cursor from the resource designated by the URI. If
the user agent cannot handle the first cursor of a list of cursors, it should
attempt to handle the second, etc. If the user agent cannot handle any
user-defined cursor, it must use the generic cursor at the end of the list. Intrinsic
sizes for cursors are calculated as for background images, [p. 224] except that a
UA-defined rectangle is used in place of the rectangle that establishes the
coordinate system for the ’background-image’ property. This UA-defined
rectangle should be based on the size of a typical cursor on the UA’s operating
system. If the resulting cursor size does not fit within this rectangle, the UA may
proportionally scale the resulting cursor down until it fits within the rectangle.

Example(s):

:link,:visited { cursor: url(example.svg#linkcursor), url(hyper.cur), pointer }

This example sets the cursor on all hyperlinks (whether visited or not) to an
external SVG cursor [p. ??] . User agents that don’t support SVG cursors would
simply skip to the next value and attempt to use the "hyper.cur" cursor. If that cursor
format was also not supported, the UA would skip to the next value and simply
render the ’pointer’ cursor.

18.2 System Colors
Note. The System Colors are deprecated in the CSS3 Color Module [CSS3COLOR].

In addition to being able to assign pre-defined color values [p. 63] to text,
backgrounds, etc., CSS2 introduced a set of named color values that allows authors
to specify colors in a manner that integrates them into the operating system’s
graphic environment.

For systems that do not have a corresponding value, the specified value should be
mapped to the nearest system value, or to a default color.

The following lists additional values for color-related CSS properties and their
general meaning. Any color property (e.g., ’color’ or ’background-color’) can take one
of the following names. Although these are case-insensitive, it is recommended that

23 Apr 2009 15:57284

User interface

the mixed capitalization shown below be used, to make the names more legible.

ActiveBorder
Active window border.

ActiveCaption
Active window caption.

AppWorkspace
Background color of multiple document interface.

Background
Desktop background.

ButtonFace
Face color for three-dimensional display elements.

ButtonHighlight
Highlight color for three-dimensional display elements (for edges facing away
from the light source).

ButtonShadow
Shadow color for three-dimensional display elements.

ButtonText
Text on push buttons.

CaptionText
Text in caption, size box, and scrollbar arrow box.

GrayText
Grayed (disabled) text. This color is set to #000 if the current display driver does
not support a solid gray color.

Highlight
Item(s) selected in a control.

HighlightText
Text of item(s) selected in a control.

InactiveBorder
Inactive window border.

InactiveCaption
Inactive window caption.

InactiveCaptionText
Color of text in an inactive caption.

InfoBackground
Background color for tooltip controls.

InfoText
Text color for tooltip controls.

Menu
Menu background.

MenuText
Text in menus.

Scrollbar
Scroll bar gray area.

ThreeDDarkShadow
Dark shadow for three-dimensional display elements.

28523 Apr 2009 15:57

User interface

ThreeDFace
Face color for three-dimensional display elements.

ThreeDHighlight
Highlight color for three-dimensional display elements.

ThreeDLightShadow
Light color for three-dimensional display elements (for edges facing the light
source).

ThreeDShadow
Dark shadow for three-dimensional display elements.

Window
Window background.

WindowFrame
Window frame.

WindowText
Text in windows.

Example(s):

For example, to set the foreground and background colors of a paragraph to the
same foreground and background colors of the user’s window, write the following:

p { color: WindowText; background-color: Window }

18.3 User preferences for fonts
As for colors, authors may specify fonts in a way that makes use of a user’s system
resources. Please consult the ’font’ property for details.

18.4 Dynamic outlines: the ’outline’ property
At times, style sheet authors may want to create outlines around visual objects such
as buttons, active form fields, image maps, etc., to make them stand out. CSS 2.1
outlines differ from borders [p. 114] in the following ways:

1. Outlines do not take up space.
2. Outlines may be non-rectangular.

The outline properties control the style of these dynamic outlines.

’outline’

23 Apr 2009 15:57286

User interface

Value: [<’outline-color’> || <’outline-style’> || <’outline-width’>] |
inherit

Initial: see individual properties
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual, interactive
Computed value: see individual properties

’outline-width’

Value: <border-width> | inherit
Initial: medium
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual, interactive
Computed value: absolute length; ’0’ if the outline style is ’none’

’outline-style’

Value: <border-style> | inherit
Initial: none
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual, interactive
Computed value: as specified

’outline-color’

Value: <color> | invert | inherit
Initial: invert
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual, interactive
Computed value: as specified

The outline created with the outline properties is drawn "over" a box, i.e., the
outline is always on top, and doesn’t influence the position or size of the box, or of
any other boxes. Therefore, displaying or suppressing outlines does not cause
reflow or overflow.

28723 Apr 2009 15:57

User interface

The outline may be drawn starting just outside the border edge [p. 106] .

Outlines may be non-rectangular. For example, if the element is broken across
several lines, the outline is the minimum outline that encloses all the element’s
boxes. In contrast to borders [p. 114] , the outline is not open at the line box’s end or
start, but is always fully connected if possible.

The ’outline-width’ property accepts the same values as ’border-width’.

The ’outline-style’ property accepts the same values as ’border-style’, except that
’hidden’ is not a legal outline style.

The ’outline-color’ accepts all colors, as well as the keyword ’invert’. ’Invert’ is
expected to perform a color inversion on the pixels on the screen. This is a common
trick to ensure the focus border is visible, regardless of color background.

Conformant UAs may ignore the ’invert’ value on platforms that do not support
color inversion of the pixels on the screen. If the UA does not support the ’invert’
value then the initial value of the ’outline-color’ property is the value of the ’color’
property, similar to the initial value of the ’border-top-color’ property.

The ’outline’ property is a shorthand property, and sets all three of ’outline-style’,
’outline-width’, and ’outline-color’.

Note. The outline is the same on all sides. In contrast to borders, there is no
’outline-top’ or ’outline-left’ property.

This specification does not define how multiple overlapping outlines are drawn, or
how outlines are drawn for boxes that are partially obscured behind other elements.

Note. Since the outline does not affect formatting (i.e., no space is left for it in the
box model), it may well overlap other elements on the page.

Example(s):

Here’s an example of drawing a thick outline around a BUTTON element:

button { outline : thick solid}

Scripts may be used to dynamically change the width of the outline, without
provoking a reflow.

18.4.1 Outlines and the focus
Graphical user interfaces may use outlines around elements to tell the user which
element on the page has the focus. These outlines are in addition to any borders,
and switching outlines on and off should not cause the document to reflow. The
focus is the subject of user interaction in a document (e.g., for entering text,
selecting a button, etc.). User agents supporting the interactive media group [p. 104]
must keep track of where the focus lies and must also represent the focus. This may
be done by using dynamic outlines in conjunction with the :focus pseudo-class.

23 Apr 2009 15:57288

User interface

Example(s):

For example, to draw a thick black line around an element when it has the focus,
and a thick red line when it is active, the following rules can be used:

:focus { outline: thick solid black }
:active { outline: thick solid red }

18.5 Magnification
The CSS working group considers that the magnification of a document or portions
of a document should not be specified through style sheets. User agents may
support such magnification in different ways (e.g., larger images, louder sounds,
etc.)

When magnifying a page, UAs should preserve the relationships between
positioned elements. For example, a comic strip may be composed of images with
overlaid text elements. When magnifying this page, a user agent should keep the
text within the comic strip balloon.

28923 Apr 2009 15:57

User interface

23 Apr 2009 15:57290

User interface

Appendix A. Aural style sheets
Contents

.......... 291A.1 The media types ’aural’ and ’speech’

........... 292A.2 Introduction to aural style sheets

............... 293A.2.1 Angles

............... 293A.2.2 Times

.............. 293A.2.3 Frequencies

............ 294A.3 Volume properties: ’volume’

............ 295A.4 Speaking properties: ’speak’

.... 296A.5 Pause properties: ’pause-before’, ’pause-after’, and ’pause’

...... 297A.6 Cue properties: ’cue-before’, ’cue-after’, and ’cue’

........... 298A.7 Mixing properties: ’play-during’

........ 299A.8 Spatial properties: ’azimuth’ and ’elevation’
A.9 Voice characteristic properties: ’speech-rate’, ’voice-family’, ’pitch’,

........... 302’pitch-range’, ’stress’, and ’richness’

... 306A.10 Speech properties: ’speak-punctuation’ and ’speak-numeral’

............ 307A.11 Audio rendering of tables

..... 307A.11.1 Speaking headers: the ’speak-header’ property

........... 310A.12 Sample style sheet for HTML

............... 310A.13 Emacspeak

This chapter is informative. UAs are not required to implement the properties of
this chapter in order to conform to CSS 2.1.

A.1 The media types ’aural’ and ’speech’
We expect that in a future level of CSS there will be new properties and values
defined for speech output. Therefore CSS 2.1 reserves the ’speech’ media type (see
chapter 7, "Media types" [p. 101]), but does not yet define which properties do or do
not apply to it.

The properties in this appendix apply to a media type ’aural’, that was introduced
in CSS2. The type ’aural’ is now deprecated.

This means that a style sheet such as

@media speech {
 body { voice-family: Paul }
}

is valid, but that its meaning is not defined by CSS 2.1, while

29123 Apr 2009 15:57

Aural style sheets

@media aural {
 body { voice-family: Paul }
}

is deprecated, but defined by this appendix.

A.2 Introduction to aural style sheets
The aural rendering of a document, already commonly used by the blind and
print-impaired communities, combines speech synthesis and "auditory icons." Often
such aural presentation occurs by converting the document to plain text and feeding
this to a screen reader -- software or hardware that simply reads all the characters
on the screen. This results in less effective presentation than would be the case if
the document structure were retained. Style sheet properties for aural presentation
may be used together with visual properties (mixed media) or as an aural alternative
to visual presentation.

Besides the obvious accessibility advantages, there are other large markets for
listening to information, including in-car use, industrial and medical documentation
systems (intranets), home entertainment, and to help users learning to read or who
have difficulty reading.

When using aural properties, the canvas consists of a three-dimensional physical
space (sound surrounds) and a temporal space (one may specify sounds before,
during, and after other sounds). The CSS properties also allow authors to vary the
quality of synthesized speech (voice type, frequency, inflection, etc.).

Example(s):

h1, h2, h3, h4, h5, h6 {
 voice-family: paul;
 stress: 20;
 richness: 90;
 cue-before: url("ping.au")
}
p.heidi { azimuth: center-left }
p.peter { azimuth: right }
p.goat { volume: x-soft }

This will direct the speech synthesizer to speak headers in a voice (a kind of
"audio font") called "paul", on a flat tone, but in a very rich voice. Before speaking the
headers, a sound sample will be played from the given URL. Paragraphs with class
"heidi" will appear to come from front left (if the sound system is capable of spatial
audio), and paragraphs of class "peter" from the right. Paragraphs with class "goat"
will be very soft.

23 Apr 2009 15:57292

Aural style sheets

A.2.1 Angles
Angle values are denoted by <angle> in the text. Their format is a <number>
immediately followed by an angle unit identifier.

Angle unit identifiers are:

deg : degrees
grad : grads
rad : radians

Angle values may be negative. They should be normalized to the range 0-360deg
by the user agent. For example, -10deg and 350deg are equivalent.

For example, a right angle is ’90deg’ or ’100grad’ or ’1.570796326794897rad’.

Like for <length>, the unit may be omitted, if the value is zero: ’0deg’ may be
written as ’0’.

A.2.2 Times
Time values are denoted by <time> in the text. Their format is a <number>
immediately followed by a time unit identifier.

Time unit identifiers are:

ms : milliseconds
s: seconds

Time values may not be negative.

Like for <length>, the unit may be omitted, if the value is zero: ’0s’ may be written
as ’0’.

A.2.3 Frequencies
Frequency values are denoted by <frequency> in the text. Their format is a
<number> immediately followed by a frequency unit identifier.

Frequency unit identifiers are:

Hz: Hertz
kHz: kilohertz

Frequency values may not be negative.

For example, 200Hz (or 200hz) is a bass sound, and 6kHz is a treble sound.

Like for <length>, the unit may be omitted, if the value is zero: ’0Hz’ may be
written as ’0’.

29323 Apr 2009 15:57

Aural style sheets

A.3 Volume properties: ’volume’
’volume’

Value: <number> | <percentage> | silent | x-soft | soft | medium |
loud | x-loud | inherit

Initial: medium
Applies to: all elements
Inherited: yes
Percentages: refer to inherited value
Media: aural
Computed value: number

Volume refers to the median volume of the waveform. In other words, a highly
inflected voice at a volume of 50 might peak well above that. The overall values are
likely to be human adjustable for comfort, for example with a physical volume control
(which would increase both the 0 and 100 values proportionately); what this property
does is adjust the dynamic range.

Values have the following meanings:

<number>
Any number between ’0’ and ’100’. ’0’ represents the minimum audible volume
level and 100 corresponds to the maximum comfortable level.

<percentage>
Percentage values are calculated relative to the inherited value, and are then
clipped to the range ’0’ to ’100’.

silent
No sound at all. The value ’0’ does not mean the same as ’silent’.

x-soft
Same as ’0’.

soft
Same as ’25’.

medium
Same as ’50’.

loud
Same as ’75’.

x-loud
Same as ’100’.

User agents should allow the values corresponding to ’0’ and ’100’ to be set by the
listener. No one setting is universally applicable; suitable values depend on the
equipment in use (speakers, headphones), the environment (in car, home theater,
library) and personal preferences. Some examples:

23 Apr 2009 15:57294

Aural style sheets

A browser for in-car use has a setting for when there is lots of background
noise. ’0’ would map to a fairly high level and ’100’ to a quite high level. The
speech is easily audible over the road noise but the overall dynamic range is
compressed. Cars with better insulation might allow a wider dynamic range.
Another speech browser is being used in an apartment, late at night, or in a
shared study room. ’0’ is set to a very quiet level and ’100’ to a fairly quiet level,
too. As with the first example, there is a low slope; the dynamic range is
reduced. The actual volumes are low here, whereas they were high in the first
example.
In a quiet and isolated house, an expensive hi-fi home theater setup. ’0’ is set
fairly low and ’100’ to quite high; there is wide dynamic range.

The same author style sheet could be used in all cases, simply by mapping the ’0’
and ’100’ points suitably at the client side.

A.4 Speaking properties: ’speak’
’speak’

Value: normal | none | spell-out | inherit
Initial: normal
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: aural
Computed value: as specified

This property specifies whether text will be rendered aurally and if so, in what
manner. The possible values are:

none
Suppresses aural rendering so that the element requires no time to render.
Note, however, that descendants may override this value and will be spoken.
(To be sure to suppress rendering of an element and its descendants, use the
’display’ property).

normal
Uses language-dependent pronunciation rules for rendering an element and its
children.

spell-out
Spells the text one letter at a time (useful for acronyms and abbreviations).

Note the difference between an element whose ’volume’ property has a value of
’silent’ and an element whose ’speak’ property has the value ’none’. The former
takes up the same time as if it had been spoken, including any pause before and
after the element, but no sound is generated. The latter requires no time and is not
rendered (though its descendants may be).

29523 Apr 2009 15:57

Aural style sheets

A.5 Pause properties: ’pause-before’, ’pause-after’,
and ’pause’
’pause-before’

Value: <time> | <percentage> | inherit
Initial: 0
Applies to: all elements
Inherited: no
Percentages: see prose
Media: aural
Computed value: time

’pause-after’

Value: <time> | <percentage> | inherit
Initial: 0
Applies to: all elements
Inherited: no
Percentages: see prose
Media: aural
Computed value: time;;

These properties specify a pause to be observed before (or after) speaking an
element’s content. Values have the following meanings:

Note. In CSS3 pauses are inserted around the cues and content rather than
between them. See [CSS3SPEECH] for details.

<time>
Expresses the pause in absolute time units (seconds and milliseconds).

<percentage>
Refers to the inverse of the value of the ’speech-rate’ property. For example, if
the speech-rate is 120 words per minute (i.e., a word takes half a second, or
500ms) then a ’pause-before’ of 100% means a pause of 500 ms and a
’pause-before’ of 20% means 100ms.

The pause is inserted between the element’s content and any ’cue-before’ or
’cue-after’ content.

Authors should use relative units to create more robust style sheets in the face of
large changes in speech-rate.

’pause’

23 Apr 2009 15:57296

Aural style sheets

Value: [[<time> | <percentage>]{1,2}] | inherit
Initial: see individual properties
Applies to: all elements
Inherited: no
Percentages: see descriptions of ’pause-before’ and ’pause-after’
Media: aural
Computed value: see individual properties

The ’pause’ property is a shorthand for setting ’pause-before’ and ’pause-after’. If
two values are given, the first value is ’pause-before’ and the second is ’pause-after’.
If only one value is given, it applies to both properties.

Example(s):

h1 { pause: 20ms } /* pause-before: 20ms; pause-after: 20ms */
h2 { pause: 30ms 40ms } /* pause-before: 30ms; pause-after: 40ms */
h3 { pause-after: 10ms } /* pause-before unspecified; pause-after: 10ms */

A.6 Cue properties: ’cue-before’, ’cue-after’, and ’cue’
’cue-before’

Value: <uri> | none | inherit
Initial: none
Applies to: all elements
Inherited: no
Percentages: N/A
Media: aural
Computed value: absolute URI or ’none’

’cue-after’

Value: <uri> | none | inherit
Initial: none
Applies to: all elements
Inherited: no
Percentages: N/A
Media: aural
Computed value: absolute URI or ’none’

Auditory icons are another way to distinguish semantic elements. Sounds may be
played before and/or after the element to delimit it. Values have the following
meanings:

<uri>
The URI must designate an auditory icon resource. If the URI resolves to
something other than an audio file, such as an image, the resource should be

29723 Apr 2009 15:57

Aural style sheets

ignored and the property treated as if it had the value ’none’.
none

No auditory icon is specified.

Example(s):

a {cue-before: url("bell.aiff"); cue-after: url("dong.wav") }
h1 {cue-before: url("pop.au"); cue-after: url("pop.au") }

’cue’

Value: [<’cue-before’> || <’cue-after’>] | inherit
Initial: see individual properties
Applies to: all elements
Inherited: no
Percentages: N/A
Media: aural
Computed value: see individual properties

The ’cue’ property is a shorthand for setting ’cue-before’ and ’cue-after’. If two
values are given, the first value is ’cue-before’ and the second is ’cue-after’. If only
one value is given, it applies to both properties.

Example(s):

The following two rules are equivalent:

h1 {cue-before: url("pop.au"); cue-after: url("pop.au") }
h1 {cue: url("pop.au") }

If a user agent cannot render an auditory icon (e.g., the user’s environment does
not permit it), we recommend that it produce an alternative cue.

Please see the sections on the :before and :after pseudo-elements [p. 195] for
information on other content generation techniques. ’cue-before’ sounds and
’pause-before’ gaps are inserted before content from the ’:before’ pseudo-element.
Similarly, ’pause-after’ gaps and ’cue-after’ sounds are inserted after content from
the ’:after’ pseudo-element.

A.7 Mixing properties: ’play-during’
’play-during’

23 Apr 2009 15:57298

Aural style sheets

Value: <uri> [mix || repeat]? | auto | none | inherit
Initial: auto
Applies to: all elements
Inherited: no
Percentages: N/A
Media: aural
Computed value: absolute URI, rest as specified

Similar to the ’cue-before’ and ’cue-after’ properties, this property specifies a
sound to be played as a background while an element’s content is spoken. Values
have the following meanings:

<uri>
The sound designated by this <uri> is played as a background while the
element’s content is spoken.

mix
When present, this keyword means that the sound inherited from the parent
element’s ’play-during’ property continues to play and the sound designated by
the <uri> is mixed with it. If ’mix’ is not specified, the element’s background
sound replaces the parent’s.

repeat
When present, this keyword means that the sound will repeat if it is too short to
fill the entire duration of the element. Otherwise, the sound plays once and then
stops. This is similar to the ’background-repeat’ property. If the sound is too long
for the element, it is clipped once the element has been spoken.

auto
The sound of the parent element continues to play (it is not restarted, which
would have been the case if this property had been inherited).

none
This keyword means that there is silence. The sound of the parent element (if
any) is silent during the current element and continues after the current element.

Example(s):

blockquote.sad { play-during: url("violins.aiff") }
blockquote Q { play-during: url("harp.wav") mix }
span.quiet { play-during: none }

A.8 Spatial properties: ’azimuth’ and ’elevation’
Spatial audio is an important stylistic property for aural presentation. It provides a
natural way to tell several voices apart, as in real life (people rarely all stand in the
same spot in a room). Stereo speakers produce a lateral sound stage. Binaural
headphones or the increasingly popular 5-speaker home theater setups can
generate full surround sound, and multi-speaker setups can create a true
three-dimensional sound stage. VRML 2.0 also includes spatial audio, which implies
that in time consumer-priced spatial audio hardware will become more widely

29923 Apr 2009 15:57

Aural style sheets

available.

’azimuth’

Value: <angle> | [[left-side | far-left | left | center-left | center |
center-right | right | far-right | right-side] || behind] | leftwards
| rightwards | inherit

Initial: center
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: aural
Computed value: normalized angle

Values have the following meanings:

<angle>
Position is described in terms of an angle within the range ’-360deg’ to ’360deg’.
The value ’0deg’ means directly ahead in the center of the sound stage. ’90deg’
is to the right, ’180deg’ behind, and ’270deg’ (or, equivalently and more
conveniently, ’-90deg’) to the left.

left-side
Same as ’270deg’. With ’behind’, ’270deg’.

far-left
Same as ’300deg’. With ’behind’, ’240deg’.

left
Same as ’320deg’. With ’behind’, ’220deg’.

center-left
Same as ’340deg’. With ’behind’, ’200deg’.

center
Same as ’0deg’. With ’behind’, ’180deg’.

center-right
Same as ’20deg’. With ’behind’, ’160deg’.

right
Same as ’40deg’. With ’behind’, ’140deg’.

far-right
Same as ’60deg’. With ’behind’, ’120deg’.

right-side
Same as ’90deg’. With ’behind’, ’90deg’.

leftwards
Moves the sound to the left, relative to the current angle. More precisely,
subtracts 20 degrees. Arithmetic is carried out modulo 360 degrees. Note that
’leftwards’ is more accurately described as "turned counter-clockwise," since it
always subtracts 20 degrees, even if the inherited azimuth is already behind the
listener (in which case the sound actually appears to move to the right).

23 Apr 2009 15:57300

Aural style sheets

rightwards
Moves the sound to the right, relative to the current angle. More precisely, adds
20 degrees. See ’leftwards’ for arithmetic.

This property is most likely to be implemented by mixing the same signal into
different channels at differing volumes. It might also use phase shifting, digital delay,
and other such techniques to provide the illusion of a sound stage. The precise
means used to achieve this effect and the number of speakers used to do so are
user agent-dependent; this property merely identifies the desired end result.

Example(s):

h1 { azimuth: 30deg }
td.a { azimuth: far-right } /* 60deg */
#12 { azimuth: behind far-right } /* 120deg */
p.comment { azimuth: behind } /* 180deg */

If spatial-azimuth is specified and the output device cannot produce sounds
behind the listening position, user agents should convert values in the rearwards
hemisphere to forwards hemisphere values. One method is as follows:

if 90deg < x <= 180deg then x := 180deg - x
if 180deg < x <= 270deg then x := 540deg - x

’elevation’

Value: <angle> | below | level | above | higher | lower | inherit
Initial: level
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: aural
Computed value: normalized angle

Values of this property have the following meanings:

<angle>
Specifies the elevation as an angle, between ’-90deg’ and ’90deg’. ’0deg’
means on the forward horizon, which loosely means level with the listener.
’90deg’ means directly overhead and ’-90deg’ means directly below.

below
Same as ’-90deg’.

level
Same as ’0deg’.

above
Same as ’90deg’.

higher
Adds 10 degrees to the current elevation.

30123 Apr 2009 15:57

Aural style sheets

lower
Subtracts 10 degrees from the current elevation.

The precise means used to achieve this effect and the number of speakers used
to do so are undefined. This property merely identifies the desired end result.

Example(s):

h1 { elevation: above }
tr.a { elevation: 60deg }
tr.b { elevation: 30deg }
tr.c { elevation: level }

A.9 Voice characteristic properties: ’speech-rate’,
’voice-family’, ’pitch’, ’pitch-range’, ’stress’, and
’richness’
’speech-rate’

Value: <number> | x-slow | slow | medium | fast | x-fast | faster |
slower | inherit

Initial: medium
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: aural
Computed value: number

This property specifies the speaking rate. Note that both absolute and relative
keyword values are allowed (compare with ’font-size’). Values have the following
meanings:

<number>
Specifies the speaking rate in words per minute, a quantity that varies
somewhat by language but is nevertheless widely supported by speech
synthesizers.

x-slow
Same as 80 words per minute.

slow
Same as 120 words per minute

medium
Same as 180 - 200 words per minute.

fast
Same as 300 words per minute.

x-fast
Same as 500 words per minute.

23 Apr 2009 15:57302

Aural style sheets

faster
Adds 40 words per minute to the current speech rate.

slower
Subtracts 40 words per minutes from the current speech rate.

’voice-family’

Value: [[<specific-voice> | <generic-voice>],]* [<specific-voice> |
<generic-voice>] | inherit

Initial: depends on user agent
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: aural
Computed value: as specified

The value is a comma-separated, prioritized list of voice family names (compare
with ’font-family’). Values have the following meanings:

<generic-voice>
Values are voice families. Possible values are ’male’, ’female’, and ’child’.

<specific-voice>
Values are specific instances (e.g., comedian, trinoids, carlos, lani).

Example(s):

h1 { voice-family: announcer, male }
p.part.romeo { voice-family: romeo, male }
p.part.juliet { voice-family: juliet, female }

Names of specific voices may be quoted, and indeed must be quoted if any of the
words that make up the name does not conform to the syntax rules for identifiers
[p. 46] . It is also recommended to quote specific voices with a name consisting of
more than one word. If quoting is omitted, any white space [p. 49] characters before
and after the voice family name are ignored and any sequence of white space
characters inside the voice family name is converted to a single space.

’pitch’

Value: <frequency> | x-low | low | medium | high | x-high | inherit
Initial: medium
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: aural
Computed value: frequency

30323 Apr 2009 15:57

Aural style sheets

Specifies the average pitch (a frequency) of the speaking voice. The average pitch
of a voice depends on the voice family. For example, the average pitch for a
standard male voice is around 120Hz, but for a female voice, it’s around 210Hz.

Values have the following meanings:

<frequency>
Specifies the average pitch of the speaking voice in hertz (Hz).

x-low , low , medium , high , x-high
These values do not map to absolute frequencies since these values depend on
the voice family. User agents should map these values to appropriate
frequencies based on the voice family and user environment. However, user
agents must map these values in order (i.e., ’x-low’ is a lower frequency than
’low’, etc.).

’pitch-range’

Value: <number> | inherit
Initial: 50
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: aural
Computed value: as specified

Specifies variation in average pitch. The perceived pitch of a human voice is
determined by the fundamental frequency and typically has a value of 120Hz for a
male voice and 210Hz for a female voice. Human languages are spoken with varying
inflection and pitch; these variations convey additional meaning and emphasis. Thus,
a highly animated voice, i.e., one that is heavily inflected, displays a high pitch
range. This property specifies the range over which these variations occur, i.e., how
much the fundamental frequency may deviate from the average pitch.

Values have the following meanings:

<number>
A value between ’0’ and ’100’. A pitch range of ’0’ produces a flat, monotonic
voice. A pitch range of 50 produces normal inflection. Pitch ranges greater than
50 produce animated voices.

’stress’

23 Apr 2009 15:57304

Aural style sheets

Value: <number> | inherit
Initial: 50
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: aural
Computed value: as specified

Specifies the height of "local peaks" in the intonation contour of a voice. For
example, English is a stressed language, and different parts of a sentence are
assigned primary, secondary, or tertiary stress. The value of ’stress’ controls the
amount of inflection that results from these stress markers. This property is a
companion to the ’pitch-range’ property and is provided to allow developers to exploit
higher-end auditory displays.

Values have the following meanings:

<number>
A value, between ’0’ and ’100’. The meaning of values depends on the language
being spoken. For example, a level of ’50’ for a standard, English-speaking male
voice (average pitch = 122Hz), speaking with normal intonation and emphasis
would have a different meaning than ’50’ for an Italian voice.

’richness’

Value: <number> | inherit
Initial: 50
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: aural
Computed value: as specified

Specifies the richness, or brightness, of the speaking voice. A rich voice will
"carry" in a large room, a smooth voice will not. (The term "smooth" refers to how the
wave form looks when drawn.)

Values have the following meanings:

<number>
A value between ’0’ and ’100’. The higher the value, the more the voice will
carry. A lower value will produce a soft, mellifluous voice.

30523 Apr 2009 15:57

Aural style sheets

A.10 Speech properties: ’speak-punctuation’ and
’speak-numeral’
An additional speech property, ’speak-header’, is described below.

’speak-punctuation’

Value: code | none | inherit
Initial: none
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: aural
Computed value: as specified

This property specifies how punctuation is spoken. Values have the following
meanings:

code
Punctuation such as semicolons, braces, and so on are to be spoken literally.

none
Punctuation is not to be spoken, but instead rendered naturally as various
pauses.

’speak-numeral’

Value: digits | continuous | inherit
Initial: continuous
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: aural
Computed value: as specified

This property controls how numerals are spoken. Values have the following
meanings:

digits
Speak the numeral as individual digits. Thus, "237" is spoken "Two Three
Seven".

continuous
Speak the numeral as a full number. Thus, "237" is spoken "Two hundred thirty
seven". Word representations are language-dependent.

23 Apr 2009 15:57306

Aural style sheets

A.11 Audio rendering of tables
When a table is spoken by a speech generator, the relation between the data cells
and the header cells must be expressed in a different way than by horizontal and
vertical alignment. Some speech browsers may allow a user to move around in the
2-dimensional space, thus giving them the opportunity to map out the spatially
represented relations. When that is not possible, the style sheet must specify at
which points the headers are spoken.

A.11.1 Speaking headers: the ’speak-header’ property

’speak-header’

Value: once | always | inherit
Initial: once
Applies to: elements that have table header information
Inherited: yes
Percentages: N/A
Media: aural
Computed value: as specified

This property specifies whether table headers are spoken before every cell, or
only before a cell when that cell is associated with a different header than the
previous cell. Values have the following meanings:

once
The header is spoken one time, before a series of cells.

always
The header is spoken before every pertinent cell.

Each document language may have different mechanisms that allow authors to
specify headers. For example, in HTML 4 ([HTML4]), it is possible to specify header
information with three different attributes ("headers", "scope", and "axis"), and the
specification gives an algorithm for determining header information when these
attributes have not been specified.

30723 Apr 2009 15:57

Aural style sheets

Image of a table with header cells ("San Jose" and "Seattle") that are not in the
same column or row as the data they apply to.

This HTML example presents the money spent on meals, hotels and transport in
two locations (San Jose and Seattle) for successive days. Conceptually, you can
think of the table in terms of an n-dimensional space. The headers of this space are:
location, day, category and subtotal. Some cells define marks along an axis while
others give money spent at points within this space. The markup for this table is:

<TABLE>
<CAPTION>Travel Expense Report</CAPTION>
<TR>
 <TH></TH>
 <TH>Meals</TH>
 <TH>Hotels</TH>
 <TH>Transport</TH>
 <TH>subtotal</TH>
</TR>
<TR>
 <TH id="san-jose" axis="san-jose">San Jose</TH>
</TR>
<TR>
 <TH headers="san-jose">25-Aug-97</TH>
 <TD>37.74</TD>
 <TD>112.00</TD>
 <TD>45.00</TD>
 <TD></TD>
</TR>
<TR>
 <TH headers="san-jose">26-Aug-97</TH>
 <TD>27.28</TD>
 <TD>112.00</TD>
 <TD>45.00</TD>
 <TD></TD>
</TR>
<TR>
 <TH headers="san-jose">subtotal</TH>
 <TD>65.02</TD>
 <TD>224.00</TD>
 <TD>90.00</TD>

23 Apr 2009 15:57308

Aural style sheets

 <TD>379.02</TD>
</TR>
<TR>
 <TH id="seattle" axis="seattle">Seattle</TH>
</TR>
<TR>
 <TH headers="seattle">27-Aug-97</TH>
 <TD>96.25</TD>
 <TD>109.00</TD>
 <TD>36.00</TD>
 <TD></TD>
</TR>
<TR>
 <TH headers="seattle">28-Aug-97</TH>
 <TD>35.00</TD>
 <TD>109.00</TD>
 <TD>36.00</TD>
 <TD></TD>
</TR>
<TR>
 <TH headers="seattle">subtotal</TH>
 <TD>131.25</TD>
 <TD>218.00</TD>
 <TD>72.00</TD>
 <TD>421.25</TD>
</TR>
<TR>
 <TH>Totals</TH>
 <TD>196.27</TD>
 <TD>442.00</TD>
 <TD>162.00</TD>
 <TD>800.27</TD>
</TR>
</TABLE>

By providing the data model in this way, authors make it possible for speech
enabled-browsers to explore the table in rich ways, e.g., each cell could be spoken
as a list, repeating the applicable headers before each data cell:

 San Jose, 25-Aug-97, Meals: 37.74
 San Jose, 25-Aug-97, Hotels: 112.00
 San Jose, 25-Aug-97, Transport: 45.00
 ...

The browser could also speak the headers only when they change:

San Jose, 25-Aug-97, Meals: 37.74
 Hotels: 112.00
 Transport: 45.00
 26-Aug-97, Meals: 27.28
 Hotels: 112.00
...

30923 Apr 2009 15:57

Aural style sheets

A.12 Sample style sheet for HTML
This style sheet describes a possible rendering of HTML 4:

@media aural {
h1, h2, h3,
h4, h5, h6 { voice-family: paul, male; stress: 20; richness: 90 }
h1 { pitch: x-low; pitch-range: 90 }
h2 { pitch: x-low; pitch-range: 80 }
h3 { pitch: low; pitch-range: 70 }
h4 { pitch: medium; pitch-range: 60 }
h5 { pitch: medium; pitch-range: 50 }
h6 { pitch: medium; pitch-range: 40 }
li, dt, dd { pitch: medium; richness: 60 }
dt { stress: 80 }
pre, code, tt { pitch: medium; pitch-range: 0; stress: 0; richness: 80 }
em { pitch: medium; pitch-range: 60; stress: 60; richness: 50 }
strong { pitch: medium; pitch-range: 60; stress: 90; richness: 90 }
dfn { pitch: high; pitch-range: 60; stress: 60 }
s, strike { richness: 0 }
i { pitch: medium; pitch-range: 60; stress: 60; richness: 50 }
b { pitch: medium; pitch-range: 60; stress: 90; richness: 90 }
u { richness: 0 }
a:link { voice-family: harry, male }
a:visited { voice-family: betty, female }
a:active { voice-family: betty, female; pitch-range: 80; pitch: x-high }
}

A.13 Emacspeak
For information, here is the list of properties implemented by Emacspeak, a speech
subsystem for the Emacs editor.

voice-family
stress (but with a different range of values)
richness (but with a different range of values)
pitch (but with differently named values)
pitch-range (but with a different range of values)

(We thank T. V. Raman for the information about implementation status of aural
properties.)

23 Apr 2009 15:57310

Aural style sheets

Appendix B. Bibliography
Contents

............. 311B.1 Normative references

............. 313B.2 Informative references

B.1 Normative references
[COLORIMETRY]

"Colorimetry", Third Edition, Commission Internationale de l’Eclairage, CIE
Publication 15:2004, ISBN 3-901-906-33-9.
Available at http://www.cie.co.at/publ/abst/15-2004.html [p. ??]

[FLEX]
"Flex: The Lexical Scanner Generator", Version 2.3.7, ISBN 1882114213.

[HTML4]
"HTML 4.01 Specification", D. Raggett, A. Le Hors, I. Jacobs, 24 December
1999.
The latest version of the specification is available at
http://www.w3.org/TR/html4/ [p. ??] . The Recommendation defines three
document type definitions: Strict, Transitional, and Frameset, all reachable from
the Recommendation.

[ICC42]
Specification ICC.1:2004-10 (Profile version 4.2.0.0) Image technology colour
management – Architecture, profile format, and data structure.
Available at http://www.color.org/icc_specs2.html [p. ??]

[ISO8879]
"ISO 8879:1986(E): Information processing - Text and Office Systems -
Standard Generalized Markup Language (SGML)", International Organization
for Standardization (ISO), 15 October 1986.

[ISO10646]
"Information Technology - Universal Multiple- Octet Coded Character Set (UCS)
- Part 1: Architecture and Basic Multilingual Plane", ISO/IEC 10646-1:2003.
Useful roadmap of the BMP and plane 1 [p. ??] documents show which scripts
sit at which numeric ranges.

[PNG]
"Portable Network Graphics (PNG) Specification (Second Edition)", David Duce,
ed., 10 November 2003.
Available at http://www.w3.org/TR/PNG/ [p. ??] .

[RFC3986]
"Uniform Resource Identifier (URI): Generic Syntax," T. Berners-Lee, R.
Fielding, L. Masinter, January 2005.
Available at http://www.ietf.org/rfc/rfc3986 [p. ??] .

31123 Apr 2009 15:57

Bibliography

[RFC2045]
"Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies", N. Freed and N. Borenstein, November 1996.
Available at http://www.ietf.org/rfc/rfc2045.txt [p. ??] . Note that this RFC
obsoletes RFC1521, RFC1522, and RFC1590.

[RFC2616]
"HTTP Version 1.1 ", R. Fielding, J. Gettys, J. Mogul, et al., June 1999.
Available at http://www.ietf.org/rfc/rfc2616.txt [p. ??] .

[RFC2119]
"Key words for use in RFCs to Indicate Requirement Levels", S. Bradner, March
1997.
Available at http://www.ietf.org/rfc/rfc2119.txt [p. ??] .

[RFC2318]
"The text/css Media Type", H. Lie, B. Bos, C. Lilley, March 1998.
Available at http://www.ietf.org/rfc/rfc2318.txt [p. ??] .

[SRGB]
IEC 61966-2-1 (1999-10) - "Multimedia systems and equipment - Colour
measurement and management - Part 2-1: Colour management - Default RGB
colour space - sRGB, ISBN: 2-8318-4989-6 ?ICS codes: 33.160.60, 37.080 ?TC
100 ?51 pp.
Available at http://domino.iec.ch/webstore/webstore.nsf/artnum/025408 [p. ??]

[UAAG10]
"User Agent Accessibility Guidelines 1.0." Ian Jacobs, Jon Gunderson, Eric
Hansen (editors). 17 December 2002.
Available at http://www.w3.org/TR/2002/REC-UAAG10-20021217 [p. ??]

[UNICODE]
The Unicode Consortium. The Unicode Standard, Version 4.1.0, defined by: The
Unicode Standard, Version 4.0 (Boston, MA, Addison-Wesley, 2003. ISBN
0-321-18578-1), as amended by Unicode 4.0.1 [p. ??] and Unicode 4.1.0 [p. ??]
and as updated from time to time by the publication of new versions. (See
http://www.unicode.org/unicode/standard/versions/ [p. ??] for the latest version
and additional information on versions of the standard and of the Unicode
Character Database).
Available at http://www.unicode.org/versions/Unicode4.1.0/ [p. ??]

[XML10]
"Extensible Markup Language (XML) 1.0 (third edition)" T. Bray, J. Paoli, C.M.
Sperberg-McQueen, Eve Maler, Fran~s Yergeau, editors, 4 February 2004.
Available at http://www.w3.org/TR/REC-xml/ [p. ??] .

[YACC]
"YACC - Yet another compiler compiler", S. C. Johnson, Technical Report,
Murray Hill, 1975.

23 Apr 2009 15:57312

Bibliography

B.2 Informative references
[CHARSETS]

Registered charset values. Download a list of registered charset values from
http://www.iana.org/assignments/character-sets [p. ??] .

[CSS1]
"Cascading Style Sheets, level 1", H. W. Lie and B. Bos, 17 December 1996,
revised 11 January 1999
The latest version is available at http://www.w3.org/TR/CSS1 [p. ??]

[CSS2]
"Cascading Style Sheets, level 2, CSS2 Specification", B. Bos, H. W. Lie, C.
Lilley and I. Jacobs, 12 May 1998 (revised 11 April 2008),
http://www.w3.org/TR/2008/REC-CSS2-20080411/ [p. ??]

[CSS3COLOR]
"CSS3 Color Module," Tantek Çelik, Chris Lilley, 14 May 2003, W3C Candidate
Recommendation. Available at
http://www.w3.org/TR/2003/CR-css3-color-20030514/ [p. ??]

[CSS3LIST]
"CSS3 module: lists," Tantek Çelik, Ian Hickson, 7 November 2002, W3C
working draft (work in progress). Available at
http://www.w3.org/TR/2002/WD-css3-lists-20021107 [p. ??]

[CSS3SEL]
"Selectors", D. Glazman, T. ?lik, I. Hickson, 13 November 2001
Available at http://www.w3.org/TR/2001/CR-css3-selectors-20011113 [p. ??]

[CSS3SPEECH]
"CSS3 Speech Module", David Raggett, Daniel Glazman, Claudio
Santambrogio, 14 May 2003, W3C Working Draft (work in progress). Available
at http://www.w3.org/TR/2004/WD-css3-speech-20041216 [p. ??]

[DOM-LEVEL-3-CORE]
"Document Object Model (DOM) Level 3 Core Specification", A. Le Hors, P. Le
H~ret, et al. (eds.), 7 April 2004, W3C Recommendation. Available at
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/ [p. ??] .

[MATH20]
"Mathematical Markup Language (MathML) Version 2.0", D. Carlisle, P. Ion, R.
Miner, N. Poppelier, 21 February 2001
Available at http://www.w3.org/TR/2001/REC-MathML2-20010221 [p. ??]

[MEDIAQ]
"Media Queries", HÃ¥kon Wium Lie, Tantek Ãelik, Daniel Glazman, Anne van
Kesteren, 23 April 2009
(Work in progress.) Available at
http://www.w3.org/TR/2009/CR-css3-mediaqueries-20090423/ [p. ??]

[P3P]
"The Platform for Privacy Preferences 1.0 (P3P1.0) Specification", L. Cranor, M.
Langheinrich, M. Marchiori, M. Presler-Marshall, J. Reagle, 16 April 2002
Available at http://www.w3.org/TR/2002/REC-P3P-20020416 [p. ??]

31323 Apr 2009 15:57

Bibliography

[RFC3066]
"Tags for the Identification of Languages", H. Alvestrand, January 2001.
Available at http://www.ietf.org/rfc/rfc3066.txt [p. ??] .

[SVG11]
"Scalable Vector Graphics (SVG) 1.1 Specification", J. Ferraiolo, et.al. 14
January 2003
Available at http://www.w3.org/TR/2003/REC-SVG11-20030114 [p. ??]

[WAI-PAGEAUTH]
"Web Content Accessibility Guidelines", W. Chisholm, G. Vanderheiden, I.
Jacobs eds.
Available at: http://www.w3.org/TR/WAI-WEBCONTENT/ [p. ??] .

[XHTML]
"XHTML 1.0 The Extensible HyperText Markup Language", various authors,
Available at: http://www.w3.org/TR/xhtml1/ [p. ??] .

[XMLID]
"xml:id Version 1.0", J. Marsh, D. Veillard N. Walsh, 9 November 2004, W3C
working draft (work in progress). Available at:
http://www.w3.org/TR/2004/WD-xml-id-20041109/ [p. ??] .

[XMLNAMESPACES]
"Namespaces in XML", T. Bray, D. Hollander, A. Layman,
Available at: http://www.w3.org/TR/1999/REC-xml-names-19990114 [p. ??] .

23 Apr 2009 15:57314

Bibliography

Appendix C. Changes
Contents

............ 324C.1 Additional property values

............ 324C.1.1 Section 4.3.6 Colors

........ 324C.1.2 Section 9.2.4 The ’display’ property

........ 324C.1.3 Section 12.2 The ’content’ property

.... 324C.1.4 Section 16.6 White space: the ’white-space’ property

....... 324C.1.5 Section 18.1 Cursors: the ’cursor’ property

................ 325C.2 Changes

......... 325C.2.1 Section 1.1 CSS 2.1 vs CSS 2

........ 325C.2.2 Section 1.2 Reading the specification

...... 325C.2.3 Section 1.3 How the specification is organized

............ 325C.2.4 Section 1.4.2.1 Value

.......... 325C.2.5 Section 1.4.2.6 Media groups

......... 325C.2.6 Section 1.4.2.7 Computed value

........ 325C.2.7 Section 1.4.4 Notes and examples

......... 325C.2.8 Section 1.5 Acknowledgements

........... 326C.2.9 Section 3.2 Conformance

.......... 326C.2.10 Section 3.3 Error Conditions

.......... 326C.2.11 Section 4.1.1 Tokenization

........ 326C.2.12 Section 4.1.3 Characters and case

...... 327C.2.13 Section 4.2 Rules for handling parsing errors

............ 327C.2.14 Section 4.3 Values

........... 327C.2.15 Section 4.3.2 Lengths

......... 327C.2.16 Section 4.3.4 URLs and URIs

........... 327C.2.17 Section 4.3.5 Counters

............ 327C.2.18 Section 4.3.6 Colors

........ 327C.2.19 Section 4.3.8 Unsupported Values

...... 327C.2.20 Section 4.4 CSS style sheet representation

.... 328C.2.21 Section 5.8.1 Matching attributes and attribute values

......... 328C.2.22 Section 5.8.3 Class selectors

........... 328C.2.23 Section 5.9 ID selectors

.... 328C.2.24 Section 5.10 Pseudo-elements and pseudo-classes

... 328C.2.25 Section 5.11.2 The link pseudo-classes: :link and :visited

..... 328C.2.26 Section 5.11.4 The language pseudo-class: :lang

...... 329C.2.27 Section 5.12.1 The :first-line pseudo-element

..... 329C.2.28 Section 5.12.2 The :first-letter pseudo-element

.... 329C.2.29 Section 6.1 Specified, computed, and actual values

......... 329C.2.30 Section 6.4.1 Cascading order

..... 330C.2.31 Section 6.4.3 Calculating a selector’s specificity

31523 Apr 2009 15:57

Changes

.. 330C.2.32 Section 6.4.4 Precedence of non-CSS presentational hints

....... 330C.2.33 Section 7.3 Recognized Media Types

.......... 330C.2.34 Section 7.3.1 Media Groups

......... 330C.2.35 Section 8.3 Margin properties

......... 330C.2.36 Section 8.3.1 Collapsing margins

......... 331C.2.37 Section 8.4 Padding properties

.......... 331C.2.38 Section 8.5.2 Border color

.......... 331C.2.39 Section 8.5.3 Border style
331C.2.40 Section 8.6 The box model for inline elements in bidirection context

......... 331C.2.41 Section 9.1.2 Containing blocks

....... 331C.2.42 Section 9.2.1.1 Anonymous block boxes

....... 331C.2.43 Section 9.2.2.1 Anonymous inline boxes

.......... 331C.2.44 Section 9.2.3 Run-in boxes

........ 331C.2.45 Section 9.2.4 The ’display’ property

...... 332C.2.46 Section 9.3.1 Choosing a positioning scheme

.......... 332C.2.47 Section 9.3.2 Box offsets

....... 332C.2.48 Section 9.4.1 Block formatting contexts

....... 332C.2.49 Section 9.4.2 Inline formatting context

........ 333C.2.50 Section 9.4.3 Relative positioning

............ 333C.2.51 Section 9.5 Floats

........ 333C.2.52 Section 9.5.1 Positioning the float

...... 333C.2.53 Section 9.5.2 Controlling flow next to floats

.333C.2.54 Section 9.7 Relationships between ’display’, ’position’, and ’float’

........ 334C.2.55 Section 9.9 Layered presentation

.......... 334C.2.56 Section 9.10 Text direction

...... 334C.2.57 Chapter 10 Visual formatting model details

...... 334C.2.58 Section 10.1 Definition of "containing block"

.......... 335C.2.59 Section 10.2 Content width

...... 335C.2.60 Section 10.3 Calculating widths and margins

....... 335C.2.61 Section 10.3.2 Inline, replaced elements

.335C.2.62 Section 10.3.3 Block-level, non-replaced elements in normal flow

.. 335C.2.63 Section 10.3.4 Block-level, replaced elements in normal flow

..... 335C.2.64 Section 10.3.5 Floating, non-replaced elements

...... 335C.2.65 Section 10.3.6 Floating, replaced elements

.. 336C.2.66 Section 10.3.7 Absolutely positioned, non-replaced elements

... 336C.2.67 Section 10.3.8 Absolutely positioned, replaced elements

...... 336C.2.68 Section 10.4 Minimum and maximum widths

.......... 336C.2.69 Section 10.5 Content height

..... 337C.2.70 Section 10.6 Calculating heights and margins

...... 337C.2.71 Section 10.6.1 Inline, non-replaced elements
C.2.72 Section 10.6.2 Inline replaced elements, block-level replaced
elements in normal flow, ’inline-block’ replaced elements in normal flow and

............ 337floating replaced elements

23 Apr 2009 15:57316

Changes

C.2.73 Section 10.6.3 Block-level non-replaced elements in normal flow
.......... 337when ’overflow’ computes to ’visible’
.. 337C.2.74 Section 10.6.4 Absolutely positioned, non-replaced elements
... 338C.2.75 Section 10.6.5 Absolutely positioned, replaced elements
...... 338C.2.76 Section 10.7 Minimum and maximum heights
........ 338C.2.77 Section 10.8 Line height calculations
....... 338C.2.78 Section 10.8.1 Leading and half-leading
........ 338C.2.79 Section 11.1 Overflow and clipping
........... 338C.2.80 Section 11.1.1 Overflow
...... 339C.2.81 Section 11.1.2 Clipping: the ’clip’ property
........... 339C.2.82 Section 11.2 Visibility
.339C.2.83 Chapter 12 Generated content, automatic numbering, and lists
.... 339C.2.84 Section 12.1 The :before and :after pseudo-elements
........ 339C.2.85 Section 12.2 The ’content’ property
... 340C.2.86 Section 12.3.2 Inserting quotes with the ’content’ property
..... 340C.2.87 Section 12.4 Automatic counters and numbering
...... 340C.2.88 Section 12.4.1 Nested counters and scope
............ 340C.2.89 Section 12.5 Lists
............ 340C.2.90 Section 12.5.1 Lists
.......... 341C.2.91 Chapter 13 Paged media
......... 341C.2.92 Section 13.2.2 Page selectors
....... 341C.2.93 Section 13.3.1 Page break properties
........ 341C.2.94 Section 13.3.3 Allowed page breaks
....... 341C.2.95 Section 14.2.1 Background properties
......... 341C.2.96 Section 14.3 Gamma correction
............ 342C.2.97 Chapter 15 Fonts
....... 342C.2.98 Section 15.2 Font matching algorithm
.......... 342C.2.99 Section 15.2.2 Font family
.......... 342C.2.100 Section 15.5 Small-caps
.......... 342C.2.101 Section 15.6 Font boldness
........... 342C.2.102 Section 15.7 Font size
............ 342C.2.103 Chapter 16 Text
........... 343C.2.104 Section 16.2 Alignment
.. 343C.2.105 Section 16.3.1 Underlining, over lining, striking, and blinking
....... 343C.2.106 Section 16.4 Letter and word spacing
.......... 343C.2.107 Section 16.5 Capitalization
.......... 343C.2.108 Section 16.6 White space
............ 344C.2.109 Chapter 17 Tables
........ 344C.2.110 Section 17.2 The CSS table model
...... 344C.2.111 Section 17.2.1 Anonymous table objects
.... 344C.2.112 Section 17.4 Tables in the visual formatting model
..... 345C.2.113 Section 17.4.1 Caption position and alignment
...... 345C.2.114 Section 17.5 Visual layout of table contents

31723 Apr 2009 15:57

Changes

..... 345C.2.115 Section 17.5.1 Table layers and transparency

........ 345C.2.116 Section 17.5.2.1 Fixed table layout

....... 345C.2.117 Section 17.5.2.2 Automatic table layout

....... 345C.2.118 Section 17.5.3 Table height algorithms

..... 345C.2.119 Section 17.5.4 Horizontal alignment in a column

........... 346C.2.120 Section 17.6 Borders

..... 346C.2.121 Section 17.6.1 The separated borders model

.346C.2.122 Section 17.6.1.1 Borders and Backgrounds around empty cells

...... 346C.2.123 Section 17.6.2 The collapsing border model

...... 346C.2.124 Section 17.6.2.1 Border conflict resolution

...... 346C.2.125 Section 18.1 Cursors: the ’cursor’ property

......... 346C.2.126 Section 18.4 Dynamic outlines

.347C.2.127 Chapter 12 Generated content, automatic numbering, and lists

......... 347C.2.128 Appendix A. Aural style sheets

....... 347C.2.129 Appendix A Section 5 Pause properties

....... 347C.2.130 Appendix A Section 6 Cue properties

....... 347C.2.131 Appendix A Section 7 Mixing properties

.......... 347C.2.132 Appendix B Bibliography

............... 348C.2.133 Other

................. 348C.3 Errors

............ 348C.3.1 Shorthand properties

............... 348C.3.2 Applies to

........... 348C.3.3 Section 4.1.1 (and G2)

........ 349C.3.4 Section 4.1.3 Characters and case

......... 349C.3.5 Section 4.3 (Double sign problem)

............ 349C.3.6 Section 4.3.2 Lengths

.......... 349C.3.7 Section 4.3.3 Percentages

.......... 349C.3.8 Section 4.3.4 URLs and URIs

........... 349C.3.9 Section 4.3.5 Counters

............ 349C.3.10 Section 4.3.6 Colors

............ 350C.3.11 Section 4.3.7 Strings

.... 350C.3.12 Section 5.10 Pseudo-elements and pseudo-classes

........... 350C.3.13 Section 6.4 The cascade

.......... 350C.3.14 Section 8.1 Box Dimensions

... 350C.3.15 Section 8.2 Example of margins, padding, and borders

...... 350C.3.16 Section 8.5.4 Border shorthand properties

.... 350C.3.17 Section 9.2.1 Block-level elements and block boxes

...... 350C.3.18 Section 9.3.1 Choosing a positioning scheme

.......... 351C.3.19 Section 9.3.2 Box offsets

....... 351C.3.20 Section 9.4.1 Block formatting contexts

....... 351C.3.21 Section 9.4.2 Inline formatting context

........ 351C.3.22 Section 9.4.3 Relative positioning

............ 351C.3.23 Section 9.5 Floats

23 Apr 2009 15:57318

Changes

........ 351C.3.24 Section 9.5.1 Positioning the float

...... 351C.3.25 Section 9.5.2 Controlling flow next to floats

......... 352C.3.26 Section 9.6 Absolute positioning

.352C.3.27 Section 9.7 Relationships between ’display’, ’position’, and ’float’

.......... 352C.3.28 Section 9.10 Text direction

...... 352C.3.29 Section 10.1 Definition of "containing block"

.352C.3.30 Section 10.3.3 Block-level, non-replaced elements in normal flow

...... 352C.3.31 Section 10.4 Minimum and maximum widths
C.3.32 Section 10.6.3 Block-level non-replaced elements in normal flow

.......... 352when ’overflow’ computes to ’visible’

...... 353C.3.33 Section 10.7 Minimum and maximum heights

........... 353C.3.34 Section 11.1.1 Overflow

...... 353C.3.35 Section 11.1.2 Clipping: the ’clip’ property

........... 353C.3.36 Section 11.2 Visibility

......... 353C.3.37 Section 12.4.2 Counter styles

............ 353C.3.38 Section 12.6.2 Lists

......... 354C.3.39 Section 14.2 The background

....... 354C.3.40 Section 14.2.1 Background properties

....... 354C.3.41 Section 15.2 Font matching algorithm

........... 354C.3.42 Section 15.7 Font size

........... 354C.3.43 Section 16.1 Indentation

........... 354C.3.44 Section 16.2 Alignment

........ 355C.3.45 Section 17.2 The CSS table model

....... 355C.3.46 Section 17.2.1 Anonymous table objects

.... 355C.3.47 Section 17.4 Tables in the visual formatting model

...... 355C.3.48 Section 17.5 Visual layout of table contents

..... 356C.3.49 Section 17.5.1 Table layers and transparency

...... 356C.3.50 Section 17.6.1 The separated borders model

.......... 356C.3.51 Section 18.2 System Colors

.......... 356C.3.52 Section E.2 Painting order

............... 356C.4 Clarifications

...... 356C.4.1 Section 2.1 A brief CSS 2.1 tutorial for HTML

...... 356C.4.2 Section 2.2 A brief CSS 2.1 tutorial for XML

...... 357C.4.3 Section 2.3 The CSS 2.1 processing model

........... 357C.4.4 Section 3.1 Definitions

............ 357C.4.5 Section 4.1 Syntax

.......... 357C.4.6 Section 4.1.1 Tokenization

........ 357C.4.7 Section 4.1.3 Characters and case

... 358C.4.8 Section 4.1.7 Rule sets, declaration blocks, and selectors

...... 358C.4.9 Section 4.2 Rules for handling parsing errors

....... 358C.4.10 Section 4.3.1 Integers and real numbers

........... 358C.4.11 Section 4.3.2 Lengths

......... 358C.4.12 Section 4.3.4 URLs and URIs

31923 Apr 2009 15:57

Changes

.......... 358C.4.13 Section 5.1 Pattern matching

....... 358C.4.14 Section 5.7 Adjacent sibling selectors

.... 358C.4.15 Section 5.8.1 Matching attributes and attribute values

..... 358C.4.16 Section 5.8.2 Default attribute values in DTDs

........... 359C.4.17 Section 5.9 ID selectors
C.4.18 Section 5.11.3 The dynamic pseudo-classes: :hover, :active, and

................. 359:focus

..... 359C.4.19 Section 5.11.4 The language pseudo-class: :lang

..... 359C.4.20 Section 5.12.2 The :first-letter pseudo-element

........... 359C.4.21 Section 6.2 Inheritance

......... 359C.4.22 Section 6.2.1 The ’inherit’ value

......... 359C.4.23 Section 6.3 The @import rule

.......... 359C.4.24 Section 6.4 The Cascade

......... 359C.4.25 Section 6.4.1 Cascading order

..... 360C.4.26 Section 6.4.3 Calculating a selector’s specificity

......... 360C.4.27 Section 7.2.1 The @media rule

........ 360C.4.28 Section 7.3 Recognized media types

.......... 360C.4.29 Section 7.3.1 Media groups

.......... 360C.4.30 Section 8.1 Box dimensions

......... 360C.4.31 Section 8.3 Margin properties

......... 360C.4.32 Section 8.3.1 Collapsing margins

.......... 361C.4.33 Section 8.5.3 Border style

.......... 361C.4.34 Section 9.1.1 The viewport

........ 361C.4.35 Section 9.2.4 The ’display’ property

...... 361C.4.36 Section 9.3.1 Choosing a positioning scheme

.......... 361C.4.37 Section 9.3.2 Box offsets

....... 361C.4.38 Section 9.4.2 Inline formatting context

........ 362C.4.39 Section 9.4.3 Relative positioning

............ 362C.4.40 Section 9.5 Floats

........ 362C.4.41 Section 9.5.1 Positioning the float

...... 362C.4.42 Section 9.5.2 Controlling flow next to floats
C.4.43 Section 9.8 Comparison of normal flow, floats, and absolute

................ 362positioning

...... 363C.4.44 Section 10.1 Definition of "containing block"

.......... 363C.4.45 Section 10.2 Content width

.363C.4.46 Section 10.3.3 Block-level, non-replaced elements in normal flow

... 363C.4.47 Section 10.3.8 Absolutely positioning, replaced elements

...... 363C.4.48 Section 10.4 Minimum and maximum widths

..... 363C.4.49 Section 10.6 Calculating heights and margins

...... 363C.4.50 Section 10.7 Minimum and maximum heights

........ 363C.4.51 Section 10.8 Line height calculations

....... 363C.4.52 Section 10.8.1 Leading and half-leading

........ 364C.4.53 Section 11.1 Overflow and clipping

23 Apr 2009 15:57320

Changes

........... 364C.4.54 Section 11.1.1 Overflow

........... 364C.4.55 Section 11.1.2 Clipping

........... 364C.4.56 Section 11.2 Visibility

.... 364C.4.57 Section 12.1 The :before and :after pseudo-elements

........ 364C.4.58 Section 12.2 The ’content’ property

... 365C.4.59 Section 12.3.2 Inserting quotes with the ’content’ property

..... 365C.4.60 Section 12.4 Automatic counters and numbering

... 365C.4.61 Section 12.4.3 Counters in elements with ’display: none’

......... 365C.4.62 Section 14.2 The background

......... 366C.4.63 Section 15.1 Fonts Introduction

....... 366C.4.64 Section 15.2 Font matching algorithm

.......... 366C.4.65 Section 15.2.2 Font family

........ 366C.4.66 Section 15.3.1 Generic font families

........... 366C.4.67 Section 15.4 Font styling

........... 366C.4.68 Section 15.5 Small-caps

.......... 366C.4.69 Section 15.6 Font boldness

........... 367C.4.70 Section 15.7 Font size

........... 367C.4.71 Section 16.1 Indentation

........... 367C.4.72 Section 16.2 Alignment

.. 367C.4.73 Section 16.3.1 Underlining, over lining, striking, and blinking

.......... 367C.4.74 Section 16.5 Capitalization

.......... 367C.4.75 Section 16.6 White space

........ 367C.4.76 Section 17.1 Introduction to tables

........ 367C.4.77 Section 17.2 The CSS table model

....... 368C.4.78 Section 17.2.1 Anonymous table objects

.... 368C.4.79 Section 17.4 Tables in the visual formatting model

...... 368C.4.80 Section 17.5 Visual layout of table contents

..... 368C.4.81 Section 17.5.1 Table layers and transparency

....... 368C.4.82 Section 17.5.2 Table width algorithms

........ 369C.4.83 Section 17.5.2.1 Fixed table layout

....... 369C.4.84 Section 17.5.2.2 Automatic table layout

..... 369C.4.85 Section 17.5.4 Horizontal alignment in a column

..... 369C.4.86 Section 17.5.5 Dynamic row and column effects

...... 369C.4.87 Section 17.6.1 The separated borders model

...... 369C.4.88 Section 17.6.2 The collapsing borders model

.......... 369C.4.89 Section 18.2 System Colors

......... 370C.4.90 Section 18.4 Dynamic outlines

....... 370C.4.91 Section 18.4.1 Outlines and the focus

...... 370C.4.92 Appendix D Default style sheet for HTML 4

.... 370C.5 Errata since the Candidate Recommendation of July 2007

............ 370C.5.1 Section 1.4.2.1 Value

...... 370C.5.2 Section 2.3 The CSS 2.1 processing model

........... 370C.5.3 Section 3.1 Definitions

32123 Apr 2009 15:57

Changes

.......... 370C.5.4 Section 4.1.1 Tokenization

...... 371C.5.5 Section 4.1.2.2 Informative Historical Notes

........ 371C.5.6 Section 4.1.3 Characters and case

........ 371C.5.7 Section 4.1.3 Characters and case

........ 371C.5.8 Section 4.1.3 Characters and case

........ 371C.5.9 Section 4.1.3 Characters and case

........... 371C.5.10 Section 4.1.5 At-rules

... 372C.5.11 Section 4.1.7 Rule sets, declaration blocks, and selectors

...... 372C.5.12 Section 4.2 Rules for handling parsing errors

...... 372C.5.13 Section 4.2 Rules for handling parsing errors

........... 372C.5.14 Section 4.3.2 Lengths

........... 373C.5.15 Section 4.3.5 Counters

.... 373C.5.16 Section 5.8.1 Matching attributes and attribute values

..... 373C.5.17 Section 5.8.2 Default attribute values in DTDs

..... 373C.5.18 Section 5.11.4 The language pseudo-class: :lang

... 373C.5.19 Section 5.12.3 The :before and :after pseudo-elements

......... 373C.5.20 Section 6.3 The @import rule

......... 373C.5.21 Section 6.3 The @import rule

......... 374C.5.22 Section 6.4.1 Cascading order

......... 374C.5.23 Section 6.4.1 Cascading order

......... 374C.5.24 Section 7.2.1 The @media rule

......... 374C.5.25 Section 8.3.1 Collapsing margins

......... 374C.5.26 Section 8.3.1 Collapsing margins

......... 375C.5.27 Section 8.3.1 Collapsing margins

.... 375C.5.28 Section 9.2.2 Inline-level elements and inline boxes

........ 375C.5.29 Section 9.2.4 The ’display’ property

.... 375C.5.30 Section 9.3.2 Box offsets: ’top’, ’right’, ’bottom’, ’left’

............ 375C.5.31 Section 9.5 Floats

............ 375C.5.32 Section 9.5 Floats

.376C.5.33 Section 9.5.2 Controlling flow next to floats: the ’clear’ property

......... 376C.5.34 Section 9.6.1 Fixed positioning

.. 376C.5.35 Section 9.9.1 Specifying the stack level: the ’z-index’ property

...... 376C.5.36 Section 10.1 Definition of "containing block"

...... 377C.5.37 Section 10.3 Calculating widths and margins

...... 377C.5.38 Section 10.3.1 Inline, non-replaced elements

....... 377C.5.39 Section 10.3.2 Inline, replaced elements

....... 377C.5.40 Section 10.3.2 Inline, replaced elements

.377C.5.41 Section 10.3.3 Block-level, non-replaced elements in normal flow

.. 378C.5.42 Section 10.3.7 Absolutely positioned, non-replaced elements

.. 378C.5.43 Section 10.3.7 Absolutely positioned, non-replaced elements

... 379C.5.44 Section 10.3.8 Absolutely positioned, replaced elements

... 379C.5.45 Section 10.3.8 Absolutely positioned, replaced elements

... 379C.5.46 Section 10.3.8 Absolutely positioned, replaced elements

23 Apr 2009 15:57322

Changes

..... 379C.5.47 Section 10.5 Content height: the ’height’ property

...... 379C.5.48 Section 10.6.2 Inline replaced elements […]

.. 379C.5.49 Section 10.6.4 Absolutely positioned, non-replaced elements

... 380C.5.50 Section 10.6.5 Absolutely positioned, replaced elements

....... 380C.5.51 Section 10.8.1 Leading and half-leading

..... 380C.5.52 Section 11.1.1 Overflow: the ’overflow’ property

...... 380C.5.53 Section 11.1.2 Clipping: the ’clip’ property

........ 380C.5.54 Section 12.2 The ’content’ property

......... 381C.5.55 Section 12.4.2 Counter styles

............ 381C.5.56 Section 12.5 Lists
C.5.57 Section 12.5.1 Lists: the ’list-style-type’, ’list-style-image’,

........ 381’list-style-position’, and ’list-style’ properties
C.5.58 Section 12.5.1 Lists: the ’list-style-type’, ’list-style-image’,

........ 381’list-style-position’, and ’list-style’ properties
C.5.59 Section 12.5.1 Lists: the ’list-style-type’, ’list-style-image’,

........ 381’list-style-position’, and ’list-style’ properties

...... 382C.5.60 Section 13.2 Page boxes: the @page rule
382C.5.61 Section 13.2.1.1 Rendering page boxes that do not fit a target sheet

...... 382C.5.62 Section 13.2.3 Content outside the page box
C.5.63 Section 13.3.1 Page break properties: ’page-break-before’,

......... 382’page-break-after’, ’page-break-inside’
C.5.64 Section 13.3.1 Page break properties: ’page-break-before’,

......... 382’page-break-after’, ’page-break-inside’

.. 382C.5.65 Section 13.3.2 Breaks inside elements: ’orphans’, ’widows’

.. 383C.5.66 Section 13.3.2 Breaks inside elements: ’orphans’, ’widows’

........ 383C.5.67 Section 13.3.3 Allowed page breaks

........ 383C.5.68 Section 13.3.3 Allowed page breaks

........ 383C.5.69 Section 13.3.3 Allowed page breaks

........ 383C.5.70 Section 13.3.5 "Best" page breaks

......... 383C.5.71 Section 14.2 The background

......... 384C.5.72 Section 14.2 The background
C.5.73 Section 14.2.1 Background properties: ’background-color’,
’background-image’, ’background-repeat’, ’background-attachment’,

......... 384’background-position’, and ’background’

.... 384C.5.74 Section 15.6 Font boldness: the ’font-weight’ property

.... 385C.5.75 Section 16.6 Whitespace: the ’white-space’ property

.... 385C.5.76 Section 16.6.1 The ’white-space’ processing model

....... 385C.5.77 Section 17.2.1 Anonymous table objects

....... 385C.5.78 Section 17.2.1 Anonymous table objects

.... 385C.5.79 Section 17.4 Tables in the visual formatting model

..... 386C.5.80 Section 17.5.4 Horizontal alignment in a column

...... 386C.5.81 Section 18.1 Cursors: the ’cursor’ property

........ 386C.5.82 Section B.2 Informative references

...... 386C.5.83 Appendix D. Default style sheet for HTML 4

32323 Apr 2009 15:57

Changes

...... 386C.5.84 Appendix D. Default style sheet for HTML 4

.......... 386C.5.85 Section E.2 Painting order

........ 386C.5.86 Appendix G. Grammar of CSS 2.1

........... 387C.5.87 Section G.1 Grammar

.......... 387C.5.88 Section G.2 Lexical scanner

.......... 387C.5.89 Section G.2 Lexical scanner

.......... 387C.5.90 Section G.2 Lexical scanner

.......... 387C.5.91 Section G.2 Lexical scanner

............ 388C.5.92 Appendix I. Index

This appendix is informative, not normative.

CSS 2.1 is an updated revision of CSS2. The changes between the CSS2
specification (see [CSS2]) and this specification fall into five groups: known errors,
[p. 348] typographical errors, clarifications, [p. 356] changes [p. 325] and additions.
[p. 324] Typographical errors are not listed here.

In addition, this chapter lists the errata [p. 370] that were subsequently applied to
CSS 2.1 since it became a Candidate Recommendation in July 2007.

This chapter is not a complete list of changes. Minor editorial changes and most
changes to examples are also not listed here.

C.1 Additional property values

C.1.1 Section 4.3.6 Colors
New color value: ’orange’

C.1.2 Section 9.2.4 The ’display’ property
New ’display’ value: ’inline-block’

C.1.3 Section 12.2 The ’content’ property
New ’content’ values ’none’ and ’normal’. (The values ’none’ and ’normal’ are
equivalent in CSS 2.1, but may have different functions in CSS3.)

C.1.4 Section 16.6 White space: the ’white-space’ property
New ’white-space’ values: ’pre-wrap’ and ’pre-line’

C.1.5 Section 18.1 Cursors: the ’cursor’ property
New ’cursor’ value: ’progress’

23 Apr 2009 15:57324

Changes

C.2 Changes

C.2.1 Section 1.1 CSS 2.1 vs CSS 2
This new section is added to explain the motivation for CSS2.1 and its relation to
CSS2.

C.2.2 Section 1.2 Reading the specification
This section (formerly Section 1.1) has been marked non-normative.

C.2.3 Section 1.3 How the specification is organized
This section (formerly Section 1.2) has been marked non-normative.

C.2.4 Section 1.4.2.1 Value
This section (formerly unnumbered under 1.3.2) notes that value types are specified
in terms of tokens and that spaces may appear between tokens in values. A note
explains that spaces are required between some tokens.

C.2.5 Section 1.4.2.6 Media groups
This section (formerly unnumbered under 1.3.2) now declares the Media line in
property definitions to be non-normative.

C.2.6 Section 1.4.2.7 Computed value
A new line is added to each property definition specifying what the computed values
are for the property. (This defines what level of computation is done to a property
value before inheritance and before certain other calculations.)

C.2.7 Section 1.4.4 Notes and examples
This section (formerly 1.3.4) now specifies that HTML examples lacking DOCTYPE
declarations are SGML Text Entities conforming to the HTML 4.01 Strict DTD
[HTML4]. The markup for many examples has been reformulated to either include a
DOCTYPE or conform to this definition.

C.2.8 Section 1.5 Acknowledgements
This section (formerly 1.4) has been updated to reflect contributions to CSS2.1 and
has been marked non-normative.

32523 Apr 2009 15:57

Changes

C.2.9 Section 3.2 Conformance
Support for user style sheets is now required (in most cases), rather than just
recommended.

Support for turning of author style sheets is now required.

Application of CSS properties to form controls is explicitly undefined. Authors are
recommended to treat form control styling capabilities in UAs as experimental.

C.2.10 Section 3.3 Error Conditions
This section changed to say that error handling is specified in most cases.

C.2.11 Section 4.1.1 Tokenization
Added INVALID token and rules for its definition.

An optional hyphen, "-", is now allowed at the beginning of an "ident" for vendor
extensions. (See section 4.1.2.1)

The underscore character ("_") is allowed in identifiers. The definitions of the
lexical macros "nmstart" and "nmchar" now include it. See also section 4.1.2.1
(Vendor extensions).

The "escape" macro has been modified to allow the escaping of any character
except newlines, form feeds, and hex digits (to avoid conflict with unicode escapes).

Modified "string1" and "string2" macros by defining allowed characters through
excluding disallowed characters. This allows invisible ASCII characters to be
included in a string.

C.2.12 Section 4.1.3 Characters and case
Updated prose about identifiers (second bullet point) to match changes in the
tokenization (above).

Excluded null (0x0) character from CSS numerical escapes and indicate that it is
undefined in CSS2.1 what happens if such a character is encountered.

Allowed the use of U+FFFD as a replacement for characters outside the range
allowed by Unicode.

CSS is no longer case-insensitive, but case-sensitive with exceptions. Changed
"All CSS style sheets are case-insensitive, except for parts that are not under the
control of CSS" to "All CSS syntax is case-insensitive within the ASCII range (i.e.
[a-z] and [A-Z] are equivalent), except for parts that are not under the control of
CSS." See also the change to case-sensitivity of counters in 4.3.5. [p. 327]

23 Apr 2009 15:57326

Changes

C.2.13 Section 4.2 Rules for handling parsing errors
Defined parsing in the cases of Malformed Declarations, Unexpected End of
Stylesheet, and Unexpected End of String.

C.2.14 Section 4.3 Values
Sections 4.3.7 (Angles), 4.3.8 (Times), and 4.3.9 (Frequencies) have been moved to
the informative Appendix A.

C.2.15 Section 4.3.2 Lengths
Added a paragraph on heuristics for finding the x-height of a font.

C.2.16 Section 4.3.4 URLs and URIs
Updated URI references to RFC3986.

C.2.17 Section 4.3.5 Counters
Changed "Counters are denoted by identifiers" to "ounters are denoted by
case-sensitive identifiers" (see also the change to case-sensitivity in 4.1.3 [p. 326]).

C.2.18 Section 4.3.6 Colors
Defined the numeric values corresponding to color keywords instead of referencing
HTML4 for those values.

UAs are now allowed to intelligently map colors outside the gamut into the gamut
instead of simply clipping them into the range of the gamut.

C.2.19 Section 4.3.8 Unsupported Values
Added this section to recommend that unsupported properties and values be ignored
as if they were invalid.

C.2.20 Section 4.4 CSS style sheet representation
Changed character encoding detection rule 2 to include a BOM and referred to
additional rules below.

Added rule 4 to provide for use of the referring style sheet or document’s character
encoding.

Added rule 5 to require falling back to UTF-8.

Removed the restriction on using @charset in embedded style sheets.

32723 Apr 2009 15:57

Changes

Allowed a BOM to precede the @charset rule.

Added requirement that @charset rule must be a literal ’@charset"...";’, not a
CSS-syntax equivalent.

Added requirement to support for UTF-8 at minimum.

Specified that any @charset rule not at the beginning of the style sheet must be
ignored.

Removed note on theoretical problem with @charset problem and precisely
defined rules for character encoding detection based on @charset and/or BOM.

Specified that UAs must ignore style sheets in unknown encodings.

C.2.21 Section 5.8.1 Matching attributes and attribute values
RFC 3066 replaces RFC 1766.

C.2.22 Section 5.8.3 Class selectors
Class selectors are allowed for other formats than HTML.

Added a note about matching classes in formats with multiple class attributes per
element. The behavior is non-normative, because, at the time of writing, there exist
no such formats.

C.2.23 Section 5.9 ID selectors
Specified how to match elements with two or more ID attributes.

C.2.24 Section 5.10 Pseudo-elements and pseudo-classes
Removed exception for HTML UAs that allowed them (and only them) to ignore
’:first-letter’ and ’:first-line’.

C.2.25 Section 5.11.2 The link pseudo-classes: :link and
:visited
UAs may return a :visited link to :link status at some point. (This was previously a
note, but is now normative.)

Added a note about privacy concerns with link pseudo classes and allowed UAs to
treat :visited as :link.

C.2.26 Section 5.11.4 The language pseudo-class: :lang
The identifier C in ’:lang(C)’ need not be a valid language code, but it must not be
empty.

23 Apr 2009 15:57328

Changes

C.2.27 Section 5.12.1 The :first-line pseudo-element
’:first-line’ also applies to inline blocks, table captions and table cells. Added a
definition of "first formatted line" to make the rules about which line is the first line
more precise.

UAs are no longer forbidden from applying more properties than the given list.

C.2.28 Section 5.12.2 The :first-letter pseudo-element
More precise definition of first letter. Added rules for cases where the first letter is in
an inline block or table cell. Added rules for cases when preceding punctuation is in
a different element from the first letter itself.

UAs may apply other properties to first letters than the given list.

Unicode character classes Pi and Pf added to the definition of punctuation.

C.2.29 Section 6.1 Specified, computed, and actual values
Redefined "computed value" and created the concept of "used value" so that
inheritance can be performed without laying out the document. This change has the
effect of allowing (requiring) percentages to be inherited as percentages and affects
many other layout calculations throughout the spec.

Since computed value of a property can now also be a percentage. In particular,
the following properties now inherit the percentage if the specified value is a
percentage:

background-position
bottom, left, right, top
height, width
margin-bottom, margin-left, margin-right, margin-top,
min-height, min-width
padding-bottom, padding-left, padding-right, padding-top
text-indent

Note that only ’text-indent’ inherits by default, the others only inherit if the ’inherit’
keyword is specified.

C.2.30 Section 6.4.1 Cascading order
Changed suggestion that user be able to turn off author styles to a requirement.

32923 Apr 2009 15:57

Changes

C.2.31 Section 6.4.3 Calculating a selector’s specificity
The "style" attribute now has a higher specificity than any style rule.

Pseudo-elements are now counted with elements in calculating a a selector’s
specificity.

C.2.32 Section 6.4.4 Precedence of non-CSS presentational
hints
"Non-CSS presentational hints" no longer exist, with the exception of a small set of
attributes in HTML.

C.2.33 Section 7.3 Recognized Media Types
Added ’speech’ media type.

Marked "Media" field in property descriptions informative.

C.2.34 Section 7.3.1 Media Groups
Marked this section informative.

Added sound to ’handheld’ in media type/media group table.

Changed ’tactile’ to be both ’static’ and ’interactive’.

C.2.35 Section 8.3 Margin properties
If the containing block’s width depends on an element with percentage margins, then
the resulting layout is undefined in CSS 2.1.

C.2.36 Section 8.3.1 Collapsing margins
In the definition of "collapsing margins", added "non-empty content" and "clearance"
to the parenthetical list of things that prevent consecutive margins from being
adjoining.

Vertical margins of elements with ’overflow’ other than ’visible’ no longer collapse
with their in-flow children.

Defined how margins collapse through an element with adjoining top and bottom
margins.

Added that margins of the root element’s box do not collapse.

More rigorously defined "adjoining" for margin collapsing [p. 112] .

Sixth bullet, second sub-bullet: to find the position of the top border edge, assume
the element has a bottom (rather than top) border.

23 Apr 2009 15:57330

Changes

Margins of relatively positioned elements do sometimes collapse.

C.2.37 Section 8.4 Padding properties
If the containing block’s width depends on an element with percentage padding, then
the resulting layout is undefined in CSS 2.1.

C.2.38 Section 8.5.2 Border color
’transparent’ can now be specified independently for each border side, on par with
<color>.

C.2.39 Section 8.5.3 Border style
3D border styles (’groove’, ’ridge’, ’inset’, ’outset’) now depend on the corresponding
border-color rather than on ’color’.

C.2.40 Section 8.6 The box model for inline elements in
bidirection context
Added this new section to specify layout of inline boxes when affected by bidi.

C.2.41 Section 9.1.2 Containing blocks
Removed paragraphs about the initial containing block, as this is now defined
differently. (See changes to section 10.1 [p. 334] .)

C.2.42 Section 9.2.1.1 Anonymous block boxes
Added a paragraph to define formatting when an inline box contains a block box.

Specified what property values are applied to anonymous boxes.

C.2.43 Section 9.2.2.1 Anonymous inline boxes
Specified that collapsed white space does not generate anonymous inline boxes.

C.2.44 Section 9.2.3 Run-in boxes
Changed run-in rules so that a) run-ins that contain blocks become blocks b) run-ins
can only run into sibling blocks and c) run-ins cannot run into other run-ins.

C.2.45 Section 9.2.4 The ’display’ property
The ’marker’ and ’compact’ values of the ’display’ property are not part of CSS 2.1.
Text relating to these values has been removed throughout the specification.

33123 Apr 2009 15:57

Changes

Defined the computed value of ’display’ as the specified value except for
positioned and floating elements and for the root element. The computed value of
’display’ for these elements is defined in section 9.7 [p. 146] and is slightly different
from the definition in CSS2.

Conforming HTML UAs are no longer allowed to ignore the ’display’ property.

C.2.46 Section 9.3.1 Choosing a positioning scheme
The ’position’ property now applies to all elements, including generated content.

The effect of relative positioning on table captions and internal table elements is
undefined in CSS 2.1.

For fixed positioning, introduced a conflict between this section and section 10.1
rule 3. See howcome [p. ??] for rationale.

Forbid UAs from paginating the content of fixed boxes.

UAs are allowed to treat all values of ’position’ as ’static’ on the root element.

C.2.47 Section 9.3.2 Box offsets
Defined computed values of ’top’, ’right’, ’bottom’, ’left’ based on the value of
’position’.

Percentage offsets are no longer undefined for containing blocks without an
explicit height.

C.2.48 Section 9.4.1 Block formatting contexts
Specified that floats, absolutely positioned elements, inline-blocks, table-cells,
table-captions, and elements with ’overflow’ other than ’visible’ establish new block
formatting contexts.

In the paragraph about the position of a box’s outer edge with respect to its
containing block, except boxes that establish a new block formatting context, as they
may become narrower due to floats.

C.2.49 Section 9.4.2 Inline formatting context
Specified that the effect of ’justify’ on the content of a line box does not affect the
contents of inline-table and inline-block boxes.

Empty line boxes are now required to be treated as zero-height and ignored in
margin collapsing.

23 Apr 2009 15:57332

Changes

C.2.50 Section 9.4.3 Relative positioning
Added several paragraphs and an example to explain exactly what the computed
values of relatively-positioned offsets are, how they affect each other, and what
happens when the positioning is overconstrained. (These were not previously
defined.)

C.2.51 Section 9.5 Floats
Floats are no longer required to have an explicit width.

Floats outside of line boxes no longer align to the bottom of the preceding block
box; it is implied that they are initially aligned with their non-floated position.

Specified that "If a shortened line box is too small to contain any further content,
then it is shifted downward until either it fits or there are no more floats present."

Specified that the border box of a table, block-level replaced element, or element
in the normal flow that establishes a new block formatting context must not overlap
any floats in the same block formatting context.

C.2.52 Section 9.5.1 Positioning the float
The ’float’ property now also applies to :before/:after and generated content.

UAs are now allowed to treat all values of float as ’none’ on the root element.

Added to rule 4 prose to define the position of a float when it occurs between two
collapsing margins.

C.2.53 Section 9.5.2 Controlling flow next to floats
Defined clearance to precisely detail the ’clear’ property’s effect on margin collapsing
and the block’s cleared position.

Added note to explain effect of ’clear’ on inline elements since CSS1 (but not
CSS2 or CSS 2.1) allows ’clear’ on inline elements.

C.2.54 Section 9.7 Relationships between ’display’, ’position’,
and ’float’
Changed rules to convert ’display’ not always to ’block’, but to an appropriate
block-level display value as given by a mapping table.

Added rule 4 to convert root element’s ’display’ value according to the mapping.

33323 Apr 2009 15:57

Changes

C.2.55 Section 9.9 Layered presentation
Specified that the background and borders of an element that forms a stacking
context are behind all of its descendants, altered stacking context prose to be more
precise, and added a normative Appendix E: Elaborate description of Stacking
Contexts [p. 391] to be even more precise about the position of borders,
backgrounds, and content on the z-axis.

C.2.56 Section 9.10 Text direction
Conforming UAs are now allowed to not support bidirectional text; in this case they
must ignore the ’direction’ and ’unicode-bidi’ properties. However since applying bidi
can have an effect even when a document doesn’t contain right-to-left characters,
UAs that do support bidi are no longer permitted to not apply the algorithm just
because the document lacks right-to-left characters.

Added a paragraph to define precisely how the Unicode bidirectional algorithm
applies to text in the CSS formatting model and how the CSS ’direction’ property on
blocks maps into the algorithm.

Conforming HTML UAs are no longer exempt from supporting ’direction’ and
’unicode-bidi’.

C.2.57 Chapter 10 Visual formatting model details
Updated prose to use the terms "specified", "computed" and "used" as appropriate
when referencing values. This affects many calculations in this section. (See
changes to section 6.1 [p. 329] .)

C.2.58 Section 10.1 Definition of "containing block"
In rule 1, defined the initial containing block as the viewport for continuous media
and the page area for paged media. (It was previously undefined.)

In rule 2, defined the page area as the containing block for fixed positioned
elements in paged media.

In rule 4.1, when the containing block of an absolutely-positioned element is
formed by an inline-level element, it is now formed by that element’s padding edges,
not its content edges.

In rule 4, changed the containing block for absolutely positioned elements with
only statically positioned elements from the root’s content box to the initial containing
block.

Specified the positioning and breaking behavior of absolutely-positioned elements
in paged media.

23 Apr 2009 15:57334

Changes

C.2.59 Section 10.2 Content width
Declared that if the containing block’s width depends on an element’s percentage
width, then the resulting layout is undefined in CSS 2.1.

C.2.60 Section 10.3 Calculating widths and margins
The computed values of ’left’ and ’right’ for are now defined in section 9.3.2 [p. 130] .
The value ’auto’ does not always compute to zero.

Added sections 10.3.9 and 10.3.10 to define calculations for inline blocks.

C.2.61 Section 10.3.2 Inline, replaced elements
The sizing algorithm for replaced elements now takes into account and attempts to
preserve the replaced content’s intrinsic ratio. Sizing of replaced elements with
percentage intrinsic sizes and without intrinsic sizes is now also defined.

The effect of percentage intrinsic widths is now undefined for CSS level 2, rather
than ignored.

C.2.62 Section 10.3.3 Block-level, non-replaced elements in
normal flow
Specified that a computed total of the width, padding, and borders that is greater
than the containing block width causes auto margins to be treated as zero in the rest
of the rules. This avoids ’auto’ margins being negative on the start edge.

C.2.63 Section 10.3.4 Block-level, replaced elements in
normal flow
Applied changes to section 10.3.2 and section 10.3.3 to block-level replaced
elements in normal flow by referring to the calculations in those sections.

C.2.64 Section 10.3.5 Floating, non-replaced elements
Defined computations for ’auto’ width floats as shrink-to-fit. (Floats were previously
required to have fixed widths.)

C.2.65 Section 10.3.6 Floating, replaced elements
Applied changes to section 10.3.2 to this section by referencing it for ’auto’ width
calculations.

33523 Apr 2009 15:57

Changes

C.2.66 Section 10.3.7 Absolutely positioned, non-replaced
elements
Defined the static position of an element more precisely.

Rewrote constraint rules.

The ’direction’ property of the containing block of the static position determines
which side is clamped to the static position, not the ’direction’ property of the
containing block of the absolutely positioned element.

C.2.67 Section 10.3.8 Absolutely positioned, replaced
elements
In rule 1, applied sizing rules from section 10.3.2.

In rule 2 (formerly rules 2 and 3), referred to new definition of ’static position’ in
section 10.3.7.

Also in rule 2, the ’direction’ property of the containing block of the static position
determines which side is clamped to the static position, not the ’direction’ property of
the containing block of the absolutely positioned element.

In rule 4 (formerly rule 5), prevented ’auto’ left and right margins in resulting in a
negative margin on the start edge.

C.2.68 Section 10.4 Minimum and maximum widths
Specified that if the containing block’s width is negative, the used value of a
percentage min/max width is zero.

Specified that if the min/max width is specified in percentages and the containing
block’s width depends on this element’s width, then the resulting layout is undefined
in CSS 2.1.

The UA is no longer allowed to select an aribtrary minimum width.

The used width of replaced elements with an intrinsic ratio and both ’width’ and
’height’ specified as ’auto’ is now calculated according to a table designed to
preserve the intrinsic ratio as much as possible within the given constraints.

C.2.69 Section 10.5 Content height
Removed mention of ’line-height’ for inline elements since their content box height
no longer depends on ’line-height’.

Percentage heights on absolutely-positioned elements are no longer treated as
’auto’ when the containing block’s height is not explicitly specified. Added a note to
explain why this is possible.

23 Apr 2009 15:57336

Changes

Specified that a percentage height on the root element is relative to the initial
containing block.

C.2.70 Section 10.6 Calculating heights and margins
The computed values of ’top’ and ’bottom’ for are now defined in section 9.3.2
[p. 130] . The value ’auto’ does not always compute to zero.

Added section 10.6.6 to cover cases that are no longer covered under the
previous sections.

Added section 10.6.7 to define ’auto’ heights for block formatting context roots.
(Unlike other block boxes, the height of these boxes increases to accomodate any
normal-flow descendant floats.)

C.2.71 Section 10.6.1 Inline, non-replaced elements
The height of an inline box is no longer given by the ’line-height’ property and is now
undefined. This section now suggests that the height of the box can be based on the
font.

C.2.72 Section 10.6.2 Inline replaced elements, block-level
replaced elements in normal flow, ’inline-block’ replaced
elements in normal flow and floating replaced elements
The sizing algorithm for replaced elements now takes into account and attempts to
preserve the replaced content’s intrinsic ratio. Sizing of replaced elements with
percentage intrinsic sizes and without intrinsic sizes is now also defined.

Specified that for inline elements, the margin box is used when calculating the
height of the line box.

C.2.73 Section 10.6.3 Block-level non-replaced elements in
normal flow when ’overflow’ computes to ’visible’
This section now only applies to elements whose ’overflow’ value computes to
’visible’; elements with other values of ’overflow’ are discussed in the new section
10.6.7 (’Auto’ heights for block formatting context roots).

C.2.74 Section 10.6.4 Absolutely positioned, non-replaced
elements
Defined the static position of an element more precisely.

Rewrote constraint rules.

33723 Apr 2009 15:57

Changes

C.2.75 Section 10.6.5 Absolutely positioned, replaced
elements
In rule 1, applied sizing rules from section 10.6.2.

C.2.76 Section 10.7 Minimum and maximum heights
Percentage min/max heights on absolutely-positioned elements are no longer
treated as ’0’/’none’ when the containing block’s height is not explicitly specified.
However if the containing block’s width depends on an element’s percentage width,
then the resulting layout is undefined in CSS 2.1.

The used width of replaced elements with an intrinsic ratio and both ’width’ and
’height’ specified as ’auto’ is now calculated according to a table designed to
preserve the intrinsic ratio as much as possible within the given constraints.

C.2.77 Section 10.8 Line height calculations
Added rule 4 to specify that the height of the line box must be at least as much as
that specified by the ’line-height’ property on the this block.

C.2.78 Section 10.8.1 Leading and half-leading
UAs are no longer permitted to clip content to the line box, and are instead asked to
render overlapping boxes in document order.

’line-height’ set on a block no longer specifies the minimal height of each inline
box; instead it specifies the minimal height of each line box. The exact effect of this
requirement is expressed in terms of struts; it is affected by vertical-alignment.

Adjusted text to reflect that the content box height of an inline is no longer dictated
by the ’line-height’ property.

Since the content box is now defined by the font and not by the line-height,
’text-top’ and ’text-bottom’ refer to the content area instead of the font.

Defined ’top’ and ’bottom’ alignment in terms of aligned subtrees to take into
account any protruding descendants.

Defined the baseline of inline tables and inline blocks.

C.2.79 Section 11.1 Overflow and clipping
Specified that ’overflow’ clips to the padding edge.

C.2.80 Section 11.1.1 Overflow
’projection’ media are no longer permitted to print overflowing content for ’overflow:
scroll’. ’print’ media now may, as opposed to should.

23 Apr 2009 15:57338

Changes

UAs are now required to apply the ’overflow’ property set on the root element to
the viewport. Additionally, HTML UAs must use the ’overflow’ property on the HTML
BODY element instead if the root element’s ’overflow’ value is ’visible’.

Specified placement of scrollbar in the box model.

The width of any scrollbars is no longer included in the width of the containing
block. (And consequently, all text in section 10.3 that subtracts the scrollbar width
from the containing block width has been removed.)

C.2.81 Section 11.1.2 Clipping: the ’clip’ property
The ’clip’ property now applies only to absolutely positioned elements. Furthermore,
it applies to those elements even when their ’overflow’ is ’visible’.

The default value of ’clip’, ’auto’, now indiciates no clipping rather than clipping to
the element’s border box.

Values of "rect()" should be separated by commas. UAs are required to support
this syntax, but may also support a space-separated syntax since CSS2 was not
clear about this.

While CSS2 specified that values of "rect()" give offsets from the respective sides
of the box, current implementations interpret values with respect to the top and left
edges for all four values (top, right, bottom, and left). This is now the specified
interpretation.

C.2.82 Section 11.2 Visibility
The ’visibility’ property is now defined to inherit, and descendant elements can
override an ancestor’s hidden visibility.

C.2.83 Chapter 12 Generated content, automatic numbering,
and lists
Moved all discussion of aural rendering to Appendix A.

C.2.84 Section 12.1 The :before and :after pseudo-elements
Removed restrictions on which properties and property values are allowed on
’:before’ and ’:after’ pseudo-elements.

C.2.85 Section 12.2 The ’content’ property
The initial value of ’content’ is now ’normal’, not the empty string.

The ’content’ property now distinguishes between the empty string, which creates
an empty box; and ’normal’/’none’, which create no box at all. (There is no distinction
between ’normal’ and ’none’ in level 2.)

33923 Apr 2009 15:57

Changes

A UA is now allowed to report a URI that fails to download.

Removed recommendation to authors to put rules with media-sensitive ’content’
properties inside ’@media’.

Whether ’\A’ escapes in generated content create line breaks is now subject to the
’white-space’ property.

The former section 12.3 on interaction between ’:before’, ’:after’ and elements with
’display: compact’ or ’display: run-in’ has been removed. (The interaction is already
fully defined, because generated content consists of boxes in the tree, no different
from other boxes.)

C.2.86 Section 12.3.2 Inserting quotes with the ’content’
property
Specified that extra ’close-quote’s and ’no-close-quote’s (those without a matching
’open-quote’ or ’no-open-quote’) are not rendered, and that neither ’close-quote’ nor
’no-close-quote’ cause the quoting depth to be negative.

C.2.87 Section 12.4 Automatic counters and numbering
Defined what a rule with duplicate counters, such as ’counter-reset: section 2
section’, means.

C.2.88 Section 12.4.1 Nested counters and scope
The scope of a counter no longer defaults to the whole document, but starts at the
first element that uses the counter. (This affects counters that are used without a
prior ’counter-reset’ to set the scope explicitly.)

C.2.89 Section 12.5 Lists
Removed text in section 12.5 (formerly 12.6) relating to the ’marker’ display value.

Removed the ’marker-offset’ property (and thus former section 12.6.1).

C.2.90 Section 12.5.1 Lists
The list styles ’hebrew’, ’armenian’, ’georgian’, ’cjk-ideographs’, ’hiragana’,
’katakana’, ’hiragana-iroha’ and ’katakana-iroha’ have been removed due to lack of
implementation experience. (They are expected to return in the CSS3 Lists module.)

Removed the sentence that said that an unknown value for ’list-style-type’ should
cause the value ’decimal’ to be used instead. Instead, normal parsing rules apply
and cause the rule to be ignored.

The size of list style markers without an intrinsic size is now defined.

23 Apr 2009 15:57340

Changes

C.2.91 Chapter 13 Paged media
The ’size’, ’marks’, and ’page’ properties are not part of CSS 2.1.

C.2.92 Section 13.2.2 Page selectors
The requirement for UA’s to honor different declarations for :left, :right, and :first
pages has been softened to simplify implementations: the page area of the :first
page may be used for :left and :right pages as well.

C.2.93 Section 13.3.1 Page break properties
UAs are now only required to apply the page break properties to block-level
elements in the normal flow of the root element, not to other blocks.However, UAs
are now permitted to apply these properties to elements other than block-level
elements.

Defined treatment of margins, borders, and padding when a page break splits a
box.

The ’page-break-inside’ property no longer inherits.

C.2.94 Section 13.3.3 Allowed page breaks
The ’page-break-inside’ property of all ancestors is checked for page-breaking
restrictions, not just that of the breakpoint’s parent.

When dropping restrictions to find a page breaking opportunity, rule A is dropped
together with B and D rather than together with C.

Removed restriction on breaking within absolutely positioned boxes.

C.2.95 Section 14.2.1 Background properties
For ’background-position’, the restriction that keywords cannot be combined with
percentage or length values is removed. I.e., a value like: ’25% top’ is now allowed.
Also, ’background-position’ now applies to all elements, not just to block-level and
replaced elements.

User agents are no longer allowed to treat a value of ’fixed’ for
’background-attachment’ as ’scroll’. Instead they must ignore all such declarations as
if ’fixed’ were an invalid value.

The size of background images without an intrinsic size is now defined.

C.2.96 Section 14.3 Gamma correction
The contents of this section is now a non-normative note.

34123 Apr 2009 15:57

Changes

C.2.97 Chapter 15 Fonts
The ’font-stretch’ and ’font-size-adjust’ properties have been removed in CSS 2.1.

Font descriptors, the ’@font-face’ declaration, and all associated parts of the font
matching algorithm have been removed in CSS 2.1.

C.2.98 Section 15.2 Font matching algorithm
In this section (previously 15.5), in step 5 (prevously 8) of the font matching algorith,
the UA is now allowed to use multiple default fallback fonts to find a glyph for a given
character.

In the per-property rule 2, specified that if there is only a small-caps font in a given
family, then that font will be selected by ’normal’.

C.2.99 Section 15.2.2 Font family
The "missing character" glyph is no longer considered a match for the last font in a
font set, but is now considered a match for U+FFFD.

Certain punctuation characters when appearing in unquoted font family names are
now required to be escaped.

C.2.100 Section 15.5 Small-caps
The ’font-variant’ property’s effect is no longer restricted to bicameral scripts.

C.2.101 Section 15.6 Font boldness
The computed value of ’font-weight’ has been defined more precisely such that the
’bolder’ and ’lighter’ values have an appropriate effect when inheriting through
elements with different font-families.

C.2.102 Section 15.7 Font size
Removed suggestion of 1.2 fixed ratio between keyword font sizes in favor of notes
recommending a variable ratio and a smallest font-size no less than 9 pixels per EM
unit.

Added table mapping CSS font-size keywords to HTML font size numbers.

C.2.103 Chapter 16 Text
The ’text-shadow’ property is not in CSS 2.1.

23 Apr 2009 15:57342

Changes

C.2.104 Section 16.2 Alignment
The initial value of ’text-align’ is no longer UA-defined but a nameless value that acts
as ’left’ if ’direction’ is ’ltr’, ’right’ if ’direction’ is ’rtl’.

The <string> value for ’text-align’ is not part of CSS 2.1.

For ’text-align’, specified that ’justify’ is treated as the initial value when computed
value of ’white-space’ is ’pre’ or ’pre-line’.

C.2.105 Section 16.3.1 Underlining, over lining, striking, and
blinking
More precisely defined what boxes are affected by text decorations specified on a
given element.

Specified that underlines, overlines, and line-throughs apply only to text.

Specified that an underline, overline, or line-through applied across a line must be
at a constant vertical position and with a constant thickness across the entire line.

Specified how text decorations are affected by relative positioning on
descendants.

User agents are now allowed to recognize the ’blink’ value but not blink, whereas
before they were required to ignore the ’blink’ value if they chose not to support
blinking text.

Added text to allow older UAs to conform to this section if they follow CSS2’s
’text-decoration’ requirements but not the additional requirements in CSS2.1.

C.2.106 Section 16.4 Letter and word spacing
Support for the various values of ’letter-spacing’ and ’word-spacing’ is no longer
optional.

Specified that word spacing affects each space, non-breaking space, and
ideographic space left in the text after white space processing rules have been
applied.

C.2.107 Section 16.5 Capitalization
UAs are no longer allowed to not transform characters for which there is an
appropriate transformation but which are outside of Latin-1.

C.2.108 Section 16.6 White space
The ’white-space’ property now applies to all elements, not just to block-level
elements.

34323 Apr 2009 15:57

Changes

"\A" in generated content no longer forces a break for ’normal’ and ’nowrap’ values
of ’white-space’.

Specified that the CSS white space processing model assumes all newlines have
been normalized to line feeds.

Added section 16.6.1 [p. 255] to precisely define white space handling.

Added section 16.6.3 [p. 256] to specify handling of control and combining
characters.

C.2.109 Chapter 17 Tables
Moved all discussion of aural rendering and related properties to Appendix A.

Updated prose to use the terms "specified", "computed" and "used" as appropriate
when referencing values. (See changes to section 6.1 [p. 329] .)

C.2.110 Section 17.2 The CSS table model
Defined handling of multiple ’table-header-group’ and ’table-footer-group’ elements.

UAs are no longer allowed to ignore the table display values on arbitrary HTML
elements, only on HTML table elements.

C.2.111 Section 17.2.1 Anonymous table objects
Changed rules so that internal table elements without an enclosing ’table’ or
’inline-table’ box generate an anonymous ’inline-table’ rather than an anonymous
’table’ when inside a "display: inline" parent element.

The anonymous table object rules now treat anonymous boxes as equal to
elements’ boxes. Replaced several instances of the term "element" with "box",
removed several instances of "(in the document tree)" and clarified that anonymous
boxes generated in earlier rules are part of the input to later rules. Also replaced the
term "object" with "box", as is used throughout the rest of the specification.

HTML UAs are no longer exempt from the anonymous box generation rules.

C.2.112 Section 17.4 Tables in the visual formatting model
The relationship of the caption box, table box, and outer anonymous table box has
been changed as follows:

The margins of the table box now apply to the outer (anonymous) table box that
encloses both the table box and the caption(s), not to the inner table box.
The width of the anonymous box is now equal to the border-box width of the
table box inside it instead of adapting to the widths and positions of both the
table box and its captions.

23 Apr 2009 15:57344

Changes

C.2.113 Section 17.4.1 Caption position and alignment
The ’left’ and ’right’ values on ’caption-side’ have been removed.

C.2.114 Section 17.5 Visual layout of table contents
Changed rule 5 in grid layout rules to allow overlapping of table cells instead of
leaving skipping a gap in the grid to avoid overlap.

C.2.115 Section 17.5.1 Table layers and transparency
In point 6, changed ’These "empty" cells are transparent’ to:

If the value of their ’empty-cells’ property is ’hide’ these "empty" cells are
transparent through the cell, row, row group, column, and column group
backgrounds, letting the table background show through.

C.2.116 Section 17.5.2.1 Fixed table layout
Specified that in fixed table layout, extra columns in rows after the first must not be
rendered.

C.2.117 Section 17.5.2.2 Automatic table layout
Restricted inputs to the table layout algorithm for ’table-layout: auto’, whether or not
the algorithm described in this section is used, to the width of the containing block
and the content of, and any CSS properties set on, the table and any of its
descendants.

Added rule 4 to include the column group’s width in the algorithm for determining
column widths.

C.2.118 Section 17.5.3 Table height algorithms
The ’height’ property on tables is now treated as a mininimum height; the UA no
longer has the option of using ’height’ to constrain the size of the table to be smaller
than its contents.

Percentage heights on table cells, rows, and row groups now compute to ’auto’.

The baseline of a cell is now defined much more precisely.

Defined the baseline of a row with no baseline-aligned cells.

C.2.119 Section 17.5.4 Horizontal alignment in a column
The <string> value for ’text-align’ is not part of CSS 2.1.

34523 Apr 2009 15:57

Changes

C.2.120 Section 17.6 Borders
Several popular browsers assume an initial value for ’border-collapse’ of ’separate’
rather than ’collapse’ or exhibit behavior that is close to that value, even if they do
not actually implement the CSS table model. ’Separate’ is now the initial value.

C.2.121 Section 17.6.1 The separated borders model
Specified the effect of padding on the table element.

Specified which parts of the table are included in the width measurement.

C.2.122 Section 17.6.1.1 Borders and Backgrounds around
empty cells
Refined definition of "empty" when used as a condition for the ’empty-cells’ property
so that it is not triggered when the cell includes any child elements, even if they are
empty.

The ’empty-cells’ property now hides both borders and backgrounds, not just
borders.

Changed behavior of a row when it collapses due to ’empty-cells’: it is no longer
treated as "display: none". Instead it is given zero height and its associated
border-spacing is eliminated.

C.2.123 Section 17.6.2 The collapsing border model
The outer half of the table borders no longer lie in the margin area. Specified which
part of the table is considered the border are in the collapsed borders model and
how its width is calculated. The edges of the box in which the table background is
painted is, however left explicitly undefined.

C.2.124 Section 17.6.2.1 Border conflict resolution
Defined in rule 4 what happens when two elements of the same type conflict and
their borders have the same width and style.

C.2.125 Section 18.1 Cursors: the ’cursor’ property
The size of cursors without an intrinsic size is now defined.

C.2.126 Section 18.4 Dynamic outlines
Position of outline with respect to the border edge is now only suggested, not
required.

23 Apr 2009 15:57346

Changes

Conformant UAs are now allowed to ignore the ’invert’ value. In such UAs the
initial value of ’outline-color’ is the value of the ’color’ property.

C.2.127 Chapter 12 Generated content, automatic numbering,
and lists
The ’marker’ value for ’display’ does not exist in CSS 2.1

C.2.128 Appendix A. Aural style sheets
Chapter 19 on aural style sheets has become appendix A and is not normative in
CSS 2.1. Related units (deg, grad, rad, ms, s, Hz, kHz) are also moved to this
appendix, as is the ’speak-header’ property from the "tables" chapter and other notes
on aural table rendering. The ’aural’ media type is deprecated in favor of the new
’speech’ media type.

C.2.129 Appendix A Section 5 Pause properties
Changed the initial value of ’pause-before’ and ’pause-after’ to be 0 instead of
UA-defined.

A note has been added to this section (formerly 19.4) about the change in position
and behavior of pauses in CSS3 Speech compared to this appendix.

C.2.130 Appendix A Section 6 Cue properties
This section (formerly Section 19.5) now specifies the placement of cues and pauses
with respect to the :before and :after pseudo-elements.

C.2.131 Appendix A Section 7 Mixing properties
The keywords ’mix’ and ’repeat’ may now appear in either order.

C.2.132 Appendix B Bibliography
Various references in Appendix B (formerly Appendix E) have been updated as
appropriate.

Switched [CSS1] from Normative to Informative.

Updated URI reference from [RFC1808] and the draft-fielding-uri-syntax-01.txt to
[RFC3986].

Updated HTTP reference from [RFC2068] to [RFC2616].

Removed normative references to [IANA] and [ICC32].

Added normative references to [ICC42], [RFC3986], [RFC2070], [UAAG10].

34723 Apr 2009 15:57

Changes

Added informative references to CSS2, CSS3 Color, CSS3 Lists, Selectors, CSS3
Speech, DOM 3 Core, MathML 2, P3P, RFC1630, SVG 1.1, XHTML 1, XML ID, and
XML Namespaces.

Removed informative references to [ISO10179] (DSSSL), [INFINIFONT],
[ISO9899] (C), [MONOTYPE], [NEGOT], [OPENTYPE], [PANOSE], [PANOSE2],
[POSTSCRIPT], [RFC1866] (HTML 2), [RFC1942] (HTML Tables), [TRUETYPEGX],
[W3CStyle].

Updated language tags references from [RFC1766] to [3066].

C.2.133 Other
The former informative appendix C, "Implementation and performance notes for
fonts," is left out of CSS 2.1.

C.3 Errors

C.3.1 Shorthand properties
Shorthand properties take a list of subproperty values or the value ’inherit’. One
cannot mix ’inherit’ with other subproperty values as it would not be possible to
specify the subproperty to which ’inherit’ applied. The definitions of a number of
shorthand properties did not enforce this rule: ’border-top’, ’border-right’,
’border-bottom’, ’border-left’, ’border’, ’background’, ’font’, ’list-style’, ’cue’, and
’outline’.

C.3.2 Applies to
The "applies to" line of many property definitions has been made more accurate by
excluding or including table display types where appropriate.

C.3.3 Section 4.1.1 (and G2)
DELIM should not have included single or double quote. Refer also to section 4.1.6
on strings, which must have matching single or double quotes around them.

Removed "A-Z" from the "nmchar" token: as CSS is case insensitive anyway, it
was redundant.

Corrected "unicode" macro to treat CRLF as a single character.

Corrected "block" production to allow white space between declarations.

In the rule for "any" (in the core syntax), corrected "FUNCTION" to "FUNCTION
any* ’)’".

23 Apr 2009 15:57348

Changes

C.3.4 Section 4.1.3 Characters and case
Corrected third paragraph to say that an ’@import’ rule can only be preceeded by an
’@charset’ rule or other ’@import’ rules.

C.3.5 Section 4.3 (Double sign problem)
Several values described in subsections of this section incorrectly allowed two "+" or
"-" signs at their beginnings.

C.3.6 Section 4.3.2 Lengths
Fixed double sign error in definition of <length>. (<number> already has a sign.)

Corrected the suggested reference pixel to be based on a 96 dpi device, not
90 dpi. The visual angle is thus about 0.0213 degrees instead of 0.0227, and a pixel
at arm’s length is about 0.26 mm instead of 0.28

Corrected last sentence to refer to a unsupported used length, not an unsupported
specified length.

C.3.7 Section 4.3.3 Percentages
Fixed double sign error in definition of <percentage>. (<number> already has a
sign.)

C.3.8 Section 4.3.4 URLs and URIs
Defined escaping requirements in terms of the URI token so that no escaping
requirements are missing from the prose.

Included invalid URIs in last paragraph about URI error handling.

C.3.9 Section 4.3.5 Counters
Corrected syntax of counter() and counters() notation to allow white space between
tokens.

C.3.10 Section 4.3.6 Colors
Deleted the comments about range restriction after the following examples:

em { color: rgb(255,0,0) }
em { color: rgb(100%, 0%, 0%) }

34923 Apr 2009 15:57

Changes

C.3.11 Section 4.3.7 Strings
(Formerly section 4.3.10) Corrected text to allow all forms of Unicode escapes for
U+000A, not just the "\A" form, for including newlines in strings.

C.3.12 Section 5.10 Pseudo-elements and pseudo-classes
In the second bullet, added that the ’:lang()’ pseudo-class can also be deduced from
the document in some cases.

C.3.13 Section 6.4 The cascade
Removed paragraph about imported style sheets being overridden by rules in the
importing style sheet: imported style rules follow the cascade as specified in 6.4.1
Cascading order [p. 97] , exactly as if they were inserted in place of the @import
rule.

C.3.14 Section 8.1 Box Dimensions
The definition of "content edge" has been changed to depend on ’width’ and ’height’
rather than directly on ’rendered content’.

From the definition of "padding edge", deleted the sentence "The padding edge of
a box defines the edges of the containing block established by the box." For
information about containing blocks, consult Section 10.1 [p. 163] .

C.3.15 Section 8.2 Example of margins, padding, and borders
The colors in the example HTML did not match the colors in the image.

C.3.16 Section 8.5.4 Border shorthand properties
Changedvarious border shorthands’ syntax definitions to use the <border-width>,
<border-style> and <’border-top-color’> value types as appropriate.

C.3.17 Section 9.2.1 Block-level elements and block boxes
Excepted table elements from second paragraph about principal block boxes and
their contents.

Corrected sentence to say "either only block boxes or only inline boxes" instead of
"only block boxes".

C.3.18 Section 9.3.1 Choosing a positioning scheme
In the definition of "position: static", added ’right’ and ’bottom’ to the sentence saying
that ’top’ and ’left’ do not apply.

23 Apr 2009 15:57350

Changes

C.3.19 Section 9.3.2 Box offsets
The properties ’top’, ’right’, ’bottom’, and ’left’, incorrectly referred to offsets with
respect to a box’s content edge. The proper edge is the margin edge. Thus, for ’top’,
the description now reads: "This property specifies how far a box’s top margin edge
is offset below the top edge of the box’s containing block."

Corrected text under property definitions to say that for relatively-positioned
elements, ’top’, ’right’, ’bottom’, and ’left’ define the offset from the box’s position in
the normal flow, not from the edges of the containing block. (The previous definition
conflicted with that was further down; since that text is now redundant, it has been
removed.)

C.3.20 Section 9.4.1 Block formatting contexts
In paragraph about relationship of a box’s outer edges to its containing block’s
edges, corrected parenthetical to say that line boxes, not the content area, may
shrink due to floats.

C.3.21 Section 9.4.2 Inline formatting context
Added "and the presence of floats" to "The width of a line box is determined by a
containing block".

C.3.22 Section 9.4.3 Relative positioning
In the first paragraph, added "or floated" to the phrase "laid out according to the
normal flow" as floated elements can be relatively positioned but are not part of the
normal flow.

C.3.23 Section 9.5 Floats
Corrected sentence about not enough horizontal room for the float to say that it is
shifted downward until either it fits or there are no more floats present.

C.3.24 Section 9.5.1 Positioning the float
Correct "Applies to" line and prose to say that the ’float’ property can be set for any
element but only applies to elements that are not absolutely positioned.

C.3.25 Section 9.5.2 Controlling flow next to floats
Removed sentence saying that ’clear’ may only be specified for block-level
elements: it can be specified for any element, it only applies to block-level elements.

35123 Apr 2009 15:57

Changes

C.3.26 Section 9.6 Absolute positioning
Corrected sentence that said absolutely positioned boxes establish a new containing
block for absolutely positioned descendants to except fixed positioned descendants.

C.3.27 Section 9.7 Relationships between ’display’, ’position’,
and ’float’
In rule 1, corrected "user agents must ignore ’position’ and ’float" to "’position’ and
’float’ do not apply".

C.3.28 Section 9.10 Text direction
Corrected note about ’direction’ on table column elements to say that "columns are
not the ancestors of the cells in the document tree" rather than saying "columns don’t
exist in the document tree".

Added table cells, table captions, and inline blocks alongside block-level elements
in description of ’bidi-override’ value. Also corrected the prose to handle anonymous
child blocks.

Updated mention of Unicode’s embedding limit from 15 to 61.

C.3.29 Section 10.1 Definition of "containing block"
Included table cells (and inline blocks) together with block-level elements in rule 2
defining the containing block of non-absolutely-positioned elements.

C.3.30 Section 10.3.3 Block-level, non-replaced elements in
normal flow
In the last sentence of the paragraph following the equation ("If the value of
’direction’ is ’ltr’, this happens to ’margin-left’ instead") substituted ’rtl’ for ’ltr’.

C.3.31 Section 10.4 Minimum and maximum widths
The initial value for ’min-width’ is now ’0’ rather than UA-dependent.

Corrected "applies to" exception for both ’min-width’ and ’max-width’ from "table
elements" to "table rows and row groups".

Specified that negative values for ’min-width’ and ’max-width’ are illegal.

C.3.32 Section 10.6.3 Block-level non-replaced elements in
normal flow when ’overflow’ computes to ’visible’

23 Apr 2009 15:57352

Changes

Added that ’auto’ height also depends on whether the element has padding or
borders, as these influence margin-collapsing behavior.

Added text to correctly account for margin collapsing behavior.

C.3.33 Section 10.7 Minimum and maximum heights
Corrected "applies to" exception for both ’min-width’ and ’max-width’ from "table
elements" to "table columns and column groups".

Specified that negative values for ’min-height’ and ’max-height’ are illegal.

C.3.34 Section 11.1.1 Overflow
Corrected "applies to" line for ’overflow’ from "block-level and replaced elements" to
"non-replaced block-level elements, table cells, and inline-block elements".

The example of a DIV element containing a BLOCKQUOTE containing another
DIV was not rendered correctly. The first style rule applied to both DIVs, so the
second DIV box should have been rendered with a red border as well. The second
DIV has now been changed to a CITE, which doesn’t have a red border.

C.3.35 Section 11.1.2 Clipping: the ’clip’ property
Corrected "rect (<top> <right> <bottom> <left>)" to "rect(<top>, <right>, <bottom>,
<left>)".

C.3.36 Section 11.2 Visibility
Corrected initial value of ’visibility’ to ’visible’.

C.3.37 Section 12.4.2 Counter styles
The example used the style ’hebrew’, which doesn’t exist in CSS level 2. Changed to
’lower-greek’.

C.3.38 Section 12.6.2 Lists
Under the ’list-style’ property, the example:

ul > ul { list-style: circle outside } /* Any UL child of a UL */

could never match valid HTML markup (since a UL element cannot be a child of
another UL element). An LI has been inserted in between.

35323 Apr 2009 15:57

Changes

C.3.39 Section 14.2 The background
Second sentence: "In terms of the box model, ’background’ refers to the background
of the content and the padding areas" now also mentions the border area. (See also
errata to section 8.1 [p. 350] above.) Thus:

In terms of the box model, "background" refers to the background of the
content, padding and border areas.

C.3.40 Section 14.2.1 Background properties
Under ’background-image’, defined the image tile size used when the background
image has intrinsic sizes specified in percentages or no intrinsic size.

Under ’background-repeat’, the sentence "All tiling covers the content and padding
areas [...]" has been corrected to

"All tiling covers the content, padding and border areas [...]".

Under ’background-attachment’, the value ’scroll’ is defined to scroll with the
"containing block" rather than with the "document". Also the sentence "Even if the
image is fixed [...] background or padding area of the element" has been corrected to

Even if the image is fixed, it is still only visible when it is in the background,
padding or border area of the element.

C.3.41 Section 15.2 Font matching algorithm
In bullet 2, changed "the UA uses the ’font-family’ descriptor" to "the UA uses the
’font-family’ property".

C.3.42 Section 15.7 Font size
The statement "Negative values are not allowed" for ’font-size’ now applies to
percentages as well as lengths.

C.3.43 Section 16.1 Indentation
Corrected ’text-indent’ to apply to table cells (and inline blocks) as well as block-level
elements.

C.3.44 Section 16.2 Alignment
Corrected ’text-align’ to apply to table cells (and inline blocks) as well as block-level
elements.

Changed prose about the effect of ’justify’ to be less correct.

23 Apr 2009 15:57354

Changes

Corrected the note to say that justification is also dependent on the script, not just
the language, of the text.

C.3.45 Section 17.2 The CSS table model
In the definition of table-header-group , changed "footer" to "header" in "Print user
agents may repeat footer rows on each page spanned by a table."

C.3.46 Section 17.2.1 Anonymous table objects
Added ’table-header-group’ and ’table-footer-group’ alongside mentions of
’table-row-group’ where missing.

Corrected ’caption’ to ’table-caption’.

Added missing rule (#3) for ’table-column’ boxes.

Added ’table-caption’ and ’table-column-group’ to list of boxes requiring a ’table’ or
’inline-table’ parent in rule 4.

Added rules 5 and 6 to generate ’table-row’ boxes where necessary for children of
’table’/’inline-table’ and ’table-row-group’/’table-header-group’/’table-footer-group’
boxes.

C.3.47 Section 17.4 Tables in the visual formatting model
Specified handling of multiple caption boxes.

Specified that the anonymous outer table box is a ’block’ box if the table is
block-level and an ’inline-block’ box if the table is inline-level but that the anonymous
outer table box cannot accept run-ins.

C.3.48 Section 17.5 Visual layout of table contents
Correct text that said all internal table elements have padding; change to say that of
these only table cells have padding.

The following note:

Note. Table cells may be relatively and absolutely positioned, but this is not
recommended: positioning and floating remove a box from the flow, affecting
table alignment.

has been amended as follows:

Note. Table cells may be positioned, but this is not recommended: absolute
and fixed positioning, as well as floating, remove a box from the flow, affecting
table size.

35523 Apr 2009 15:57

Changes

C.3.49 Section 17.5.1 Table layers and transparency
The rows and columns only cover the whole table in the collapsed borders model,
not in the separated borders model.

The points 2, 3, 4 and 5 have been corrected to define the area covered by rows,
columns, row groups and column groups and thus the positioning and painting of
backgrounds on those elements.

Specify the handling of "missing cells".

C.3.50 Section 17.6.1 The separated borders model
In the image, changed "cell-spacing" to "border-spacing".

C.3.51 Section 18.2 System Colors
For the ’ButtonHighlight’ value, changed the description from "Dark shadow" to
"Highlight color".

C.3.52 Section E.2 Painting order
Changed "but any descendants which actually create a new stacking context" to "but
any positioned descendants and descendants which actually create a new stacking
context" (3 times).

This change also occurred once in section 9.5 (Floats) [p. 136] and once in section
section 9.9 (Layered presentation). [p. 156]

C.4 Clarifications

C.4.1 Section 2.1 A brief CSS 2.1 tutorial for HTML
This section has been marked non-normative.

C.4.2 Section 2.2 A brief CSS 2.1 tutorial for XML
This section has been marked non-normative.

Added a statement about case-sensitivity of selectors for XML.

The specification for the XML style sheet PI [p. ??] was written after CSS2 was
finalized. The first line of the full XML example should not have been be
<?XML:stylesheet type="text/css" href="bach.css"?> , but

<?xml-stylesheet type="text/css" href="bach.css"?>

23 Apr 2009 15:57356

Changes

C.4.3 Section 2.3 The CSS 2.1 processing model
This section has been marked non-normative.

C.4.4 Section 3.1 Definitions
Added a note to clarify that the deprecated/non-deprecated status of a feature is
distinct from its normative/non-normative status.

Under ’document language’ clarified that CSS only describes the presentation of a
document language, and has no effect on its semantics.

Changed definition of ’replaced element’ to "an element whose content is outside
the scope of the CSS formatting model" and added further clarifying text. This
clarifies that e.g. SVG images embedded in an XML document are also considered
replaced elements, not just those linked in from an outside file. Also changed
definition of ’rendered content’ to be consistent with this clarification.

Added under "Intrinsic dimension" that raster images without reliable resolution
information are assumed to have a size of 1 px unit per image source pixel.

Added definition for ’ignore’.

Added definition for ’HTML user agent’.

Added definition for ’property’.

C.4.5 Section 4.1 Syntax
Moved definitions of "immediately before" and "immediately after" forward so they
apply to the whole Syntax section.

Added sections 4.1.2.1 and 4.1.2.2 to defined vendor-specific extensions.

C.4.6 Section 4.1.1 Tokenization
Clarified that input that cannot be parsed according to the core syntax is ignored
according to the rules for handling parsing errors.

Clarified that input that cannot be tokenized or parsed has no meaning in CSS2.1.

C.4.7 Section 4.1.3 Characters and case
Clarified that when a CRLF pair terminates an escape sequence, the pair is treated
as a single white space character as corrected [p. 348] in the tokenization rules.

Replaced "[a-z0-9]" by "[a-zA-Z0-9]" as an extra reminder that CSS identifiers are
case-insensitive.

35723 Apr 2009 15:57

Changes

C.4.8 Section 4.1.7 Rule sets, declaration blocks, and
selectors
Replaced the term "{}-block" with "declaration block".

C.4.9 Section 4.2 Rules for handling parsing errors
Clarified that all property:value combinations and @-keywords that do not contain an
identifier beginning with dash or underscore are reserved by CSS for future use.

Clarified that when something inside an at-rule is ignored because it is invalid, this
does not make the entire at-rule invalid.

Referenced section 4.1.7 for parsing invalid bits inside declaration blocks.

C.4.10 Section 4.3.1 Integers and real numbers
Clarified that ’-0’ is equivalent to ’0’ and is not a negative number.

C.4.11 Section 4.3.2 Lengths
Clarified that negative length values on properties that don’t allow them cause the
declaration to be ignored.

C.4.12 Section 4.3.4 URLs and URIs
Reduced unnecessary discussion of what a URI is.

C.4.13 Section 5.1 Pattern matching
Added note about terminology change ("simple selector") between CSS2 and CSS3.

C.4.14 Section 5.7 Adjacent sibling selectors
Clarified that text nodes and comments do not affect whether a sibling selector
matches.

C.4.15 Section 5.8.1 Matching attributes and attribute values
Clarified ~= and |= by using the definitions from the Selectors module.

C.4.16 Section 5.8.2 Default attribute values in DTDs
Clarified that rules about default attribute values are the same, whether the default is
specified in a DTD or by other means.

23 Apr 2009 15:57358

Changes

C.4.17 Section 5.9 ID selectors
Added a note that it depends on the document format which attributes are ID
attributes.

C.4.18 Section 5.11.3 The dynamic pseudo-classes: :hover,
:active, and :focus
Clarified that CSS 2.1 does not define if the parent of an element that matches
’:active’ or ’:hover’ itself also matches ’:active’ or ’:hover’.

Added note that, in CSS1, ’:active’ only applies to links.

C.4.19 Section 5.11.4 The language pseudo-class: :lang
Added a note to show the differences between ’:lang(xx)’ and ’[lang=xx]’.

C.4.20 Section 5.12.2 The :first-letter pseudo-element
Clarified that digits can also be first letter.

C.4.21 Section 6.2 Inheritance
Clarified that computed values are inherited (not specified values) and that they
become the specified value on the inheritor.

Removed discussion of "default" styles for a document.

C.4.22 Section 6.2.1 The ’inherit’ value
Clarify that ’inherit’ can be used on properties that are not normally inherited and that
when set on the root element, it has the effect of assigning the property’s initial
value.

C.4.23 Section 6.3 The @import rule
Except @charset from the statement that @imports must precede all other rules.

C.4.24 Section 6.4 The Cascade
Obfuscated note about system settings and UA limitations.

C.4.25 Section 6.4.1 Cascading order
Various editorial changes to clarify sort order.

35923 Apr 2009 15:57

Changes

C.4.26 Section 6.4.3 Calculating a selector’s specificity
Added a note:

The specificity is based only on the form of the selector. In particular, a
selector of the form "[id=p33] " is counted as an attribute selector (a=0, b=1,
c=0), even if the id attribute is defined as an "ID" in the source document’s
DTD.

C.4.27 Section 7.2.1 The @media rule
Clarify that Style rules outside of @media rules apply to the same media types that
the style sheet itself applies to.

C.4.28 Section 7.3 Recognized media types
Added text to clarify that media types are mutually exclusive, but a UA can render
simulatenously to canvases with different media types.

C.4.29 Section 7.3.1 Media groups
Split "aural" media group into "audio" and "speech".

C.4.30 Section 8.1 Box dimensions

The terms "content box", "padding box", "border box", and "margin box" have
been defined.
Border backgrounds are not specified by border properties. Changed the last
paragraph of 8.1 to:

The background style of the content, padding, and border areas of a box
is specified by the ’background’ property of the generating element. Margin
backgrounds are always transparent.

Removed definition of "box width" and "height".

C.4.31 Section 8.3 Margin properties
Added a sentence to note that vertical margins have no effect on non-replaced inline
elements.

C.4.32 Section 8.3.1 Collapsing margins
Changed "absolute maximum" to "maximum of the absolute values" in sentence
about negative margins collapsing.

23 Apr 2009 15:57360

Changes

Added this clarifying note to the first bullet of the explanation of vertical collapsing
of margins:

Note. Adjoining boxes may be generated by elements that are not related as
siblings or ancestors.

Emphasized that floating elements’ margins do not collapse even between a float
and its in-flow children.

Emphasized that absolutely positioned elements’ margins do not collapse even
between the positioned element and its in-flow children.

C.4.33 Section 8.5.3 Border style
Changed description of ’none’ value to not imply that all four border widths are set to
zero.

C.4.34 Section 9.1.1 The viewport
Changed the sentence "When the viewport is smaller than the ..., the user agent
should offer a scrolling mechanism" to use "area of the canvas on which the
document is rendered" instead of "document’s initial containing block".

C.4.35 Section 9.2.4 The ’display’ property
Clarified that ’display: none’ also applies to non-visual media.

C.4.36 Section 9.3.1 Choosing a positioning scheme
Clarified that the margins of fixed positioned boxes do not collapse with any other
margins.

Clarified that in print media fixed boxes are rendered on every page.

C.4.37 Section 9.3.2 Box offsets
Clarified that negative lengths and percentages are allowed as values of ’top’, ’right’,
’bottom’, and ’left’.

Added "For replaced elements, the effect of this value depends only on the
intrinsic dimensions of the replaced content. See the sections on the width and
height of absolutely positioned, replaced elements for details." to the definition of
’auto’ because that’s not what chapter 10 says at all.

C.4.38 Section 9.4.2 Inline formatting context
Clarified that ’justify’ stretches "spaces and words in inline boxes"; previous text
simply said that it stretches "inline boxes".

36123 Apr 2009 15:57

Changes

The statement "When an inline box is split, margins, borders, and padding have no
visual effect where the split occurs." has been generalized. Margins, borders, and
padding have no visual effect where one or more splits occur.

Clarified that an inline box that exceeds the width of a line box and cannot be split
therefore overflows the line box.

Removed sentence about formatting of margins, borders, and padding for split
inline boxes not being fully defined when affected by bidi as that situation is now
defined in section 8.6 [p. 120] .

C.4.39 Section 9.4.3 Relative positioning
Clarified that although relative positioning normally doesn’t directly affect layout, it
may affect layout indirectly through the creation of scrollbars.

Relatively positioned boxes do not always establish new containing blocks.
Changed the second paragraph to refer to the section on containing blocks
accordingly.

The paragraph about dynamic movement and superscripting has been shifted into
a non-normative note.

C.4.40 Section 9.5 Floats
Clarified that line boxes are shortened to make room for the margin box of the float.

Added some text to clarify what "Any content in the current line before a floated
box is reflowed in the first available line on the other side of the float" means.

Clarified floats’ position in the stacking order.

C.4.41 Section 9.5.1 Positioning the float
Clarified that the elements referenced in the float behavior rules are in the same
block formatting context as the float.

C.4.42 Section 9.5.2 Controlling flow next to floats
Clarified that the effects of ’clear’ do not consider floats in other block formatting
contexts.

C.4.43 Section 9.8 Comparison of normal flow, floats, and
absolute positioning
Added a note to clarify that the images in this section are not drawn to scale and are
illustrations, not reference renderings.

23 Apr 2009 15:57362

Changes

C.4.44 Section 10.1 Definition of "containing block"
Noted that a containing block formed by inline elements may wind up with a negative
containing block width.

C.4.45 Section 10.2 Content width
In the definition of <length> values for the ’width’ property, changed "Specifies a
fixed width" to "Specifies the width of the content area using a length unit".

C.4.46 Section 10.3.3 Block-level, non-replaced elements in
normal flow
Clarified that setting both left and right margins to ’auto’ horizontally centers the
element within its containing block.

C.4.47 Section 10.3.8 Absolutely positioning, replaced
elements
Clarified which part of the text of section 10.3.7 is re-used.

C.4.48 Section 10.4 Minimum and maximum widths
Clarified that ’min-width’ and ’max-width’ do not affect the computed values of any
properties. (They only affect the used value.)

C.4.49 Section 10.6 Calculating heights and margins
Clarified that these rules apply to the root element just as to any other element.

C.4.50 Section 10.7 Minimum and maximum heights
Clarified that ’min-width’ and ’max-width’ do not affect the computed values of any
properties. (They only affect the used value.)

C.4.51 Section 10.8 Line height calculations
Removed clarifying note about line height being taller than tallest single inline box
due to vertical alignment.

C.4.52 Section 10.8.1 Leading and half-leading
Removed "slightly" from the note "Values of this property have slightly different
meanings in the context of tables."

36323 Apr 2009 15:57

Changes

C.4.53 Section 11.1 Overflow and clipping
Clarified when absolute positioning and negative margins cause overflow.

Added ’text-indent’ to the list of things that can cause overflow.

Removed mention of ’clip’ since it no longer affects most elements; mentioned that
the ’overflow’ property also specifies whether a scrolling mechanism is provided to
access clipped content.

C.4.54 Section 11.1.1 Overflow
Clarified that descendant elements whose containing block is the viewport or an
ancestor of the element are not affected by overflow clipping.

Removed unnecessary mentions of the ’clip’ property from the ’hidden’ value
definition.

C.4.55 Section 11.1.2 Clipping
Changed "portion of an element’s rendered content" to "portion of an element’s
border box" since clipping also affects the element’s backgrounds and borders.

Clarified what parts of the element are affected by clipping.

Clarified that clipped content does not cause overflow.

Clarified that arguments of clip() can be separated by spaces or by commas, but
not a combination.

C.4.56 Section 11.2 Visibility
Clarified that descendants of a ’visibility: hidden’ element will be visible if they have
’visibility: visible’.

C.4.57 Section 12.1 The :before and :after pseudo-elements
Clarified that :before and :after pseudo-elements interact with other boxes as if they
were real elements just inside their associated element.

Noted that the interaction of :before and :after with replaced elements is left
undefined for now.

C.4.58 Section 12.2 The ’content’ property
Clarified which counters are used for counter() and counters() in case there are
multiple counters of the same name.

23 Apr 2009 15:57364

Changes

C.4.59 Section 12.3.2 Inserting quotes with the ’content’
property
Removed note about common typographic practices when quotes in different
languages are mixed.

C.4.60 Section 12.4 Automatic counters and numbering
In the "self-nesting" behavior of counters, clarified that merely using a counter in a
child element doesn’t create a new instance of it: only resetting it does.

Clarified that the scope of a counter does not include any elements in the scope of
a counter with the same name created by a ’counter-reset’ on a later sibling or a
later ’counter-reset’ on the same element.

Removed sentence about scope of ’counter-increment’ without prior
’counter-reset’ as that is now defined (differently) under "12.4.1 Nested counters and
scope."

C.4.61 Section 12.4.3 Counters in elements with ’display:
none’
Clarified that pseudo-elements that generate no boxes also do not increment
counters.

C.4.62 Section 14.2 The background
Clarified that the root background image, although painted over the entire canvas, is
anchored as if painted only for the root element, and that the root’s background is
only painted once.

Clarified rules for propagation of background settings on HTML’s <body> element
to the root.

Added statement about z-index of backgrounds for elements that form a stacking
context and referred to z-index property for details.

Added this note after the first paragraph after ’background-attachment’:

Note that there is only one viewport per document. I.e., even if an element
has a scrolling mechanism (see ’overflow’), a ’fixed’ background doesn’t move
with it.

Definition of ’background-position’ has been rewritten as normative rules rather
than just examples.

Stated that the tiling and positioning of background images for inline elements is
undefined in CSS2.1.

36523 Apr 2009 15:57

Changes

C.4.63 Section 15.1 Fonts Introduction
Drastically shortened introduction.

C.4.64 Section 15.2 Font matching algorithm
In the per-property rule 2, clarified that ’normal’ matches the non-small-caps variant
(if there is one).

C.4.65 Section 15.2.2 Font family
Removed discussion of font-matching algorithm. (It is already covered in the
font-matching algorithm’s own section [p. 233] .

Clarified that quoted strings that are the same as a keyword value must be treated
as font family names and not as the keyword value (which must be unquoted).

C.4.66 Section 15.3.1 Generic font families
This section, previously section 15.2.6, has been moved but no other change was
made.

C.4.67 Section 15.4 Font styling
The text for this section (formerly part of 15.2.3) has been reverted to its CSS1
format.

C.4.68 Section 15.5 Small-caps
The text for this section (formerly part of 15.2.3) has been reverted to its CSS1
format.

Clarified that CSS2.1 cannot select font variants besides small-caps.

Clarified that when "font-variant: small-caps" results in the substitution of full-caps,
the behavior is the same as for text-transform.

C.4.69 Section 15.6 Font boldness
The text for this section (formerly part of 15.2.3) has been reverted to its CSS1
format. Also, discussion of font-weight from other parts of the Fonts chapter has
been aggregated under this section.

Removed statemnt that says "User agents must map names to values in a way
that preserves visual order; a face mapped to a value must not be lighter than faces
mapped to lower values." This is otherwise implied by "The only guarantee is that a
face of a given value will be no less dark than the faces of lighter values."

23 Apr 2009 15:57366

Changes

C.4.70 Section 15.7 Font size
Clarified relationship of font size to em squares.

Added a totally irrelevant note about font sizes virtual reality scenes.

C.4.71 Section 16.1 Indentation
Clarified that text overflowing due to text-indent is affected by the ’overflow’ property.

Added a note about text-indents inheriting behavior and suggesting ’text-indent: 0’
on inline-blocks.

C.4.72 Section 16.2 Alignment
Changed "double justify" to "justify" under "left, right, center, and justify".

C.4.73 Section 16.3.1 Underlining, over lining, striking, and
blinking
Added an example to illustrate how underlining affects descendant boxes.

C.4.74 Section 16.5 Capitalization
Switched language reference from RFC2070 to RFC3066.

C.4.75 Section 16.6 White space
Added section 16.6.1 [p. 256] as an example to illustrate the interaction of white
space collapsing and bidi.

C.4.76 Section 17.1 Introduction to tables
Expanded introduction to include a brief discussion of the two table layout models.
Mentioned that the automatic table algorithm is not fully defined in CSS 2.1 but that
some implementations have achieved relatively close interoperability.

C.4.77 Section 17.2 The CSS table model
Clarify that all table captions must be rendered if more than one exists.

Specified that replaced elements with table display values are treated as table
elements in table layout.

36723 Apr 2009 15:57

Changes

C.4.78 Section 17.2.1 Anonymous table objects
Moved the first bullet text to the prose before the list of generation rules as it is a
general statement of what the rules are supposed to accomplish.

C.4.79 Section 17.4 Tables in the visual formatting model
Clarified that "display: table" elements behave as block-level elements and "display:
inline-table" elements behave as inline-level elements and not the other way around.

Clarified that ’table-caption’ boxes behave as normal block boxes within the outer
anonymous table box.

Clarified that percentage ’width’ and ’height’ on the table box is relative to the
anonymous box’s containing block, not the anonymous box itself.

Clarified that the ’position’, ’float’, ’top’, ’right’, ’bottom’, and ’left’ values on the
table box are used on the anonymous outer box instead of the table box and that the
table box itself uses the initial values of those properties.

C.4.80 Section 17.5 Visual layout of table contents
To remove ambiguity about the position of extent of internal table boxes, the
following paragraph was added after point 6:

the edges of the rows, columns, row groups and column groups in the
collapsing borders model [p. 278] coincide with the hypothetical grid lines on
which the borders of the cells are centered. (And thus, in this model, the rows
together exactly cover the table, leaving no gaps; ditto for the columns.) In the
separated borders model, [p. 275] the edges coincide with the border edges
[p. 106] of cells. (And thus, in this model, there may be gaps between the rows
and columns, corresponding to the ’border-spacing’ property.)

Changed warning note about positioning of table cells to be more precise about
the possibly unintended effects.

C.4.81 Section 17.5.1 Table layers and transparency
At the end of the section added the following paragraph:

Note that if the table has ’border-collapse: separate’, the background of the
area given by the ’border-spacing’ property is always the background of the
table element. See 17.6.1

C.4.82 Section 17.5.2 Table width algorithms
Added a paragraph to clarify the interaction of the table width algorithms with the
rules in section 10.3 [p. 167] (Calculating widths and margins).

23 Apr 2009 15:57368

Changes

C.4.83 Section 17.5.2.1 Fixed table layout
Explicitly mentioned that the fixed table layout algorithm may be used with the
algorithm of section 10.3.3 [p. 168] when ’table-layout’ is ’fixed’ but ’width’ is ’auto’.

C.4.84 Section 17.5.2.2 Automatic table layout
Clarified that UAs can use other algorithms besides the one in this section even if it
results in different behavior. Also marked the rest of the section non-normative in
accordance with that statement.

C.4.85 Section 17.5.4 Horizontal alignment in a column
Changed "The horizontal alignment of a cell’s content within a cell box is specified
with the ’text-align’ property" to "The horizontal alignment of a cell’s inline content
within a cell box can be specified with the ’text-align’ property."

C.4.86 Section 17.5.5 Dynamic row and column effects
Clarified that not affecting layout means that ’visibility: collapse’ causes the part of
row- and column-spanning cells that span into the collapsed row to be clipped.

C.4.87 Section 17.6.1 The separated borders model
Added a note explaining that ’border-spacing’ can be used as a substitute for the
non-standard ’framespacing’ attribute on frameset elements (which are out-of-scope
for CSS2.1).

Added clarification about backgrounds: the sentence "This space is filled with the
background of the table element" was replaced by:

In this space, the row, column, row group, and column group backgrounds are
invisible, allowing the table background to show through.

C.4.88 Section 17.6.2 The collapsing borders model
In the sentence after the question, added "and padding-left i and padding-right i refer
to the left (resp., right) padding of cell i."

C.4.89 Section 18.2 System Colors
Noted that system colors are deprecated in CSS3.

36923 Apr 2009 15:57

Changes

C.4.90 Section 18.4 Dynamic outlines
Clarified that outlines do not cause overflow.

Clarified that outlines are only fully connected "if possible".

C.4.91 Section 18.4.1 Outlines and the focus
Clarify that changing outlines in response to focus should not cause a document to
reflow.

C.4.92 Appendix D Default style sheet for HTML 4
Added paragraph clarifying that some presentational markup in HTML can be
replaced with CSS, but it requires different markup.

C.5 Errata since the Candidate Recommendation of
July 2007
Errata to CSS 2.1 since CR version of July 19, 2007. [p. ??]

C.5.1 Section 1.4.2.1 Value
[2009-04-15] The notation “&&” may be used in syntax definitions in future CSS
specifications.

C.5.2 Section 2.3 The CSS 2.1 processing model
[2008-08-19] The first part of the section is not normative.

C.5.3 Section 3.1 Definitions
[2007-11-14] Append “For raster images without reliable resolution information, a
size of 1 px unit per image source pixel must be assumed.” to the definition of
“intrinsic dimensions.”

C.5.4 Section 4.1.1 Tokenization
[2007-09-27] Remove “DELIM?” from the grammar rule

declaration : DELIM? property S* ’:’ S* value;

The DELIM was allowed there so that unofficial properties could start with a dash
(-), but the dash was already allowed because of the definition of “IDENT.”

[2009-02-02] Change U to u in token UNICODE-RANGE. (It means the same, but
seems to avoid confusion.)

23 Apr 2009 15:57370

Changes

[2009-02-02] Clarify where comments are allowed:

COMMENT tokens do not occur in the grammar (to keep it readable), but any
number of these tokens may appear anywhere between outside other tokens.
(Note, however, that a comment before or within the @charset rule disables the
@charset.)

C.5.5 Section 4.1.2.2 Informative Historical Notes
[2008-12-09] Other known vendor prefixes are: -xv-, -ah-, prince-, -webkit-, and
-khtml-.

C.5.6 Section 4.1.3 Characters and case
[2007-11-14] In the second bullet, change “[a-z0-9]” to “[a-zA-Z0-9]”; in the third
bullet, change “[0-9a-f]” to “[0-9a-fA-F]”.

Although the preceding bullet already says that CSS is case-insensitive, the
explicit mention of upper and lower case letters helps avoid mistakes.

C.5.7 Section 4.1.3 Characters and case
[2008-03-05] CSS is now case-sensitive, except for certain parts:

All CSS syntax is case-insensitive within the ASCII range (i.e. [a-z] and [A-Z]
are equivalent), except for parts that are not under the control of CSS.

C.5.8 Section 4.1.3 Characters and case
[2008-12-02] The pair “*/” ends a comment, even if preceded by a backslash.
Change this sentence in the third bullet:

Except within CSS comments, any character (except a hexadecimal digit) can
be escaped with a backslash to remove its special meaning.

C.5.9 Section 4.1.3 Characters and case
[2009-04-15] Text added to match the grammar:

[…] any character (except a hexadecimal digit , linefeed, carriage return or
form feed) can be escaped […]

C.5.10 Section 4.1.5 At-rules
[2009-04-15] Clarified that unknown statements are ignored when looking for
@import:

37123 Apr 2009 15:57

Changes

CSS 2.1 user agents must ignore any ’@import’ rule that occurs inside a
block or after any valid non-ignored statement other than an @charset or an
@import rule.

C.5.11 Section 4.1.7 Rule sets, declaration blocks, and
selectors
[2008-11-26] More precise statement of what is ignored:

When a user agent can’t parse the selector (i.e., it is not valid CSS 2.1), it
must ignore the selector and the following declaration block (if any) as well.

C.5.12 Section 4.2 Rules for handling parsing errors
[2009-04-15] Added error recovery rule for unexpected tokens at the top level:

Malformed statements. User agents must handle unexpected tokens
encountered while parsing a statement by reading until the end of the
statement, while observing the rules for matching pairs of (), [], {}, "", and ’’, and
correctly handling escapes. For example, a malformed statement may contain
an unexpected closing brace or at-keyword. E.g., the following lines are all
ignored:

p @here {color: red} /* ruleset with unexpected at-keyword "@here" */
@foo @bar; /* at-rule with unexpected at-keyword "@bar" */
}} {{ - }} /* ruleset with unexpected right brace */
) [{}] p {color: red } /* ruleset with unexpected right parenthesis */

C.5.13 Section 4.2 Rules for handling parsing errors
[2008-11-26] Change “or block” as follows:

User agents must ignore an invalid at-keyword together with everything
following it, up to and including the next semicolon (;), or block ({...}) the next
block ({...}), or the end of the block (}) that contains the invalid at-keyword,
whichever comes first.

C.5.14 Section 4.3.2 Lengths
[2008-08-19] Add recommendation about size of px:

[…] the user agent should rescale pixel values. It is recommended that the
pixel unit refer to the whole number of device pixels that best approximates the
reference pixel.

23 Apr 2009 15:57372

Changes

C.5.15 Section 4.3.5 Counters
[2008-03-05] Insert “case-sensitive” in “Counters are denoted by case-sensitive
identifiers”.

C.5.16 Section 5.8.1 Matching attributes and attribute values
[2008-04-07] Clarified ~= and |= by using the definitions from the Selectors [p. ??]
module.

[2008-11-03] Clarified that [foo~=""] (i.e., with an empty value) will not match
anything.

C.5.17 Section 5.8.2 Default attribute values in DTDs
[2007-11-14] Replace “tag selector” by “type selector”.

C.5.18 Section 5.11.4 The language pseudo-class: :lang
[2009-04-15] The language code is case-insensitive.

C.5.19 Section 5.12.3 The :before and :after pseudo-elements
[2008-11-03] Clarified text:

When the :first-letter and :first-line pseudo-elements are combined with
applied to an element having content generated using :before and :after, they
apply to the first letter or line of the element including the inserted text
generated content.

C.5.20 Section 6.3 The @import rule
[2008-08-19] Add “In CSS 2.1” and “See the section on parsing for when user agents
must ignore @import rules” to

In CSS 2.1, any @import rules must precede all other rules (except the
@charset rule, if present). See the section on parsing for when user agents
must ignore @import rules.

C.5.21 Section 6.3 The @import rule
[2008-11-26] Define what it means to import a style sheet twice and how the media
list is matched. Add at the end:

In the absence of any media types, the import is unconditional. Specifying ’all’
for the medium has the same effect. The import only takes effect if the target
medium matches the media list.

37323 Apr 2009 15:57

Changes

A target medium matches a media list if one of the items in the media list is
the target medium or ’all’.

Note that Media Queries [MEDIAQ] extends the syntax of media lists and the
definition of matching.

When the same style sheet is imported or linked to a document in multiple
places, user agents must process (or act as though they do) each link as though
the link were to a separate style sheet.

C.5.22 Section 6.4.1 Cascading order
[2007-11-22] Spelling error: “precendence”.

C.5.23 Section 6.4.1 Cascading order
[2008-11-26] Define the meaning of a media list:

Find all declarations that apply to the element and property in question, for the
target media type. Declarations apply if the associated selector matches the
element in question and the target medium matches the media list on all
@media rules containing the declaration and on all links on the path through
which the style sheet was reached.

C.5.24 Section 7.2.1 The @media rule
[2008-12-02] The rules for parsing unknown statements inside @media blocks were
ambiguous. Change the first sentence as follows:

An @media rule specifies the target media types (separated by commas) of a
set of rules statements (delimited by curly braces). Invalid statements must be
ignored per 4.1.7 "Rule sets, declaration blocks, and selectors" and 4.2 "Rules
for handling parsing errors."

Also make it explicit that CSS level 2 (unlike higher levels) has no nested @-rules.
Add at the end of the section: “At-rules inside @media are invalid in CSS 2.1.”

C.5.25 Section 8.3.1 Collapsing margins
[2008-08-18] In bullet 6, sub-bullet 2, the position of the top border edge is
determined by assuming the element has a non-zero bottom (not: top) border.

C.5.26 Section 8.3.1 Collapsing margins
[2009-02-02] Rephrased the rule for adjoining margins so that the ’min-height’ and
’max-height’ of an element have no influence over whether the element’s bottom
margin is adjoining to its last child’s bottom margin.

23 Apr 2009 15:57374

Changes

C.5.27 Section 8.3.1 Collapsing margins
[2008-12-02] Not only elements with ’overflow’ other than ’visible’, but all block
formatting contexts avoid collapsing their margins with their children. Change the
third bullet as follows:

Vertical margins of elements with ’overflow’ other than ’visible’ that
establish new block formatting contexts (such as floats and elements with
’overflow’ other than ’visible’) do not collapse with their in-flow children.

C.5.28 Section 9.2.2 Inline-level elements and inline boxes
[2008-12-02] Added missing ’inline-block’ in: “Several values of the ’display’ property
make an element inline: ’inline’, ’inline-table’, ’inline-block’ and ’run-in’ (part of the
time; see run-in boxes).”

C.5.29 Section 9.2.4 The ’display’ property
[2008-04-07] Clarified that ’display: none’ also applies to non-visual media.

C.5.30 Section 9.3.2 Box offsets: ’top’, ’right’, ’bottom’, ’left’
[2008-08-19] Remove true but confusing note (occurs 4×):

Note: For absolutely positioned elements whose containing block is based on
a block-level element, this property is an offset from the padding edge of that
element.

C.5.31 Section 9.5 Floats
[2008-08-19] Positioned descendants of a float are in the stacking context of the
float’s parent. Add “positioned elements and” to

[…] except that any positioned elements and elements that actually create
new stacking contexts take part in the float’s parent’s stacking context.

Same change in Section 9.9 Layered presentation [p. ??] :

[…] except that any positioned elements and any elements that actually
create new stacking contexts take part in the parent stacking context.”

C.5.32 Section 9.5 Floats
[2008-12-02] Remove “’s” that may be misinterpreted: “the float’s parent’s stacking
context.”

37523 Apr 2009 15:57

Changes

C.5.33 Section 9.5.2 Controlling flow next to floats: the ’clear’
property
[2009-02-02] Add an example of negative clearance after the first note.

C.5.34 Section 9.6.1 Fixed positioning
[2008-11-03] Added:

Boxes with fixed position that are larger than the page box are clipped. Parts
of the fixed position box that are not visible in the initial containing block will not
print.

C.5.35 Section 9.9.1 Specifying the stack level: the ’z-index’
property
[2008-12-02] The list of stacking levels is ambiguous: relatively positioned elements
could fall under items 3/4/5 or under item 6. Meant is item 6, so exclude them from
3/4/5 as follows:

1. the background and borders of the element forming the stacking context.
2. the stacking contexts of descendants with negative stack levels.
3. a stacking level containing in-flow non-inline-level non-positioned

descendants.
4. a stacking level for non-positioned floats and their contents.
5. a stacking level for in-flow inline-level non-positioned descendants.
6. a stacking level for positioned descendants with ’z-index: auto’, and any

descendant stacking contexts with ’z-index: 0’.
7. the stacking contexts of descendants with positive stack levels.

C.5.36 Section 10.1 Definition of "containing block"
[2009-02-02] Rephrase first bullet point to make easier to read:

The containing block in which the root element lives is a rectangle with the
dimensions of the viewport, anchored at the canvas origin for continuous media,
and the page area for paged media. This containing block is called the initial
containing block.

The containing block in which the root element lives is a rectangle called the
initial containing block. For continuous media, it has the dimensions of the
viewport and is anchored at the canvas origin; it is the page area for paged
media.

23 Apr 2009 15:57376

Changes

C.5.37 Section 10.3 Calculating widths and margins
[2009-04-15] The values of ’left’ and ’right’ are only determined by section 9.4.3 in
the case of relatively positioned elements:

For Points 1-6 and 9-10, the values of ’left’ and ’right’ used for layout in the
case of relatively positioned elements are determined by the rules in section
9.4.3. [p. 135]

C.5.38 Section 10.3.1 Inline, non-replaced elements
[2009-04-15] The only case in which ’left’ or ’right’ can be ’auto’ is when the element
is statically positioned. In that case ’left’ and ’right are ignored and there is thus no
need to determine a used value:

A computed value of ’auto’ for ’left’, ’right’, ’margin-left’ or ’margin-right’
becomes a used value of ’0’.

C.5.39 Section 10.3.2 Inline, replaced elements
[2007-11-14] Add the following paragraph:

Otherwise, if ’width’ has a computed value of ’auto’, and the element has an
intrinsic width, then that intrinsic width is the used value of ’width’.

just before the paragraph beginning “Otherwise, if ’width’ has a computed value of
’auto’, but none of the conditions above are met, […]”.

C.5.40 Section 10.3.2 Inline, replaced elements
[2008-03-05] Change the last paragraph as follows:

If it does, then a percentage intrinsic width on that element can’t be resolved
and the element is assumed to have no intrinsic width then the resulting layout
is undefined in CSS2.1.

C.5.41 Section 10.3.3 Block-level, non-replaced elements in
normal flow
[2008-03-05] Scrollbar widths are no longer included in the containing block width.
Remove scrollbar width from:

’margin-left’ + ’border-left-width’ + ’padding-left’ + ’width’ + ’padding-right’ +
’border-right-width’ + ’margin-right’ + scrollbar width (if any) = width of containing
block

37723 Apr 2009 15:57

Changes

and from:

If ’width’ is not ’auto’ and ’border-left-width’ + ’padding-left’ + ’width’ +
’padding-right’ + ’border-right-width’ + scrollbar width (if any) [...]

and remove the paragraph:

The "scrollbar width" value is only relevant if the user agent uses a scrollbar
as its scrolling mechanism. See the definition of the ’overflow’ property.

C.5.42 Section 10.3.7 Absolutely positioned, non-replaced
elements
[2008-03-05] Scrollbar widths are no longer included in the containing block width.
Remove scrollbar width from:

’left’ + ’margin-left’ + ’border-left-width’ + ’padding-left’ + ’width’ +
’padding-right’ + ’border-right-width’ + ’margin-right’ + ’right’ + scrollbar width (if
any) = width of containing block

and remove the paragraph:

The "scrollbar width" value is only relevant if the user agent uses a scrollbar
as its scrolling mechanism. See the definition of the ’overflow’ property.

C.5.43 Section 10.3.7 Absolutely positioned, non-replaced
elements
[2008-03-05] Add the following definition.

[2008-08-19] Add the following note to that definition.

The static-position containing block is the containing block of a hypothetical
box that would have been the first box of the element if its specified ’position’
property had been ’static’ and its ’float’ had been ’none’. (Note that due to the
rules in section 9.7 this hypothetical calculation might require also assuming a
different computed value for ’display’.)

And change which ’direction’ property is used as follows (two occurrences):

[...] if the ’direction’ property of the element establishing the static-position
containing block is [...]

23 Apr 2009 15:57378

Changes

C.5.44 Section 10.3.8 Absolutely positioned, replaced
elements
[2008-03-05] Change bullet 2 as follows:

[...] if the ’direction’ property of the element establishing the static-position
containing block is [...]

C.5.45 Section 10.3.8 Absolutely positioned, replaced
elements
[2008-03-05] Clarification. Replace

This situation is similar to the previous one, except that the element has an
intrinsic width. The sequence of substitutions is now:

by

In this case, section 10.3.7 applies up through and including the constraint
equation, but the rest of section 10.3.7 is replaced by the following rules:

C.5.46 Section 10.3.8 Absolutely positioned, replaced
elements
[2008-04-07] Clarified that margins are not calculated as for inline elements.

C.5.47 Section 10.5 Content height: the ’height’ property
Under “<percentage>,” add the same note as under “<percentage>,” in section 10.2
(“Content width: the ’width’ property”).

C.5.48 Section 10.6.2 Inline replaced elements […]
[2007-11-14] Add the following paragraph:

Otherwise, if ’height’ has a computed value of ’auto’, and the element has an
intrinsic height, then that intrinsic height is the used value of ’height’.

just before the paragraph beginning “Otherwise, if ’height’ has a computed value
of ’auto’, but none of the conditions above are met […]”.

C.5.49 Section 10.6.4 Absolutely positioned, non-replaced
elements
[2008-11-26] The static position is determined considering neither float nor clear.
Add this:

37923 Apr 2009 15:57

Changes

[…] and its specified ’float’ had been ’none’ and ’clear’ had been ’none’.

C.5.50 Section 10.6.5 Absolutely positioned, replaced
elements
[2008-04-07] Clarified that margins are not calculated as for inline elements.

C.5.51 Section 10.8.1 Leading and half-leading
[2007-11-14] In the Note under ’vertical-align’, remove “slightly” from “Values of this
property have slightly different meanings in the context of tables.”

C.5.52 Section 11.1.1 Overflow: the ’overflow’ property
[2008-03-05] Scrollbar widths are no longer included in the containing block width.
Replace

The space taken up by the scrollbars affects the computation of the
dimensions in the rendering model.

by

Any space taken up by the scrollbars should be taken out of (subtracted from
the dimensions of) the containing block formed by the element with the
scrollbars.

[2008-11-03] ’Overflow’ on BODY is special not only in HTML but also in XHTML.
Change the sentence “HTML UAs must instead apply the ’overflow’ property from
the BODY element to the viewport, if the value on the HTML element is ’visible’.” to:

When the root element is an HTML "HTML" element or an XHTML "html"
element, and that element has an HTML "BODY" element or an XHTML "body"
element as a child, user agents must instead apply the ’overflow’ property from
the first such child element to the viewport, if the value on the root element is
’visible’.

C.5.53 Section 11.1.2 Clipping: the ’clip’ property
[2008-03-05] Insert “(but not a combination)” in “User agents must support
separation with commas, but may also support separation without commas (but not
a combination)”.

C.5.54 Section 12.2 The ’content’ property
[2009-04-15] (And also in section 12.4:) certain keywords, in particular ’none’,
’inherit’ and ’initial’ (the latter being reserved for future use) cannot be used as
names for counters.

23 Apr 2009 15:57380

Changes

C.5.55 Section 12.4.2 Counter styles
[2008-03-05] Error in example. Replace hebrew by lower-greek:

BLOCKQUOTE:after { content: " [" counter(bq, hebrew lower-greek) "]" }

C.5.56 Section 12.5 Lists
[2008-12-01] Change “in” to “with respect to” in

The list properties describe basic visual formatting of lists: they allow style
sheets to specify the marker type (image, glyph, or number), and the marker
position in with respect to the principal box (outside it or within it before content).

because the marker is, as the rest of the sentence itself makes clear, not
necessarily in the principal box.

C.5.57 Section 12.5.1 Lists: the ’list-style-type’,
’list-style-image’, ’list-style-position’, and ’list-style’ properties
[2008-04-07] The size of list style markers without an intrinsic size is now defined.

C.5.58 Section 12.5.1 Lists: the ’list-style-type’,
’list-style-image’, ’list-style-position’, and ’list-style’ properties
[2008-12-01] CSS 2.1 does not specify the position of the list item marker, but does
require it to be on the left or right of the content. Also, the marker is not affected by
’overflow’, but may influence the height of the principal box. Add to the definition of
’outside’:

… but does require that for list items whose ’direction’ property is ’ltr’ the
marker box be on the left side of the content and for elements whose ’direction’
property is ’rtl’ the marker box be on the right side of the content. ’overflow’ on
the element does not clip the marker box. The marker box is fixed with respect
to the principal block box’s border and does not scroll with the principal block
box’s content. The size or contents of the marker box may affect the height of
the principal block box and/or the height of its first line box, and in some cases
may cause the creation of a new line box. Note: This interaction may be more
precisely defined in a future level of CSS.

C.5.59 Section 12.5.1 Lists: the ’list-style-type’,
’list-style-image’, ’list-style-position’, and ’list-style’ properties
[2009-04-015] Meaning of ’none’ for ’list-style’ was only defined by an example.

38123 Apr 2009 15:57

Changes

C.5.60 Section 13.2 Page boxes: the @page rule
[2008-08-19] Add rules for drawing canvas to:

The page area. The page area includes the boxes laid out on that page.
The edges of the first page area establish the rectangle that is the initial
containing block of the document. The canvas background is painted within
and covers the page area.
The margin area, which surrounds the page area. The page margin area is
transparent.

C.5.61 Section 13.2.1.1 Rendering page boxes that do not fit
a target sheet
[2009-02-02]

Remove sections 13.2.1.1 and 13.2.1.2. (The described situations cannot occur in
CSS 2.1, because CSS 2.1 doesn’t have a ’size’ property.)

C.5.62 Section 13.2.3 Content outside the page box
[2008-11-03] Clarified what locations are inconvenient for printing:

When formatting content in the page model, some content may end up
outside the current page box. For example, an element whose ’white-space’
property has the value ’pre’ may generate a box that is wider than the page box.
As another example, when boxes are positioned absolutely or relatively, they
may end up in “inconvenient” locations. For example, images may be placed on
the edge of the page box or 100,000 meters below the page box.

C.5.63 Section 13.3.1 Page break properties:
’page-break-before’, ’page-break-after’, ’page-break-inside’
[2008-04-30] The ’page-break-inside’ property no longer inherits.

C.5.64 Section 13.3.1 Page break properties:
’page-break-before’, ’page-break-after’, ’page-break-inside’
[2008-12-01] UAs may apply ’page-break-before’, ’page-break-after’ and
’page-break-inside’ to other elements than block-level ones.

C.5.65 Section 13.3.2 Breaks inside elements: ’orphans’,
’widows’

23 Apr 2009 15:57382

Changes

[2009-02-02] “Paragraph” is not a defined term. Change of a paragraph to in a block
element (twice).

C.5.66 Section 13.3.2 Breaks inside elements: ’orphans’,
’widows’
[2009-04-15] ’Widows’ and ’orphans’ only accept positive values.

C.5.67 Section 13.3.3 Allowed page breaks
[2008-04-30] The ’page-break-inside’ property of all ancestors is checked for
page-breaking restrictions, not just that of the breakpoint’s parent.

C.5.68 Section 13.3.3 Allowed page breaks
[2009-02-02] Remove possible confusion:

Rule D: In addition, breaking at (2) is allowed only if the ’page-break-inside’
property of the element and all its ancestors is ’auto’.

C.5.69 Section 13.3.3 Allowed page breaks
[2009-02-02] Top margins do not disappear at a page break that is forced by a
’page-break-after’ or ’page-break-before’. Correct the first bullet to:

When an unforced page break occurs here, the used values of the relevant
’margin-top’ and ’margin-bottom’ properties are set to ’0’. When a forced page
break occurs here, the used value of the relevant ’margin-bottom’ property is set
to ’0’; the relevant ’margin-top’ used value may either be set to ’0’ or retained.

And add the following note:

Note: It is expected that CSS3 will specify that the relevant ’margin-top’
applies (i.e., is not set to ’0’) after a forced page break.

C.5.70 Section 13.3.5 "Best" page breaks
[2009-02-02] Remove the advice to user agents to avoid breaking inside elements
with borders, inside tables or inside floating elements; add the advice to avoid
breaking inside replaced elements.

C.5.71 Section 14.2 The background
[2008-11-03] The ’background’ property is special on BODY not only in HTML but
also in XHTML.

38323 Apr 2009 15:57

Changes

C.5.72 Section 14.2 The background
[2009-04-15] The whole ’background’ property is used for the canvas, not just the
color and the image:

For documents whose root element is an HTML "HTML" element or an
XHTML "html" element that has computed values of ’transparent’ for
’background-color’ and ’none’ for ’background-image’, user agents must instead
use the computed value of those the background properties from that element’s
first HTML "BODY" element or XHTML "body" element child […]

C.5.73 Section 14.2.1 Background properties:
’background-color’, ’background-image’, ’background-repeat’,
’background-attachment’, ’background-position’, and
’background’
[2008-04-07] The size of background images without an intrinsic size is now defined.

C.5.74 Section 15.6 Font boldness: the ’font-weight’ property
[2008-11-26] Remove incorrect text:

’bolder’ selects the next weight that is assigned to a font that is darker than
the inherited one. If there is no such weight, it simply results in the next
darker numerical value (and the font remains unchanged), unless the
inherited value was ’900’ in which case the resulting weight is also ’900’.
’lighter’ is similar, but works in the opposite direction: it selects the next
lighter keyword with a different font from the inherited one, unless there is
no such font, in which case it selects the next lighter numerical value (and
keeps the font unchanged).

and:

The computed value of "font-weight" is either:
one of the legal number values, or
one of the legal number values combined with one or more of the relative
values (bolder or lighter). This type of computed values is necessary to use
when the font in question does not have all weight variations that are
needed.

And instead add this note:

Note: A set of nested elements that mix ’bolder’ and ’lighter’ will give
unpredictable results depending on the UA, OS, and font availability. This
behavior will be more precisely defined in CSS3.

23 Apr 2009 15:57384

Changes

C.5.75 Section 16.6 Whitespace: the ’white-space’ property
[2008-08-19] Remove rules about generated text from:

The following examples show what whitespace behavior is expected from the
PRE and P elements, the “nowrap” attribute in HTML, and in generated content.

pre { white-space: pre }
p { white-space: normal }
td[nowrap] { white-space: nowrap }
:before,:after { white-space: pre-line }

C.5.76 Section 16.6.1 The ’white-space’ processing model
[2009-02-02] Collapsing of white space does not remove any line breaking
oppportunities. Add the following clarification:

Then, the entire block is rendered. Inlines are laid out, taking bidi reordering
into account, and wrapping as specified by the ’white-space’ property. When
wrapping, line breaking opportunities are determined based on the text prior to
the white space collapsing steps above.

C.5.77 Section 17.2.1 Anonymous table objects
[2007-11-14] Spelling error: “boxess”.

C.5.78 Section 17.2.1 Anonymous table objects
[2008-10-13] Added new rule after bullet 4:

5. If a child T of a ’table’, ’inline-table’, ’table-row-group’, ’table-header-group’,
’table-footer-group’, or ’table-row’ box is an anonymous inline box that contains
only white space, then it is treated as if it has ’display: none’.

C.5.79 Section 17.4 Tables in the visual formatting model
[2009-02-02] The anonymous block containing the table and its caption establishes a
block formatting context:

The anonymous box is a ’block’ box if the table is block-level, and an
’inline-block’ box if the table is inline-level except that this block is never
considered as a block for ’run-in’ interaction, and that The anonymous box
establishes a block formatting context. The table box (not the anonymous box)
is used when doing baseline vertical alignment for an ’inline-table’.

The diagram now shows the caption’s margins inside the anonymous box.

38523 Apr 2009 15:57

Changes

C.5.80 Section 17.5.4 Horizontal alignment in a column
[2008-04-07] Clarification:

The horizontal alignment of a cell’s inline content within a cell box is can be
specified with the ’text-align’ property by the value of the ’text-align’ property on
the cell.

C.5.81 Section 18.1 Cursors: the ’cursor’ property
[2008-04-07] The size of cursors without an intrinsic size is now defined.

C.5.82 Section B.2 Informative references
[2007-11-14] Spelling error: change “?lik” to “Çelik” (2×).

C.5.83 Appendix D. Default style sheet for HTML 4
[2008-08-19] Replace

br:before { content: "\A" }
:before, :after { white-space: pre-line }

with

br:before { content: "\A"; white-space: pre-line }

C.5.84 Appendix D. Default style sheet for HTML 4
[2008-08-19] Add tr to:

td, th, tr { vertical-align: inherit }

C.5.85 Section E.2 Painting order
[2007-11-14] Replace “but any descendants which actually create a new stacking
context” by “but any positioned descendants and descendants which actually create
a new stacking context”.

C.5.86 Appendix G. Grammar of CSS 2.1
[2007-09-27] Change the last “S” in the grammar rule for “combinator” to “S+”:

combinator
 : PLUS S*
 | GREATER S*
 | S+

and remove the rule

23 Apr 2009 15:57386

Changes

{s}+\/*[^*]**+([^/*][^*]**+)*\/ {unput(’ ’); /*replace by space*/}

in the tokenizer. The resulting language is the same, but the grammar is easier to
read and relies less on specific notations of Flex.

C.5.87 Section G.1 Grammar
[2007-09-27] Changes to remove ambiguity with respect to the S token and avoid
nullable non-terminals.

C.5.88 Section G.2 Lexical scanner
[2007-09-27] Change the tokenizer rule

@{C}{H}{A}{R}{S}{E}{T} {return CHARSET_SYM;}

to

"@charset " {return CHARSET_SYM;}

The @charset must be in lowercase and must have a space after it (as defined in
section 4.4 CSS style sheet representation [p. ??]).

C.5.89 Section G.2 Lexical scanner
[2008-03-05] Change the tokenizer rules

"url ("{w}{string}{w}")" {return URI;}
"url ("{w}{url}{w}")" {return URI;}

to

{U}{R}{L}" ("{w}{string}{w}")" {return URI;}
{U}{R}{L}" ("{w}{url}{w}")" {return URI;}

C.5.90 Section G.2 Lexical scanner
[2008-04-07] The definition of the macro “O” is wrong. The letters O and o can be
written with hexadecimal escapes as “\4f ” and “\6f ” respectively (not as “\51 ” and
“\71 ”). The macro should therefore be

O o|\\0{0,4}(4f|6f)(\r\n|[\t\r\n\f])?|\\o

C.5.91 Section G.2 Lexical scanner
“The two occurrences of "\377"…”: There is in fact only one occurrence.

38723 Apr 2009 15:57

Changes

C.5.92 Appendix I. Index
Add a TITLE attribute to all links and which is equal to the lemma.

23 Apr 2009 15:57388

Changes

Appendix D. Default style sheet for HTML 4
This appendix is informative, not normative.

This style sheet describes the typical formatting of all HTML 4 ([HTML4]) elements
based on extensive research into current UA practice. Developers are encouraged to
use it as a default style sheet in their implementations.

The full presentation of some HTML elements cannot be expressed in CSS 2.1,
including replaced [p. 40] elements ("img", "object"), scripting elements ("script",
"applet"), form control elements, and frame elements.

For other elements, the legacy presentation can be described in CSS but the
solution removes the element. For example, the FONT element can be replaced by
attaching CSS declarations to other elements (e.g., DIV). Likewise, legacy
presentation of presentational attributes (e.g., the "border" attribute on TABLE) can
be described in CSS, but the markup in the source document must be changed.

html, address,
blockquote,
body, dd, div,
dl, dt, fieldset, form,
frame, frameset,
h1, h2, h3, h4,
h5, h6, noframes,
ol, p, ul, center,
dir, hr, menu, pre { display: block }
li { display: list-item }
head { display: none }
table { display: table }
tr { display: table-row }
thead { display: table-header-group }
tbody { display: table-row-group }
tfoot { display: table-footer-group }
col { display: table-column }
colgroup { display: table-column-group }
td, th { display: table-cell }
caption { display: table-caption }
th { font-weight: bolder; text-align: center }
caption { text-align: center }
body { margin: 8px }
h1 { font-size: 2em; margin: .67em 0 }
h2 { font-size: 1.5em; margin: .75em 0 }
h3 { font-size: 1.17em; margin: .83em 0 }
h4, p,
blockquote, ul,
fieldset, form,
ol, dl, dir,
menu { margin: 1.12em 0 }
h5 { font-size: .83em; margin: 1.5em 0 }
h6 { font-size: .75em; margin: 1.67em 0 }
h1, h2, h3, h4,
h5, h6, b,

38923 Apr 2009 15:57

Default style sheet for HTML 4

strong { font-weight: bolder }
blockquote { margin-left: 40px; margin-right: 40px }
i, cite, em,
var, address { font-style: italic }
pre, tt, code,
kbd, samp { font-family: monospace }
pre { white-space: pre }
button, textarea,
input, select { display: inline-block }
big { font-size: 1.17em }
small, sub, sup { font-size: .83em }
sub { vertical-align: sub }
sup { vertical-align: super }
table { border-spacing: 2px; }
thead, tbody,
tfoot { vertical-align: middle }
td, th, tr { vertical-align: inherit }
s, strike, del { text-decoration: line-through }
hr { border: 1px inset }
ol, ul, dir,
menu, dd { margin-left: 40px }
ol { list-style-type: decimal }
ol ul, ul ol,
ul ul, ol ol { margin-top: 0; margin-bottom: 0 }
u, ins { text-decoration: underline }
br:before { content: "\A"; white-space: pre-line }
center { text-align: center }
:link, :visited { text-decoration: underline }
:focus { outline: thin dotted invert }

/* Begin bidirectionality settings (do not change) */
BDO[DIR="ltr"] { direction: ltr; unicode-bidi: bidi-override }
BDO[DIR="rtl"] { direction: rtl; unicode-bidi: bidi-override }

*[DIR="ltr"] { direction: ltr; unicode-bidi: embed }
*[DIR="rtl"] { direction: rtl; unicode-bidi: embed }

@media print {
 h1 { page-break-before: always }
 h1, h2, h3,
 h4, h5, h6 { page-break-after: avoid }
 ul, ol, dl { page-break-before: avoid }
}

23 Apr 2009 15:57390

Default style sheet for HTML 4

Appendix E. Elaborate description of Stacking
Contexts
Contents

................ 391E.1 Definitions

............... 391E.2 Painting order

................. 394E.3 Notes

This chapter defines the CSS 2.1 painting order in more detail than described in
the rest of the specification.

E.1 Definitions
Tree Order

Preorder depth-first traversal of the rendering tree, in logical (not visual) order
for bidirectional content, after taking into account properties that move boxes
around such as the ’run-in’ value of ’display’.

Element
In this description, "element" refers to actual elements, pseudo-elements, and
anonymous boxes. Pseudo-elements and anonymous boxes are treated as
descendants in the appropriate places. For example, an outside list marker
comes before an adjoining ’:before’ box in the line box, which comes before the
content of the box, and so forth.

E.2 Painting order
The bottom of the stack is the furthest from the user, the top of the stack is the
nearest to the user:

 | | | |
 | | | | ⇦ ☻
 | | | user
z-index: canvas -1 0 1 2

The stacking context background and most negative positioned stacking contexts
are at the bottom of the stack, while the most positive positioned stacking contexts
are at the top of the stack.

The canvas is transparent if contained within another, and given a UA-defined
color if it is not. It is infinite in extent and contains the root element. Initially, the
viewport is anchored with its top left corner at the canvas origin.

The stacking order for an element generating a stacking context (see the ’z-index’
property) is:

39123 Apr 2009 15:57

Elaborate description of Stacking Contexts

1. If the element is a root element:
1. background color of element over the entire canvas.
2. background image of element, over the entire canvas, anchored at the

origin that would be used if it was painted for the root element.

2. If the element is a block, list-item, or other block equivalent:
1. background color of element unless it is the root element.
2. background image of element unless it is the root element.
3. border of element.

Otherwise, if the element is a block level table:
1. table backgrounds (color then image) unless it is the root element.
2. column group backgrounds (color then image).
3. column backgrounds (color then image).
4. row group backgrounds (color then image).
5. row backgrounds (color then image).
6. cell backgrounds (color then image).
7. all table borders (in tree order for separated borders).

3. Stacking contexts formed by positioned descendants with negative z-indices
(excluding 0) in z-index order (most negative first) then tree order.

4. For all its in-flow, non-positioned, block-level descendants in tree order: If the
element is a block, list-item, or other block equivalent:

1. background color of element.
2. background image of element.
3. border of element.

Otherwise, the element is a table:
1. table backgrounds (color then image).
2. column group backgrounds (color then image).
3. column backgrounds (color then image).
4. row group backgrounds (color then image).
5. row backgrounds (color then image).
6. cell backgrounds (color then image).
7. all table borders (in tree order for separated borders).

5. All non-positioned floating descendants, in tree order. For each one of these,
treat the element as if it created a new stacking context, but any positioned
descendants and descendants which actually create a new stacking context
should be considered part of the parent stacking context, not this new one.

6. If the element is an inline element that generates a stacking context, then:

1. For each line box that the element is in:
1. Jump to 7.2.1 [p. 393] for the box(es) of the element in that line box (in

tree order).

23 Apr 2009 15:57392

Elaborate description of Stacking Contexts

7. Otherwise: first for the element, then for all its in-flow, non-positioned,
block-level descendants in tree order:

1. If the element is a block-level replaced element, then: the replaced content,
atomically.

2. Otherwise, for each line box of that element:
1.

For each box that is a child of that element, in that line box, in tree
order:

1. background color of element.

2. background image of element.

3. border of element.

4. For inline elements:

1. For all the element’s in-flow, non-positioned, inline-level
children that are in this line box, and all runs of text inside the
element that is on this line box, in tree order:

1. If this is a run of text, then:
1. any underlining affecting the text of the element, in

tree order of the elements applying the underlining
(such that the deepest element’s underlining, if any,
is painted topmost and the root element’s
underlining, if any, is drawn bottommost).

2. any overlining affecting the text of the element, in
tree order of the elements applying the overlining
(such that the deepest element’s overlining, if any, is
painted topmost and the root element’s overlining, if
any, is drawn bottommost).

3. the text.
4. any line-through affecting the text of the element, in

tree order of the elements applying the line-through
(such that the deepest element’s line-through, if any,
is painted topmost and the root element’s
line-through, if any, is drawn bottommost).

2. Otherwise, jump to 7.2.1 [p. 393] for that element.

For inline-block and inline-table elements:
1. For each one of these, treat the element as if it created a new

stacking context, but any positioned descendants and
descendants which actually create a new stacking context
should be considered part of the parent stacking context, not
this new one.

39323 Apr 2009 15:57

Elaborate description of Stacking Contexts

For inline-level replaced elements:
1. the replaced content, atomically.

Some of the boxes may have been generated by line splitting or the
Unicode bidirectional algorithm.

2. Optionally, the outline of the element (see 10 below [p. 394]).

3. Optionally, if the element is block-level, the outline of the element (see 10
below [p. 394]).

8. All positioned descendants with ’z-index: auto’ or ’z-index: 0’, in tree order. For
those with ’z-index: auto’, treat the element as if it created a new stacking
context, but any positioned descendants and descendants which actually create
a new stacking context should be considered part of the parent stacking context,
not this new one. For those with ’z-index: 0’, treat the stacking context
generated atomically.

9. Stacking contexts formed by positioned descendants with z-indices greater than
or equal to 1 in z-index order (smallest first) then tree order.

10.

Finally, implementations that do not draw outlines in steps above must draw
outlines from this stacking context at this stage. (It is recommended to draw
outlines in this step and not in the steps above.)

E.3 Notes
The background of the root element is only painted once, over the whole canvas.

While the backgrounds of bidirectional inlines are painted in tree order, they are
positioned in visual order. Since the positioning of inline backgrounds is unspecified
in CSS 2.1, the exact result of these two requirements is UA-defined. CSS3 may
define this in more detail.

23 Apr 2009 15:57394

Elaborate description of Stacking Contexts

Appendix F. Full property table
This appendix is informative, not normative.

Name Values
Initial
value

Applies to
(Default: all)

Inherited?
Percentages
(Default: N/A)

Media
groups

’azimuth’ [p. 300]

<angle> | [[left-side |
far-left | left | center-left |
center | center-right |
right | far-right |
right-side] || behind] |
leftwards | rightwards |
inherit

center yes
aural
[p. 291]

’background-attachment’
[p. 227]

scroll | fixed | inherit scroll no
visual
[p. 104]

’background-color’
[p. 224]

<color> | transparent |
inherit

transparent no
visual
[p. 104]

’background-image’
[p. 225]

<uri> | none | inherit none no
visual
[p. 104]

’background-position’
[p. 228]

[[<percentage> |
<length> | left | center |
right] [<percentage> |
<length> | top | center |
bottom]?] | [[left |
center | right] || [top |
center | bottom]] |
inherit

0% 0% no
refer to the size of
the box itself

visual
[p. 104]

’background-repeat’
[p. 226]

repeat | repeat-x |
repeat-y | no-repeat |
inherit

repeat no
visual
[p. 104]

’background’ [p. 229]

[’background-color’ ||
’background-image’ ||
’background-repeat’ ||
’background-attachment’
|| ’background-position’]
| inherit

see
individual
properties

 no
allowed on
’background-position’

visual
[p. 104]

’border-collapse’ [p. 275]
collapse | separate |
inherit

separate
’table’ and
’inline-table’
elements

yes
visual
[p. 104]

’border-color’ [p. 116]
[<color> | transparent
]{1,4} | inherit

see
individual
properties

 no
visual
[p. 104]

’border-spacing’ [p. 275]
<length> <length>? |
inherit

0
’table’ and
’inline-table’
elements

yes
visual
[p. 104]

’border-style’ [p. 118]
<border-style>{1,4} |
inherit

see
individual
properties

 no
visual
[p. 104]

’border-top’ [p. 118]
’border-right’ [p. 118]
’border-bottom’ [p. 118]
’border-left’ [p. 118]

[<border-width> ||
<border-style> ||
’border-top-color’] |
inherit

see
individual
properties

 no
visual
[p. 104]

’border-top-color’
[p. 115]
’border-right-color’
[p. 115]
’border-bottom-color’
[p. 115]
’border-left-color’
[p. 115]

<color> | transparent |
inherit

the value
of the
’color’
property

 no
visual
[p. 104]

39523 Apr 2009 15:57

Full property table

Name Values
Initial
value

Applies to
(Default: all)

Inherited?
Percentages
(Default: N/A)

Media
groups

’border-top-style’
[p. 117]
’border-right-style’
[p. 117]
’border-bottom-style’
[p. 117]
’border-left-style’
[p. 117]

<border-style> | inherit none no
visual
[p. 104]

’border-top-width’
[p. 114]
’border-right-width’
[p. 114]
’border-bottom-width’
[p. 114]
’border-left-width’
[p. 114]

<border-width> | inherit medium no
visual
[p. 104]

’border-width’ [p. 115]
<border-width>{1,4} |
inherit

see
individual
properties

 no
visual
[p. 104]

’border’ [p. 119]

[<border-width> ||
<border-style> ||
’border-top-color’] |
inherit

see
individual
properties

 no
visual
[p. 104]

’bottom’ [p. 131]
<length> | <percentage>
| auto | inherit

auto
positioned
elements

no
refer to height of
containing block

visual
[p. 104]

’caption-side’ [p. 264] top | bottom | inherit top
’table-caption’
elements

yes
visual
[p. 104]

’clear’ [p. 142]
none | left | right | both |
inherit

none
block-level
elements

no
visual
[p. 104]

’clip’ [p. 190] <shape> | auto | inherit auto
absolutely
positioned
elements

no
visual
[p. 104]

’color’ [p. 223] <color> | inherit
depends
on user
agent

 yes
visual
[p. 104]

’content’ [p. 197]

normal | none | [
<string> | <uri> |
<counter> |
attr(<identifier>) |
open-quote |
close-quote |
no-open-quote |
no-close-quote]+ |
inherit

normal
:before and :after
pseudo-elements

no
all
[p. 104]

’counter-increment’
[p. 202]

[<identifier> <integer>?
]+ | none | inherit

none no
all
[p. 104]

’counter-reset’ [p. 202]
[<identifier> <integer>?
]+ | none | inherit

none no
all
[p. 104]

’cue-after’ [p. 297] <uri> | none | inherit none no
aural
[p. 291]

’cue-before’ [p. 297] <uri> | none | inherit none no
aural
[p. 291]

’cue’ [p. 298]
[’cue-before’ ||
’cue-after’] | inherit

see
individual
properties

 no
aural
[p. 291]

23 Apr 2009 15:57396

Full property table

Name Values
Initial
value

Applies to
(Default: all)

Inherited?
Percentages
(Default: N/A)

Media
groups

’cursor’ [p. 283]

[[<uri> ,]* [auto |
crosshair | default |
pointer | move | e-resize
| ne-resize | nw-resize |
n-resize | se-resize |
sw-resize | s-resize |
w-resize | text | wait |
help | progress]] |
inherit

auto yes

visual
[p. 104] ,
interactive
[p. 104]

’direction’ [p. 159] ltr | rtl | inherit ltr
all elements, but
see prose

yes
visual
[p. 104]

’display’ [p. 126]

inline | block | list-item |
run-in | inline-block |
table | inline-table |
table-row-group |
table-header-group |
table-footer-group |
table-row |
table-column-group |
table-column | table-cell
| table-caption | none |
inherit

inline no
all
[p. 104]

’elevation’ [p. 301]
<angle> | below | level |
above | higher | lower |
inherit

level yes
aural
[p. 291]

’empty-cells’ [p. 277] show | hide | inherit show ’table-cell’ elements yes
visual
[p. 104]

’float’ [p. 141] left | right | none | inherit none
all, but see 9.7
[p. 146]

no
visual
[p. 104]

’font-family’ [p. 234]

[[<family-name> |
<generic-family>] [,
<family-name>|
<generic-family>]*] |
inherit

depends
on user
agent

 yes
visual
[p. 104]

’font-size’ [p. 242]

<absolute-size> |
<relative-size> |
<length> | <percentage>
| inherit

medium yes
refer to parent
element’s font size

visual
[p. 104]

’font-style’ [p. 239]
normal | italic | oblique |
inherit

normal yes
visual
[p. 104]

’font-variant’ [p. 239]
normal | small-caps |
inherit

normal yes
visual
[p. 104]

’font-weight’ [p. 240]

normal | bold | bolder |
lighter | 100 | 200 | 300 |
400 | 500 | 600 | 700 |
800 | 900 | inherit

normal yes
visual
[p. 104]

’font’ [p. 244]

[[’font-style’ ||
’font-variant’ ||
’font-weight’]? ’font-size’
[/ ’line-height’]?
’font-family’] | caption |
icon | menu |
message-box |
small-caption |
status-bar | inherit

see
individual
properties

 yes
see individual
properties

visual
[p. 104]

’height’ [p. 174]
<length> | <percentage>
| auto | inherit

auto

all elements but
non-replaced inline
elements, table
columns, and
column groups

no see prose
visual
[p. 104]

’left’ [p. 131]
<length> | <percentage>
| auto | inherit

auto
positioned
elements

no
refer to width of
containing block

visual
[p. 104]

39723 Apr 2009 15:57

Full property table

Name Values
Initial
value

Applies to
(Default: all)

Inherited?
Percentages
(Default: N/A)

Media
groups

’letter-spacing’ [p. 251]
normal | <length> |
inherit

normal yes
visual
[p. 104]

’line-height’ [p. 182]
normal | <number> |
<length> | <percentage>
| inherit

normal yes
refer to the font size
of the element itself

visual
[p. 104]

’list-style-image’ [p. 208] <uri> | none | inherit none
elements with
’display: list-item’

yes
visual
[p. 104]

’list-style-position’
[p. 209]

inside | outside | inherit outside
elements with
’display: list-item’

yes
visual
[p. 104]

’list-style-type’ [p. 207]

disc | circle | square |
decimal |
decimal-leading-zero |
lower-roman |
upper-roman |
lower-greek | lower-latin
| upper-latin | armenian |
georgian | lower-alpha |
upper-alpha | none |
inherit

disc
elements with
’display: list-item’

yes
visual
[p. 104]

’list-style’ [p. 211]

[’list-style-type’ ||
’list-style-position’ ||
’list-style-image’] |
inherit

see
individual
properties

elements with
’display: list-item’

yes
visual
[p. 104]

’margin-right’ [p. 110]
’margin-left’ [p. 110]

<margin-width> | inherit 0

all elements except
elements with table
display types other
than table-caption,
table and
inline-table

no
refer to width of
containing block

visual
[p. 104]

’margin-top’ [p. 109]
’margin-bottom’ [p. 109]

<margin-width> | inherit 0

all elements except
elements with table
display types other
than table-caption,
table and
inline-table

no
refer to width of
containing block

visual
[p. 104]

’margin’ [p. 110]
<margin-width>{1,4} |
inherit

see
individual
properties

all elements except
elements with table
display types other
than table-caption,
table and
inline-table

no
refer to width of
containing block

visual
[p. 104]

’max-height’ [p. 180]
<length> | <percentage>
| none | inherit

none

all elements but
non-replaced inline
elements, table
columns, and
column groups

no see prose
visual
[p. 104]

’max-width’ [p. 172]
<length> | <percentage>
| none | inherit

none

all elements but
non-replaced inline
elements, table
rows, and row
groups

no
refer to width of
containing block

visual
[p. 104]

’min-height’ [p. 180]
<length> | <percentage>
| inherit

0

all elements but
non-replaced inline
elements, table
columns, and
column groups

no see prose
visual
[p. 104]

’min-width’ [p. 172]
<length> | <percentage>
| inherit

0

all elements but
non-replaced inline
elements, table
rows, and row
groups

no
refer to width of
containing block

visual
[p. 104]

23 Apr 2009 15:57398

Full property table

Name Values
Initial
value

Applies to
(Default: all)

Inherited?
Percentages
(Default: N/A)

Media
groups

’orphans’ [p. 218] <integer> | inherit 2
block-level
elements

yes

visual
[p. 104] ,
paged
[p. 104]

’outline-color’ [p. 287] <color> | invert | inherit invert no

visual
[p. 104] ,
interactive
[p. 104]

’outline-style’ [p. 287] <border-style> | inherit none no

visual
[p. 104] ,
interactive
[p. 104]

’outline-width’ [p. 287] <border-width> | inherit medium no

visual
[p. 104] ,
interactive
[p. 104]

’outline’ [p. 286]
[’outline-color’ ||
’outline-style’ ||
’outline-width’] | inherit

see
individual
properties

 no

visual
[p. 104] ,
interactive
[p. 104]

’overflow’ [p. 187]
visible | hidden | scroll |
auto | inherit

visible

non-replaced
block-level
elements, table
cells, and
inline-block
elements

no
visual
[p. 104]

’padding-top’ [p. 113]
’padding-right’ [p. 113]
’padding-bottom’
[p. 113] ’padding-left’
[p. 113]

<padding-width> | inherit 0

all elements except
table-row-group,
table-header-group,
table-footer-group,
table-row,
table-column-group
and table-column

no
refer to width of
containing block

visual
[p. 104]

’padding’ [p. 113]
<padding-width>{1,4} |
inherit

see
individual
properties

all elements except
table-row-group,
table-header-group,
table-footer-group,
table-row,
table-column-group
and table-column

no
refer to width of
containing block

visual
[p. 104]

’page-break-after’
[p. 217]

auto | always | avoid |
left | right | inherit

auto
block-level
elements (but see
text)

no

visual
[p. 104] ,
paged
[p. 104]

’page-break-before’
[p. 217]

auto | always | avoid |
left | right | inherit

auto
block-level
elements (but see
text)

no

visual
[p. 104] ,
paged
[p. 104]

’page-break-inside’
[p. 218]

avoid | auto | inherit auto
block-level
elements (but see
text)

no

visual
[p. 104] ,
paged
[p. 104]

’pause-after’ [p. 296]
<time> | <percentage> |
inherit

0 no see prose
aural
[p. 291]

’pause-before’ [p. 296]
<time> | <percentage> |
inherit

0 no see prose
aural
[p. 291]

’pause’ [p. 296]
[[<time> |
<percentage>]{1,2}] |
inherit

see
individual
properties

 no
see descriptions of
’pause-before’ and
’pause-after’

aural
[p. 291]

’pitch-range’ [p. 304] <number> | inherit 50 yes
aural
[p. 291]

39923 Apr 2009 15:57

Full property table

Name Values
Initial
value

Applies to
(Default: all)

Inherited?
Percentages
(Default: N/A)

Media
groups

’pitch’ [p. 303]
<frequency> | x-low |
low | medium | high |
x-high | inherit

medium yes
aural
[p. 291]

’play-during’ [p. 298]
<uri> [mix || repeat]? |
auto | none | inherit

auto no
aural
[p. 291]

’position’ [p. 128]
static | relative |
absolute | fixed | inherit

static no
visual
[p. 104]

’quotes’ [p. 199]
[<string> <string>]+ |
none | inherit

depends
on user
agent

 yes
visual
[p. 104]

’richness’ [p. 305] <number> | inherit 50 yes
aural
[p. 291]

’right’ [p. 130]
<length> | <percentage>
| auto | inherit

auto
positioned
elements

no
refer to width of
containing block

visual
[p. 104]

’speak-header’ [p. 307] once | always | inherit once
elements that have
table header
information

yes
aural
[p. 291]

’speak-numeral’ [p. 306]
digits | continuous |
inherit

continuous yes
aural
[p. 291]

’speak-punctuation’
[p. 306]

code | none | inherit none yes
aural
[p. 291]

’speak’ [p. 295]
normal | none | spell-out
| inherit

normal yes
aural
[p. 291]

’speech-rate’ [p. 302]

<number> | x-slow |
slow | medium | fast |
x-fast | faster | slower |
inherit

medium yes
aural
[p. 291]

’stress’ [p. 304] <number> | inherit 50 yes
aural
[p. 291]

’table-layout’ [p. 269] auto | fixed | inherit auto
’table’ and
’inline-table’
elements

no
visual
[p. 104]

’text-align’ [p. 248]
left | right | center |
justify | inherit

a
nameless
value that
acts as
’left’ if
’direction’
is ’ltr’,
’right’ if
’direction’
is ’rtl’

block-level
elements, table
cells and inline
blocks

yes
visual
[p. 104]

’text-decoration’ [p. 249]
none | [underline ||
overline || line-through ||
blink] | inherit

none
no (see
prose)

visual
[p. 104]

’text-indent’ [p. 247]
<length> | <percentage>
| inherit

0

block-level
elements, table
cells and inline
blocks

yes
refer to width of
containing block

visual
[p. 104]

’text-transform’ [p. 253]
capitalize | uppercase |
lowercase | none |
inherit

none yes
visual
[p. 104]

’top’ [p. 130]
<length> | <percentage>
| auto | inherit

auto
positioned
elements

no
refer to height of
containing block

visual
[p. 104]

’unicode-bidi’ [p. 160]
normal | embed |
bidi-override | inherit

normal
all elements, but
see prose

no
visual
[p. 104]

23 Apr 2009 15:57400

Full property table

Name Values
Initial
value

Applies to
(Default: all)

Inherited?
Percentages
(Default: N/A)

Media
groups

’vertical-align’ [p. 184]

baseline | sub | super |
top | text-top | middle |
bottom | text-bottom |
<percentage> | <length>
| inherit

baseline
inline-level and
’table-cell’ elements

no
refer to the
’line-height’ of the
element itself

visual
[p. 104]

’visibility’ [p. 192]
visible | hidden |
collapse | inherit

visible yes
visual
[p. 104]

’voice-family’ [p. 303]

[[<specific-voice> |
<generic-voice>],]*
[<specific-voice> |
<generic-voice>] |
inherit

depends
on user
agent

 yes
aural
[p. 291]

’volume’ [p. 294]

<number> |
<percentage> | silent |
x-soft | soft | medium |
loud | x-loud | inherit

medium yes
refer to inherited
value

aural
[p. 291]

’white-space’ [p. 254]
normal | pre | nowrap |
pre-wrap | pre-line |
inherit

normal yes
visual
[p. 104]

’widows’ [p. 219] <integer> | inherit 2
block-level
elements

yes

visual
[p. 104] ,
paged
[p. 104]

’width’ [p. 166]
<length> | <percentage>
| auto | inherit

auto

all elements but
non-replaced inline
elements, table
rows, and row
groups

no
refer to width of
containing block

visual
[p. 104]

’word-spacing’ [p. 252]
normal | <length> |
inherit

normal yes
visual
[p. 104]

’z-index’ [p. 156] auto | <integer> | inherit auto
positioned
elements

no
visual
[p. 104]

40123 Apr 2009 15:57

Full property table

23 Apr 2009 15:57402

Full property table

Appendix G. Grammar of CSS 2.1
Contents

................ 403G.1 Grammar

............... 405G.2 Lexical scanner

...... 407G.3 Comparison of tokenization in CSS 2.1 and CSS1

The grammar below defines the syntax of CSS 2.1. It is in some sense, however,
a superset of CSS 2.1 as this specification imposes additional semantic constraints
not expressed in this grammar. A conforming UA must also adhere to the
forward-compatible parsing rules [p. 45] , the selectors notation, the property and
value notation [p. 25] , and the unit notation. However, not all syntactically correct
CSS can take effect, since the document language may impose restrictions that are
not in CSS, e.g., HTML imposes restrictions on the possible values of the "class"
attribute.

G.1 Grammar
The grammar below is LALR(1) (but note that most UA’s should not use it directly,
since it doesn’t express the parsing conventions [p. 55] , only the CSS 2.1 syntax).
The format of the productions is optimized for human consumption and some
shorthand notation beyond Yacc (see [YACC]) is used:

*: 0 or more
+: 1 or more
?: 0 or 1
|: separates alternatives
[] : grouping

The productions are:

stylesheet
 : [CHARSET_SYM STRING ’;’]?
 [S|CDO|CDC]* [import [[CDO|CDC] [S|CDO|CDC]]*]*
 [[ruleset | media | page] [[CDO|CDC] [S|CDO|CDC]]*]*
 ;
import
 : IMPORT_SYM S*
 [STRING|URI] S* [medium [COMMA S* medium]*]? ’;’ S*
 ;
media
 : MEDIA_SYM S* medium [COMMA S* medium]* LBRACE S* ruleset* ’}’ S*
 ;
medium
 : IDENT S*
 ;
page

40323 Apr 2009 15:57

Grammar of CSS 2.1

 : PAGE_SYM S* pseudo_page?
 LBRACE S* declaration? [’;’ S* declaration?]* ’}’ S*
 ;
pseudo_page
 : ’:’ IDENT S*
 ;
operator
 : ’/’ S* | COMMA S*
 ;
combinator
 : PLUS S*
 | GREATER S*
 | S+
 ;
unary_operator
 : ’-’ | PLUS
 ;
property
 : IDENT S*
 ;
ruleset
 : selector [COMMA S* selector]*
 LBRACE S* declaration? [’;’ S* declaration?]* ’}’ S*
 ;
selector
 : simple_selector [combinator simple_selector]*
 ;
simple_selector
 : element_name [HASH | class | attrib | pseudo]*
 | [HASH | class | attrib | pseudo]+
 ;
class
 : ’.’ IDENT
 ;
element_name
 : IDENT | ’*’
 ;
attrib
 : ’[’ S* IDENT S* [[’=’ | INCLUDES | DASHMATCH] S*
 [IDENT | STRING] S*]? ’]’
 ;
pseudo
 : ’:’ [IDENT | FUNCTION S* [IDENT S*]? ’)’]
 ;
declaration
 : property ’:’ S* expr prio?
 ;
prio
 : IMPORTANT_SYM S*
 ;
expr
 : term [operator? term]*
 ;
term
 : unary_operator?
 [NUMBER S* | PERCENTAGE S* | LENGTH S* | EMS S* | EXS S* | ANGLE S* |
 TIME S* | FREQ S*]

23 Apr 2009 15:57404

Grammar of CSS 2.1

 | STRING S* | IDENT S* | URI S* | hexcolor | function
 ;
function
 : FUNCTION S* expr ’)’ S*
 ;
/*
 * There is a constraint on the color that it must
 * have either 3 or 6 hex-digits (i.e., [0-9a-fA-F])
 * after the "#"; e.g., "#000" is OK, but "#abcd" is not.
 */
hexcolor
 : HASH S*
 ;

G.2 Lexical scanner
The following is the tokenizer, written in Flex (see [FLEX]) notation. The tokenizer is
case-insensitive.

The "\377" represents the highest character number that current versions of Flex
can deal with (decimal 255). It should be read as "\4177777" (decimal 1114111),
which is the highest possible code point in Unicode/ISO-10646.

%option case-insensitive

h [0-9a-f]
nonascii [\200-\377]
unicode \\{h}{1,6}(\r\n|[\t\r\n\f])?
escape {unicode}|\\[^\r\n\f0-9a-f]
nmstart [_a-z]|{nonascii}|{escape}
nmchar [_a-z0-9-]|{nonascii}|{escape}
string1 \"([^\n\r\f\\"]|\\{nl}|{escape})*\"
string2 \’([^\n\r\f\\’]|\\{nl}|{escape})*\’
invalid1 \"([^\n\r\f\\"]|\\{nl}|{escape})*
invalid2 \’([^\n\r\f\\’]|\\{nl}|{escape})*

comment \/*[^*]**+([^/*][^*]**+)*\/
ident -?{nmstart}{nmchar}*
name {nmchar}+
num [0-9]+|[0-9]*"."[0-9]+
string {string1}|{string2}
invalid {invalid1}|{invalid2}
url ([!#$%&*-~]|{nonascii}|{escape})*
s [\t\r\n\f]+
w {s}?
nl \n|\r\n|\r|\f

A a|\\0{0,4}(41|61)(\r\n|[\t\r\n\f])?
C c|\\0{0,4}(43|63)(\r\n|[\t\r\n\f])?
D d|\\0{0,4}(44|64)(\r\n|[\t\r\n\f])?
E e|\\0{0,4}(45|65)(\r\n|[\t\r\n\f])?
G g|\\0{0,4}(47|67)(\r\n|[\t\r\n\f])?|\\g
H h|\\0{0,4}(48|68)(\r\n|[\t\r\n\f])?|\\h
I i|\\0{0,4}(49|69)(\r\n|[\t\r\n\f])?|\\i
K k|\\0{0,4}(4b|6b)(\r\n|[\t\r\n\f])?|\\k
L l|\\0{0,4}(4c|6c)(\r\n|[\t\r\n\f])?|\\l

40523 Apr 2009 15:57

Grammar of CSS 2.1

M m|\\0{0,4}(4d|6d)(\r\n|[\t\r\n\f])?|\\m
N n|\\0{0,4}(4e|6e)(\r\n|[\t\r\n\f])?|\\n
O o|\\0{0,4}(4f|6f)(\r\n|[\t\r\n\f])?|\\o
P p|\\0{0,4}(50|70)(\r\n|[\t\r\n\f])?|\\p
R r|\\0{0,4}(52|72)(\r\n|[\t\r\n\f])?|\\r
S s|\\0{0,4}(53|73)(\r\n|[\t\r\n\f])?|\\s
T t|\\0{0,4}(54|74)(\r\n|[\t\r\n\f])?|\\t
U u|\\0{0,4}(55|75)(\r\n|[\t\r\n\f])?|\\u
X x|\\0{0,4}(58|78)(\r\n|[\t\r\n\f])?|\\x
Z z|\\0{0,4}(5a|7a)(\r\n|[\t\r\n\f])?|\\z

%%

{s} {return S;}

\/*[^*]**+([^/*][^*]**+)*\/ /* ignore comments */

"<!--" {return CDO;}
"-->" {return CDC;}
"~=" {return INCLUDES;}
"|=" {return DASHMATCH;}

{w}"{" {return LBRACE;}
{w}"+" {return PLUS;}
{w}">" {return GREATER;}
{w}"," {return COMMA;}

{string} {return STRING;}
{invalid} {return INVALID; /* unclosed string */}

{ident} {return IDENT;}

"#"{name} {return HASH;}

@{I}{M}{P}{O}{R}{T} {return IMPORT_SYM;}
@{P}{A}{G}{E} {return PAGE_SYM;}
@{M}{E}{D}{I}{A} {return MEDIA_SYM;}
"@charset " {return CHARSET_SYM;}

"!"({w}|{comment})*{I}{M}{P}{O}{R}{T}{A}{N}{T} {return IMPORTANT_SYM;}

{num}{E}{M} {return EMS;}
{num}{E}{X} {return EXS;}
{num}{P}{X} {return LENGTH;}
{num}{C}{M} {return LENGTH;}
{num}{M}{M} {return LENGTH;}
{num}{I}{N} {return LENGTH;}
{num}{P}{T} {return LENGTH;}
{num}{P}{C} {return LENGTH;}
{num}{D}{E}{G} {return ANGLE;}
{num}{R}{A}{D} {return ANGLE;}
{num}{G}{R}{A}{D} {return ANGLE;}
{num}{M}{S} {return TIME;}
{num}{S} {return TIME;}
{num}{H}{Z} {return FREQ;}
{num}{K}{H}{Z} {return FREQ;}
{num}{ident} {return DIMENSION;}

23 Apr 2009 15:57406

Grammar of CSS 2.1

{num}% {return PERCENTAGE;}
{num} {return NUMBER;}

{U}{R}{L}"("{w}{string}{w}")" {return URI;}
{U}{R}{L}"("{w}{url}{w}")" {return URI;}

{ident}"(" {return FUNCTION;}

. {return *yytext;}

G.3 Comparison of tokenization in CSS 2.1 and CSS1
There are some differences in the syntax specified in the CSS1 recommendation
([CSS1]), and the one above. Most of these are due to new tokens in CSS2 that
didn’t exist in CSS1. Others are because the grammar has been rewritten to be more
readable. However, there are some incompatible changes, that were felt to be errors
in the CSS1 syntax. They are explained below.

CSS1 style sheets could only be in 1-byte-per-character encodings, such as
ASCII and ISO-8859-1. CSS 2.1 has no such limitation. In practice, there was
little difficulty in extrapolating the CSS1 tokenizer, and some UAs have accepted
2-byte encodings.
CSS1 only allowed four hex-digits after the backslash (\) to refer to Unicode
characters, CSS2 allows six [p. 51] . Furthermore, CSS2 allows a white space
character to delimit the escape sequence. E.g., according to CSS1, the string
"\abcdef" has 3 letters (\abcd, e, and f), according to CSS2 it has only one
(\abcdef).
The tab character (ASCII 9) was not allowed in strings. However, since strings
in CSS1 were only used for font names and for URLs, the only way this can lead
to incompatibility between CSS1 and CSS2 is if a style sheet contains a font
family that has a tab in its name.
Similarly, newlines (escaped with a backslash [p. 65]) were not allowed in
strings in CSS1.
CSS2 parses a number immediately followed by an identifier as a DIMENSION
token (i.e., an unknown unit), CSS1 parsed it as a number and an identifier.
That means that in CSS1, the declaration ’font: 10pt/1.2serif’ was correct, as
was ’font: 10pt/12pt serif’; in CSS2, a space is required before "serif". (Some
UAs accepted the first example, but not the second.)
In CSS1, a class name could start with a digit (".55ft"), unless it was a
dimension (".55in"). In CSS2, such classes are parsed as unknown dimensions
(to allow for future additions of new units). To make ".55ft" a valid class, CSS2
requires the first digit to be escaped (".\35 5ft")

40723 Apr 2009 15:57

Grammar of CSS 2.1

23 Apr 2009 15:57408

Grammar of CSS 2.1

Appendix H: Has been intentionally left blank

40923 Apr 2009 15:57

Has been intentionally left blank

23 Apr 2009 15:57410

Has been intentionally left blank

Appendix I. Index
This appendix is informative, not normative.

:active, 83
:after, 195, 91
:before, 195, 91
:first, 216
:first-child, 82
:first-letter, 88
:first-line, 86
:focus, 83
:hover, 83
:lang, 85
:left, 216
:link, 83
:right, 216
:visited, 83
=, 76
~=, 76
|=, 76

@charset, 52, 66, 66
"@charset", 66
@import, 96, 96, 101
@media, 101, 102
@page, 214

absolute length, 61
absolutely positioned element, 144
active (pseudo-class), 83
actual value, 94
after, 195
’all’ media group, 104
ancestor, 41
<angle>, 300, 301

definition of, 293
anonymous, 123
anonymous inline boxes, 125

41123 Apr 2009 15:57

Index

armenian, 207
at-rule, 52
at-rules, 52
attr(), 198
attribute, 41
’audio’ media group, 104
auditory icon, 292
Author, 42
authoring tool, 42
automatic numbering, 195
’azimuth’, 300

’background’, 229
’background-attachment’, 227
’background-color’, 224
’background-image’, 225
’background-position’, 228
’background-repeat’, 226
backslash escapes, 51
before, 195
bidirectionality (bidi), 158
’bitmap’ media group, 104
block, 90, 53
block box, 123
’block’, definition of, 127
block-level element, 123
BOM, 66
border edge, 106
’border’, 119
’border-bottom’, 118
’border-bottom-color’, 115
’border-bottom-style’, 117
’border-bottom-width’, 114
’border-collapse’, 275
’border-color’, 116
’border-left’, 118
’border-left-color’, 115
’border-left-style’, 117
’border-left-width’, 114
’border-right’, 118
’border-right-color’, 115
’border-right-style’, 117

23 Apr 2009 15:57412

Index

’border-right-width’, 114
’border-spacing’, 275
<border-style>, 281
<border-style>, definition of, 117
’border-style’, 118
’border-top’, 118
’border-top-color’, 115
’border-top-style’, 117
’border-top-width’, 114
<border-width>

definition of, 114
’border-width’, 115
border

of a box, 105
<bottom>

definition of, 191
’bottom’, 131
box

border, 105
content, 105
content height, 107
content width, 107
margin, 105
overflow, 187
padding, 105

canvas, 292, 36
’caption-side’, 264
cascade, 97
case sensitivity, 50
character encoding, 65

default, 66
user agent’s determination of, 66

child, 41
child selector, 75
circle, 207
’clear’, 142
’clip’, 190
clipping region, 190
close-quote, 201, 198
collapsing margin, 111
color, 405

41323 Apr 2009 15:57

Index

<color>, 116, 225
definition of, 63

’color’, 223
combinator, 73
comments, 55
computed value, 94
conditional import, 96
conformance, 43, 249
containing block, 163, 122, 122

initial, 163
content, 41
content edge, 106
’content’, 197
content

of a box, 105
rendered, 41

’continuous’ media group, 104
<counter>, 198
<counter>, definition of, 62
counter(), 62
’counter-increment’, 202
’counter-reset’, 202
counters, 202
’cue’, 298
’cue-after’, 297
’cue-before’, 297
cursive, definition of, 238
’cursor’, 283

’dashed’, 117, 281
decimal, 207
decimal-leading-zero, 207
declaration, 54
declaration block, 53
default style sheet, 97
default

character encoding, 66
descendant, 41
descendant-selectors, 74
border box,
content box,
padding box, 106

23 Apr 2009 15:57414

Index

disc, 207
’display’, 126
document language, 40
document tree, 41
’dotted’, 117, 281
’double’, 117, 282
drop caps, 88
DTD, 78, 161

element, 40
following, 42
preceding, 42

’elevation’, 301
em (unit), 58
empty, 41
’empty-cells’, 277
ex (unit), 59
exact matching, 76

fantasy, definition of, 238
fictional tag sequence, 86, 89, 91
first-child, 82
first-letter, 88
first-line, 86
float rules, 141
’float’, 141
focus, 288
focus (pseudo-class), 83
following element, 42
’font’, 244
’font-family’, 234
’font-size’, 242
’font-style’, 239
’font-variant’, 239
’font-weight’, 240
formatting context, 132
formatting structure, 36
forward-compatible parsing, 45
<frequency>, 304

definition of, 293

41523 Apr 2009 15:57

Index

generated content, 195
<generic-voice>, definition of, 303
georgian, 207
’grid’ media group, 104
’groove’, 117, 282

half-leading, 182
’height’, 174
’hidden, 281
’hidden’, 117
horizontal margin, 111
hover (pseudo-class), 83
hyphen-separated matching, 76

identifier, 51
identifier, definition of, 51
ignore, 41, 43, 43, 55, 52, 53, 53, 53, 55, 55, 55, 56, 56, 57, 57, 52, 276
inherit, definition of, 95
initial caps, 88
initial containing block, 163
initial value, 93
inline box, 123
’inline’, definition of, 127
inline-block, 111, 87, 90, 183, 184
’inline-block’, definition of, 127
inline-level element, 125
inline-table, 259
inner edge, 106
’inset’, 117, 282
<integer>, 156

definition of, 58
’interactive media group, 104
internal table element, 259
intrinsic dimensions, 41
invert, 288
iso-10646, 405

23 Apr 2009 15:57416

Index

LALR(1), 403
lang (pseudo-class), 85
language (human), 85
language code, 76
leading, 182
<left>

definition of, 191
’left’, 131
<length>, 229, 247, 252, 252, 175, 181, 183, 185, 166, 172

definition of, 58
’letter-spacing’, 251
ligatures, 252
line box, 133
line-box, 142
’line-height’, 182
link (pseudo-class), 83
list properties, 206
list-item, 90
’list-item’, definition of, 127
’list-style’, 211
’list-style-image’, 208
’list-style-position’, 209
’list-style-type’, 207
lower-greek, 208
lower-latin, 208
lower-roman, 207

mapping elements to table parts, 259
margin edge, 106
’margin’, 110
’margin-bottom’, 109
’margin-left’, 110
’margin-right’, 110
’margin-top’, 109
<margin-width>

definition of, 109
margin

horizontal, 111
of a box, 105
vertical, 111

41723 Apr 2009 15:57

Index

match, 71
’max-height’, 180
’max-width’, 172
MAY, 39
media, 102
media group, 104
media-dependent import, 96
message entity, 44
’min-height’, 180
’min-width’, 172
monospace, definition of, 238
multiple declarations, 73
MUST, 39
MUST NOT, 39

newline, 65
no-close-quote, 202, 198
no-open-quote, 202, 198
none, 197
’none’

as border style, 117, 281
as display value, 127

normal, 197
<number>, 294, 302, 304, 293, 305, 305, 293, 293, 61, 183, 183

definition of, 58

open-quote, 201, 198
OPTIONAL, 39
’orphans’, 218
outer edge, 106
outline, 286
’outline’, 286
’outline-color’, 287
’outline-style’, 287
’outline-width’, 287
’outset’, 117, 282
overflow, 187
’overflow’, 187

23 Apr 2009 15:57418

Index

padding edge, 106
’padding’, 113
’padding-bottom’, 113
’padding-left’, 113
’padding-right’, 113
’padding-top’, 113
<padding-width>

definition of, 112
padding

of a box, 105
page area, 214
page box, 214
page selector, 214
’page-break-after’, 217
’page-break-before’, 217
’page-break-inside’, 218
page-context, 214
’paged’ media group, 104
parent, 41
’pause’, 296
’pause-after’, 296
’pause-before’, 296
<percentage>, 294, 296, 228, 247, 175, 181, 183, 185, 167, 172

definition of, 61
’pitch’, 303
’pitch-range’, 304
pixel, 59
’play-during’, 298
’position’, 128
positioned element/box, 130
positioning scheme, 128
preceding element, 42
principal block box, 123
Property, 42
property, 54
’property-name’, 25
pseudo-class

:first, 216
:left, 216
:right, 216

pseudo-classes, 81
:active, 83

41923 Apr 2009 15:57

Index

:focus, 83
:hover, 83
:lang, 85
:link, 83
:visited, 83

pseudo-elements, 81
:after, 195, 91
:before, 195, 91
:first-letter, 88
:first-line, 86, 87

quad width, 58
’quotes’, 199

RECOMMENDED, 39
reference pixel, 59
relative positioning, 135
relative units, 58
rendered content, 41
replaced element, 40
REQUIRED, 39
’richness’, 305
’ridge’, 117, 282
<right>

definition of, 191
’right’, 130
root, 41
rule sets, 52
run-in box, 126
’run-in’, definition of, 127

sans-serif, definition of, 237
scope, 204
screen reader, 292
selector, ??, 404, 73, 71, 53

match, 71
subject of, 73

separated borders, 275
serif, definition of, 236

23 Apr 2009 15:57420

Index

SHALL, 39
SHALL NOT, 39
<shape>

definition of, 191
sheet, 213
shorthand property, 28, 98, 73
SHOULD, 39
SHOULD NOT, 39
sibling, 41
simple selector, 73
’solid’, 117, 282
source document, 40
space-separated matching, 76
’speak’, 295
’speak-header’, 307
’speak-numeral’, 306
’speak-punctuation’, 306
<specific-voice>

definition of, 303
specified value, 93
’speech’ media group, 104
’speech-rate’, 302
square, 207
stack level, 157
stacking context, 157
statements, 52
’static’ media group, 104
’stress’, 304
string, 53
<string>, 197, 199, 199
<string>, definition of, 65
illegal ,
style sheet, 1 [p. 40] 40
system fonts, 245

table, 259
table element, 259

internal, 259
table-caption, 87, 90, 260, 183, 184
table-cell, 87, 90, 260, 183, 184
table-column, 260
table-column-group, 260

42123 Apr 2009 15:57

Index

table-footer-group, 260
table-header-group, 259
’table-layout’, 269
table-row, 259
table-row-group, 259
tables, 257
’tactile’ media group, 104
’text-align’, 248
’text-decoration’, 249
’text-indent’, 247
’text-transform’, 253
text/css, 44
<time>, 296

definition of, 293
tokenizer, 405
<top>

definition of, 191
’top’, 130
type selector, 74

UA, 42
unicode, 405
’unicode-bidi’, 160
universal selector, 74
upper-latin, 208
upper-roman, 207
<uri>, 297, 299, 299, 299, 225, 197, 284

definition of, 61
used value, 94
User, 42
user agent, 42
User agent (UA), 42
UTF-8, 66

valid style sheet, 40
validity, 40
value, 54
vertical margin, 111
’vertical-align’, 184
viewport, 122

23 Apr 2009 15:57422

Index

’visibility’, 192
visited (pseudo-class), 83
visual formatting model, 121
’visual’ media group, 104
’voice-family’, 303
volume, 294
’volume’, 294

’white-space’, 254
’widows’, 219
’width’, 166
’word-spacing’, 252

x-height, 59

’z-index’, 156

42323 Apr 2009 15:57

Index

	Cascading Style Sheets Level 2 Revision 1 †CSS€2.1‡ Specification
	W3C Candidate Recommendation 23 April 2009
	Abstract
	Status of this document
	Candidate Recommendation Exit Criteria
	Features at risk

	Quick Table of Contents
	Full Table of Contents

	1 About the CSS€2.1 Specification
	1.1 CSS€2.1 vs CSS€2
	1.2 Reading the specification
	1.3 How the specification is organized
	1.4 Conventions
	1.4.1 Document language elements and attributes
	1.4.2 CSS property definitions
	1.4.2.1 Value
	1.4.2.2 Initial
	1.4.2.3 Applies to
	1.4.2.4 Inherited
	1.4.2.5 Percentage values
	1.4.2.6 Media groups
	1.4.2.7 Computed value

	1.4.3 Shorthand properties
	1.4.4 Notes and examples
	1.4.5 Images and long descriptions

	1.5 Acknowledgments

	2 Introduction to CSS€2.1
	2.1 A brief CSS€2.1 tutorial for HTML
	2.2 A brief CSS€2.1 tutorial for XML
	2.3 The CSS€2.1 processing model
	2.3.1 The canvas
	2.3.2 CSS€2.1 addressing model

	2.4 CSS design principles

	3 Conformance: Requirements and Recommendations
	3.1 Definitions
	3.2 UA Conformance
	3.3 Error conditions
	3.4 The text/css content type

	4 Syntax and basic data types
	4.1 Syntax
	4.1.1 Tokenization
	4.1.2 Keywords
	4.1.2.1 Vendor-specific extensions
	4.1.2.2 Informative Historical Notes

	4.1.3 Characters and case
	4.1.4 Statements
	4.1.5 At-rules
	4.1.6 Blocks
	4.1.7 Rule sets, declaration blocks, and selectors
	4.1.8 Declarations and properties
	4.1.9 Comments

	4.2 Rules for handling parsing errors
	4.3 Values
	4.3.1 Integers and real numbers
	4.3.2 Lengths
	4.3.3 Percentages
	4.3.4 URLs and URIs
	4.3.5 Counters
	4.3.6 Colors
	4.3.7 Strings
	4.3.8 Unsupported Values

	4.4 CSS style sheet representation
	4.4.1 Referring to characters not represented in a character encoding

	5 Selectors
	5.1 Pattern matching
	5.2 Selector syntax
	5.2.1 Grouping

	5.3 Universal selector
	5.4 Type selectors
	5.5 Descendant selectors
	5.6 Child selectors
	5.7 Adjacent sibling selectors
	5.8 Attribute selectors
	5.8.1 Matching attributes and attribute values
	5.8.2 Default attribute values in DTDs
	5.8.3 Class selectors

	5.9 ID selectors
	5.10 Pseudo-elements and pseudo-classes
	5.11 Pseudo-classes
	5.11.1 :first-child pseudo-class
	5.11.2 The link pseudo-classes: :link and :visited
	5.11.3 The dynamic pseudo-classes: :hover, :active, and :focus
	5.11.4 The language pseudo-class: :lang

	5.12 Pseudo-elements
	5.12.1 The :first-line pseudo-element
	5.12.2 The :first-letter pseudo-element
	5.12.3 The :before and :after pseudo-elements

	6 Assigning property values, Cascading, and Inheritance
	6.1 Specified, computed, and actual values
	6.1.1 Specified values
	6.1.2 Computed values
	6.1.3 Used values
	6.1.4 Actual values

	6.2 Inheritance
	6.2.1 The 'inherit' value

	6.3 The @import rule
	6.4 The cascade
	6.4.1 Cascading order
	6.4.2 !important rules
	6.4.3 Calculating a selector's specificity
	6.4.4 Precedence of non-CSS presentational hints

	7 Media types
	7.1 Introduction to media types
	7.2 Specifying media-dependent style sheets
	7.2.1 The @media rule

	7.3 Recognized media types
	7.3.1 Media groups

	8 Box model
	8.1 Box dimensions
	8.2 Example of margins, padding, and borders
	8.3 Margin properties: 'margin-top', 'margin-right', 'margin-bottom', 'margin-left', and 'margin'
	8.3.1 Collapsing margins

	8.4 Padding properties: 'padding-top', 'padding-right', 'padding-bottom', 'padding-left', and 'padding'
	8.5 Border properties
	8.5.1 Border width: 'border-top-width', 'border-right-width', 'border-bottom-width', 'border-left-width', and 'border-width'
	8.5.2 Border color: 'border-top-color', 'border-right-color', 'border-bottom-color', 'border-left-color', and 'border-color'
	8.5.3 Border style: 'border-top-style', 'border-right-style', 'border-bottom-style', 'border-left-style', and 'border-style'
	8.5.4 Border shorthand properties: 'border-top', 'border-right', 'border-bottom', 'border-left', and 'border'

	8.6 The box model for inline elements in bidirection context

	9 Visual formatting model
	9.1 Introduction to the visual formatting model
	9.1.1 The viewport
	9.1.2 Containing blocks

	9.2 Controlling box generation
	9.2.1 Block-level elements and block boxes
	9.2.1.1 Anonymous block boxes

	9.2.2 Inline-level elements and inline boxes
	9.2.2.1 Anonymous inline boxes

	9.2.3 Run-in boxes
	9.2.4 The 'display' property

	9.3 Positioning schemes
	9.3.1 Choosing a positioning scheme: 'position' property
	9.3.2 Box offsets: 'top', 'right', 'bottom', 'left'

	9.4 Normal flow
	9.4.1 Block formatting contexts
	9.4.2 Inline formatting context
	9.4.3 Relative positioning

	9.5 Floats
	9.5.1 Positioning the float: the 'float' property
	9.5.2 Controlling flow next to floats: the 'clear' property

	9.6 Absolute positioning
	9.6.1 Fixed positioning

	9.7 Relationships between 'display', 'position', and 'float'
	9.8 Comparison of normal flow, floats, and absolute positioning
	9.8.1 Normal flow
	9.8.2 Relative positioning
	9.8.3 Floating a box
	9.8.4 Absolute positioning

	9.9 Layered presentation
	9.9.1 Specifying the stack level: the 'z-index' property

	9.10 Text direction: the 'direction' and 'unicode-bidi' properties

	10 Visual formatting model details
	10.1 Definition of "containing block"
	10.2 Content width: the 'width' property
	10.3 Calculating widths and margins
	10.3.1 Inline, non-replaced elements
	10.3.2 Inline, replaced elements
	10.3.3 Block-level, non-replaced elements in normal flow
	10.3.4 Block-level, replaced elements in normal flow
	10.3.5 Floating, non-replaced elements
	10.3.6 Floating, replaced elements
	10.3.7 Absolutely positioned, non-replaced elements
	10.3.8 Absolutely positioned, replaced elements
	10.3.9 'Inline-block', non-replaced elements in normal flow
	10.3.10 'Inline-block', replaced elements in normal flow

	10.4 Minimum and maximum widths: 'min-width' and 'max-width'
	10.5 Content height: the 'height' property
	10.6 Calculating heights and margins
	10.6.1 Inline, non-replaced elements
	10.6.2 Inline replaced elements, block-level replaced elements in normal flow, 'inline-block' replaced elements in normal flow and floating replaced elements
	10.6.3 Block-level non-replaced elements in normal flow when 'overflow' computes to 'visible'
	10.6.4 Absolutely positioned, non-replaced elements
	10.6.5 Absolutely positioned, replaced elements
	10.6.6 Complicated cases
	10.6.7 'Auto' heights for block formatting context roots

	10.7 Minimum and maximum heights: 'min-height' and 'max-height'
	10.8 Line height calculations: the 'line-height' and 'vertical-align' properties
	10.8.1 Leading and half-leading

	11 Visual effects
	11.1 Overflow and clipping
	11.1.1 Overflow: the 'overflow' property
	11.1.2 Clipping: the 'clip' property

	11.2 Visibility: the 'visibility' property

	12 Generated content, automatic numbering, and lists
	12.1 The :before and :after pseudo-elements
	12.2 The 'content' property
	12.3 Quotation marks
	12.3.1 Specifying quotes with the 'quotes' property
	12.3.2 Inserting quotes with the 'content' property

	12.4 Automatic counters and numbering
	12.4.1 Nested counters and scope
	12.4.2 Counter styles
	12.4.3 Counters in elements with 'display: none'

	12.5 Lists
	12.5.1 Lists: the 'list-style-type', 'list-style-image', 'list-style-position', and 'list-style' properties

	13 Paged media
	13.1 Introduction to paged media
	13.2 Page boxes: the @page rule
	13.2.1 Page margins
	13.2.2 Page selectors: selecting left, right, and first pages
	13.2.3 Content outside the page box

	13.3 Page breaks
	13.3.1 Page break properties: 'page-break-before', 'page-break-after', 'page-break-inside'
	13.3.2 Breaks inside elements: 'orphans', 'widows'
	13.3.3 Allowed page breaks
	13.3.4 Forced page breaks
	13.3.5 "Best" page breaks

	13.4 Cascading in the page context

	14 Colors and Backgrounds
	14.1 Foreground color: the 'color' property
	14.2 The background
	14.2.1 Background properties: 'background-color', 'background-image', 'background-repeat', 'background-attachment', 'background-position', and 'background'

	14.3 Gamma correction

	15 Fonts
	15.1 Introduction
	15.2 Font matching algorithm
	15.3 Font family: the 'font-family' property
	15.3.1 Generic font families
	15.3.1.1 serif
	15.3.1.2 sans-serif
	15.3.1.3 cursive
	15.3.1.4 fantasy
	15.3.1.5 monospace

	15.4 Font styling: the 'font-style' property
	15.5 Small-caps: the 'font-variant' property
	15.6 Font boldness: the 'font-weight' property
	15.7 Font size: the 'font-size' property
	15.8 Shorthand font property: the 'font' property

	16 Text
	16.1 Indentation: the 'text-indent' property
	16.2 Alignment: the 'text-align' property
	16.3 Decoration
	16.3.1 Underlining, overlining, striking, and blinking: the 'text-decoration' property

	16.4 Letter and word spacing: the 'letter-spacing' and 'word-spacing' properties
	16.5 Capitalization: the 'text-transform' property
	16.6 White space: the 'white-space' property
	16.6.1 The 'white-space' processing model
	16.6.2 Example of bidirectionality with white space collapsing
	16.6.3 Control and combining characters' details

	17 Tables
	17.1 Introduction to tables
	17.2 The CSS table model
	17.2.1 Anonymous table objects

	17.3 Columns
	17.4 Tables in the visual formatting model
	17.4.1 Caption position and alignment

	17.5 Visual layout of table contents
	17.5.1 Table layers and transparency
	17.5.2 Table width algorithms: the 'table-layout' property
	17.5.2.1 Fixed table layout
	17.5.2.2 Automatic table layout

	17.5.3 Table height algorithms
	17.5.4 Horizontal alignment in a column
	17.5.5 Dynamic row and column effects

	17.6 Borders
	17.6.1 The separated borders model
	17.6.1.1 Borders and Backgrounds around empty cells: the 'empty-cells' property

	17.6.2 The collapsing border model
	17.6.2.1 Border conflict resolution

	17.6.3 Border styles

	18 User interface
	18.1 Cursors: the 'cursor' property
	18.2 System Colors
	18.3 User preferences for fonts
	18.4 Dynamic outlines: the 'outline' property
	18.4.1 Outlines and the focus

	18.5 Magnification

	Appendix A. Aural style sheets
	A.1 The media types 'aural' and 'speech'
	A.2 Introduction to aural style sheets
	A.2.1 Angles
	A.2.2 Times
	A.2.3 Frequencies

	A.3 Volume properties: 'volume'
	A.4 Speaking properties: 'speak'
	A.5 Pause properties: 'pause-before', 'pause-after', and 'pause'
	A.6 Cue properties: 'cue-before', 'cue-after', and 'cue'
	A.7 Mixing properties: 'play-during'
	A.8 Spatial properties: 'azimuth' and 'elevation'
	A.9 Voice characteristic properties: 'speech-rate', 'voice-family', 'pitch', 'pitch-range', 'stress', and 'richness'
	A.10 Speech properties: 'speak-punctuation' and 'speak-numeral'
	A.11 Audio rendering of tables
	A.11.1 Speaking headers: the 'speak-header' property

	A.12 Sample style sheet for HTML
	A.13 Emacspeak

	Appendix B. Bibliography
	B.1 Normative references
	B.2 Informative references

	Appendix C. Changes
	C.1 Additional property values
	C.1.1 Section 4.3.6 Colors
	C.1.2 Section 9.2.4 The 'display' property
	C.1.3 Section 12.2 The 'content' property
	C.1.4 Section 16.6 White space: the 'white-space' property
	C.1.5 Section 18.1 Cursors: the 'cursor' property

	C.2 Changes
	C.2.1 Section 1.1 CSS 2.1 vs CSS 2
	C.2.2 Section 1.2 Reading the specification
	C.2.3 Section 1.3 How the specification is organized
	C.2.4 Section 1.4.2.1 Value
	C.2.5 Section 1.4.2.6 Media groups
	C.2.6 Section 1.4.2.7 Computed value
	C.2.7 Section 1.4.4 Notes and examples
	C.2.8 Section 1.5 Acknowledgements
	C.2.9 Section 3.2 Conformance
	C.2.10 Section 3.3 Error Conditions
	C.2.11 Section 4.1.1 Tokenization
	C.2.12 Section 4.1.3 Characters and case
	C.2.13 Section 4.2 Rules for handling parsing errors
	C.2.14 Section 4.3 Values
	C.2.15 Section 4.3.2 Lengths
	C.2.16 Section 4.3.4 URLs and URIs
	C.2.17 Section 4.3.5 Counters
	C.2.18 Section 4.3.6 Colors
	C.2.19 Section 4.3.8 Unsupported Values
	C.2.20 Section 4.4 CSS style sheet representation
	C.2.21 Section 5.8.1 Matching attributes and attribute values
	C.2.22 Section 5.8.3 Class selectors
	C.2.23 Section 5.9 ID selectors
	C.2.24 Section 5.10 Pseudo-elements and pseudo-classes
	C.2.25 Section 5.11.2 The link pseudo-classes: :link and :visited
	C.2.26 Section 5.11.4 The language pseudo-class: :lang
	C.2.27 Section 5.12.1 The :first-line pseudo-element
	C.2.28 Section 5.12.2 The :first-letter pseudo-element
	C.2.29 Section 6.1 Specified, computed, and actual values
	C.2.30 Section 6.4.1 Cascading order
	C.2.31 Section 6.4.3 Calculating a selector's specificity
	C.2.32 Section 6.4.4 Precedence of non-CSS presentational hints
	C.2.33 Section 7.3 Recognized Media Types
	C.2.34 Section 7.3.1 Media Groups
	C.2.35 Section 8.3 Margin properties
	C.2.36 Section 8.3.1 Collapsing margins
	C.2.37 Section 8.4 Padding properties
	C.2.38 Section 8.5.2 Border color
	C.2.39 Section 8.5.3 Border style
	C.2.40 Section 8.6 The box model for inline elements in bidirection context
	C.2.41 Section 9.1.2 Containing blocks
	C.2.42 Section 9.2.1.1 Anonymous block boxes
	C.2.43 Section 9.2.2.1 Anonymous inline boxes
	C.2.44 Section 9.2.3 Run-in boxes
	C.2.45 Section 9.2.4 The 'display' property
	C.2.46 Section 9.3.1 Choosing a positioning scheme
	C.2.47 Section 9.3.2 Box offsets
	C.2.48 Section 9.4.1 Block formatting contexts
	C.2.49 Section 9.4.2 Inline formatting context
	C.2.50 Section 9.4.3 Relative positioning
	C.2.51 Section 9.5 Floats
	C.2.52 Section 9.5.1 Positioning the float
	C.2.53 Section 9.5.2 Controlling flow next to floats
	C.2.54 Section 9.7 Relationships between 'display', 'position', and 'float'
	C.2.55 Section 9.9 Layered presentation
	C.2.56 Section 9.10 Text direction
	C.2.57 Chapter 10 Visual formatting model details
	C.2.58 Section 10.1 Definition of "containing block"
	C.2.59 Section 10.2 Content width
	C.2.60 Section 10.3 Calculating widths and margins
	C.2.61 Section 10.3.2 Inline, replaced elements
	C.2.62 Section 10.3.3 Block-level, non-replaced elements in normal flow
	C.2.63 Section 10.3.4 Block-level, replaced elements in normal flow
	C.2.64 Section 10.3.5 Floating, non-replaced elements
	C.2.65 Section 10.3.6 Floating, replaced elements
	C.2.66 Section 10.3.7 Absolutely positioned, non-replaced elements
	C.2.67 Section 10.3.8 Absolutely positioned, replaced elements
	C.2.68 Section 10.4 Minimum and maximum widths
	C.2.69 Section 10.5 Content height
	C.2.70 Section 10.6 Calculating heights and margins
	C.2.71 Section 10.6.1 Inline, non-replaced elements
	C.2.72 Section 10.6.2 Inline replaced elements, block-level replaced elements in normal flow, 'inline-block' replaced elements in normal flow and floating replaced elements
	C.2.73 Section 10.6.3 Block-level non-replaced elements in normal flow when 'overflow' computes to 'visible'
	C.2.74 Section 10.6.4 Absolutely positioned, non-replaced elements
	C.2.75 Section 10.6.5 Absolutely positioned, replaced elements
	C.2.76 Section 10.7 Minimum and maximum heights
	C.2.77 Section 10.8 Line height calculations
	C.2.78 Section 10.8.1 Leading and half-leading
	C.2.79 Section 11.1 Overflow and clipping
	C.2.80 Section 11.1.1 Overflow
	C.2.81 Section 11.1.2 Clipping: the 'clip' property
	C.2.82 Section 11.2 Visibility
	C.2.83 Chapter 12 Generated content, automatic numbering, and lists
	C.2.84 Section 12.1 The :before and :after pseudo-elements
	C.2.85 Section 12.2 The 'content' property
	C.2.86 Section 12.3.2 Inserting quotes with the 'content' property
	C.2.87 Section 12.4 Automatic counters and numbering
	C.2.88 Section 12.4.1 Nested counters and scope
	C.2.89 Section 12.5 Lists
	C.2.90 Section 12.5.1 Lists
	C.2.91 Chapter 13 Paged media
	C.2.92 Section 13.2.2 Page selectors
	C.2.93 Section 13.3.1 Page break properties
	C.2.94 Section 13.3.3 Allowed page breaks
	C.2.95 Section 14.2.1 Background properties
	C.2.96 Section 14.3 Gamma correction
	C.2.97 Chapter 15 Fonts
	C.2.98 Section 15.2 Font matching algorithm
	C.2.99 Section 15.2.2 Font family
	C.2.100 Section 15.5 Small-caps
	C.2.101 Section 15.6 Font boldness
	C.2.102 Section 15.7 Font size
	C.2.103 Chapter 16 Text
	C.2.104 Section 16.2 Alignment
	C.2.105 Section 16.3.1 Underlining, over lining, striking, and blinking
	C.2.106 Section 16.4 Letter and word spacing
	C.2.107 Section 16.5 Capitalization
	C.2.108 Section 16.6 White space
	C.2.109 Chapter 17 Tables
	C.2.110 Section 17.2 The CSS table model
	C.2.111 Section 17.2.1 Anonymous table objects
	C.2.112 Section 17.4 Tables in the visual formatting model
	C.2.113 Section 17.4.1 Caption position and alignment
	C.2.114 Section 17.5 Visual layout of table contents
	C.2.115 Section 17.5.1 Table layers and transparency
	C.2.116 Section 17.5.2.1 Fixed table layout
	C.2.117 Section 17.5.2.2 Automatic table layout
	C.2.118 Section 17.5.3 Table height algorithms
	C.2.119 Section 17.5.4 Horizontal alignment in a column
	C.2.120 Section 17.6 Borders
	C.2.121 Section 17.6.1 The separated borders model
	C.2.122 Section 17.6.1.1 Borders and Backgrounds around empty cells
	C.2.123 Section 17.6.2 The collapsing border model
	C.2.124 Section 17.6.2.1 Border conflict resolution
	C.2.125 Section 18.1 Cursors: the 'cursor' property
	C.2.126 Section 18.4 Dynamic outlines
	C.2.127 Chapter 12 Generated content, automatic numbering, and lists
	C.2.128 Appendix A. Aural style sheets
	C.2.129 Appendix A Section 5 Pause properties
	C.2.130 Appendix A Section 6 Cue properties
	C.2.131 Appendix A Section 7 Mixing properties
	C.2.132 Appendix B Bibliography
	C.2.133 Other

	C.3 Errors
	C.3.1 Shorthand properties
	C.3.2 Applies to
	C.3.3 Section 4.1.1 †and G2‡
	C.3.4 Section 4.1.3 Characters and case
	C.3.5 Section 4.3 †Double sign problem‡
	C.3.6 Section 4.3.2 Lengths
	C.3.7 Section 4.3.3 Percentages
	C.3.8 Section 4.3.4 URLs and URIs
	C.3.9 Section 4.3.5 Counters
	C.3.10 Section 4.3.6 Colors
	C.3.11 Section 4.3.7 Strings
	C.3.12 Section 5.10 Pseudo-elements and pseudo-classes
	C.3.13 Section 6.4 The cascade
	C.3.14 Section 8.1 Box Dimensions
	C.3.15 Section 8.2 Example of margins, padding, and borders
	C.3.16 Section 8.5.4 Border shorthand properties
	C.3.17 Section 9.2.1 Block-level elements and block boxes
	C.3.18 Section 9.3.1 Choosing a positioning scheme
	C.3.19 Section 9.3.2 Box offsets
	C.3.20 Section 9.4.1 Block formatting contexts
	C.3.21 Section 9.4.2 Inline formatting context
	C.3.22 Section 9.4.3 Relative positioning
	C.3.23 Section 9.5 Floats
	C.3.24 Section 9.5.1 Positioning the float
	C.3.25 Section 9.5.2 Controlling flow next to floats
	C.3.26 Section 9.6 Absolute positioning
	C.3.27 Section 9.7 Relationships between 'display', 'position', and 'float'
	C.3.28 Section 9.10 Text direction
	C.3.29 Section 10.1 Definition of "containing block"
	C.3.30 Section 10.3.3 Block-level, non-replaced elements in normal flow
	C.3.31 Section 10.4 Minimum and maximum widths
	C.3.32 Section 10.6.3 Block-level non-replaced elements in normal flow when 'overflow' computes to 'visible'
	C.3.33 Section 10.7 Minimum and maximum heights
	C.3.34 Section 11.1.1 Overflow
	C.3.35 Section 11.1.2 Clipping: the 'clip' property
	C.3.36 Section 11.2 Visibility
	C.3.37 Section 12.4.2 Counter styles
	C.3.38 Section 12.6.2 Lists
	C.3.39 Section 14.2 The background
	C.3.40 Section 14.2.1 Background properties
	C.3.41 Section 15.2 Font matching algorithm
	C.3.42 Section 15.7 Font size
	C.3.43 Section 16.1 Indentation
	C.3.44 Section 16.2 Alignment
	C.3.45 Section 17.2 The CSS table model
	C.3.46 Section 17.2.1 Anonymous table objects
	C.3.47 Section 17.4 Tables in the visual formatting model
	C.3.48 Section 17.5 Visual layout of table contents
	C.3.49 Section 17.5.1 Table layers and transparency
	C.3.50 Section 17.6.1 The separated borders model
	C.3.51 Section 18.2 System Colors
	C.3.52 Section E.2 Painting order

	C.4 Clarifications
	C.4.1 Section 2.1 A brief CSS€2.1 tutorial for HTML
	C.4.2 Section 2.2 A brief CSS€2.1 tutorial for XML
	C.4.3 Section€2.3 The CSS€2.1 processing model
	C.4.4 Section 3.1 Definitions
	C.4.5 Section 4.1 Syntax
	C.4.6 Section 4.1.1 Tokenization
	C.4.7 Section 4.1.3 Characters and case
	C.4.8 Section 4.1.7 Rule sets, declaration blocks, and selectors
	C.4.9 Section 4.2 Rules for handling parsing errors
	C.4.10 Section 4.3.1 Integers and real numbers
	C.4.11 Section 4.3.2 Lengths
	C.4.12 Section 4.3.4 URLs and URIs
	C.4.13 Section 5.1 Pattern matching
	C.4.14 Section 5.7 Adjacent sibling selectors
	C.4.15 Section 5.8.1 Matching attributes and attribute values
	C.4.16 Section 5.8.2 Default attribute values in DTDs
	C.4.17 Section 5.9 ID selectors
	C.4.18 Section 5.11.3 The dynamic pseudo-classes: :hover, :active, and :focus
	C.4.19 Section 5.11.4 The language pseudo-class: :lang
	C.4.20 Section 5.12.2 The :first-letter pseudo-element
	C.4.21 Section 6.2 Inheritance
	C.4.22 Section 6.2.1 The 'inherit' value
	C.4.23 Section 6.3 The @import rule
	C.4.24 Section 6.4 The Cascade
	C.4.25 Section 6.4.1 Cascading order
	C.4.26 Section 6.4.3 Calculating a selector's specificity
	C.4.27 Section 7.2.1 The @media rule
	C.4.28 Section 7.3 Recognized media types
	C.4.29 Section 7.3.1 Media groups
	C.4.30 Section 8.1 Box dimensions
	C.4.31 Section 8.3 Margin properties
	C.4.32 Section 8.3.1 Collapsing margins
	C.4.33 Section 8.5.3 Border style
	C.4.34 Section 9.1.1 The viewport
	C.4.35 Section 9.2.4 The 'display' property
	C.4.36 Section 9.3.1 Choosing a positioning scheme
	C.4.37 Section 9.3.2 Box offsets
	C.4.38 Section 9.4.2 Inline formatting context
	C.4.39 Section 9.4.3 Relative positioning
	C.4.40 Section 9.5 Floats
	C.4.41 Section 9.5.1 Positioning the float
	C.4.42 Section 9.5.2 Controlling flow next to floats
	C.4.43 Section 9.8 Comparison of normal flow, floats, and absolute positioning
	C.4.44 Section 10.1 Definition of "containing block"
	C.4.45 Section 10.2 Content width
	C.4.46 Section 10.3.3 Block-level, non-replaced elements in normal flow
	C.4.47 Section 10.3.8 Absolutely positioning, replaced elements
	C.4.48 Section 10.4 Minimum and maximum widths
	C.4.49 Section 10.6 Calculating heights and margins
	C.4.50 Section 10.7 Minimum and maximum heights
	C.4.51 Section 10.8 Line height calculations
	C.4.52 Section 10.8.1 Leading and half-leading
	C.4.53 Section 11.1 Overflow and clipping
	C.4.54 Section 11.1.1 Overflow
	C.4.55 Section 11.1.2 Clipping
	C.4.56 Section 11.2 Visibility
	C.4.57 Section 12.1 The :before and :after pseudo-elements
	C.4.58 Section 12.2 The 'content' property
	C.4.59 Section 12.3.2 Inserting quotes with the 'content' property
	C.4.60 Section 12.4 Automatic counters and numbering
	C.4.61 Section 12.4.3 Counters in elements with 'display: none'
	C.4.62 Section 14.2 The background
	C.4.63 Section 15.1 Fonts Introduction
	C.4.64 Section 15.2 Font matching algorithm
	C.4.65 Section 15.2.2 Font family
	C.4.66 Section 15.3.1 Generic font families
	C.4.67 Section 15.4 Font styling
	C.4.68 Section 15.5 Small-caps
	C.4.69 Section 15.6 Font boldness
	C.4.70 Section 15.7 Font size
	C.4.71 Section 16.1 Indentation
	C.4.72 Section 16.2 Alignment
	C.4.73 Section 16.3.1 Underlining, over lining, striking, and blinking
	C.4.74 Section 16.5 Capitalization
	C.4.75 Section 16.6 White space
	C.4.76 Section 17.1 Introduction to tables
	C.4.77 Section 17.2 The CSS table model
	C.4.78 Section 17.2.1 Anonymous table objects
	C.4.79 Section 17.4 Tables in the visual formatting model
	C.4.80 Section 17.5 Visual layout of table contents
	C.4.81 Section 17.5.1 Table layers and transparency
	C.4.82 Section 17.5.2 Table width algorithms
	C.4.83 Section 17.5.2.1 Fixed table layout
	C.4.84 Section 17.5.2.2 Automatic table layout
	C.4.85 Section 17.5.4 Horizontal alignment in a column
	C.4.86 Section 17.5.5 Dynamic row and column effects
	C.4.87 Section 17.6.1 The separated borders model
	C.4.88 Section 17.6.2 The collapsing borders model
	C.4.89 Section 18.2 System Colors
	C.4.90 Section 18.4 Dynamic outlines
	C.4.91 Section 18.4.1 Outlines and the focus
	C.4.92 Appendix D Default style sheet for HTML 4

	C.5 Errata since the Candidate Recommendation of July 2007
	C.5.1 Section€1.4.2.1 Value
	C.5.2 Section€2.3 The CSS€2.1 processing model
	C.5.3 Section 3.1 Definitions
	C.5.4 Section 4.1.1 Tokenization
	C.5.5 Section€4.1.2.2 Informative Historical Notes
	C.5.6 Section€4.1.3 Characters and case
	C.5.7 Section€4.1.3 Characters and case
	C.5.8 Section€4.1.3 Characters and case
	C.5.9 Section€4.1.3 Characters and case
	C.5.10 Section€4.1.5 At-rules
	C.5.11 Section€4.1.7 Rule sets, declaration blocks, and selectors
	C.5.12 Section€4.2 Rules for handling parsing errors
	C.5.13 Section€4.2 Rules for handling parsing errors
	C.5.14 Section€4.3.2 Lengths
	C.5.15 Section€4.3.5 Counters
	C.5.16 Section€5.8.1 Matching attributes and attribute values
	C.5.17 Section 5.8.2 Default attribute values in DTDs
	C.5.18 Section€5.11.4 The language pseudo-class: :lang
	C.5.19 Section€5.12.3 The :before and :after pseudo-elements
	C.5.20 Section€6.3 The @import rule
	C.5.21 Section€6.3 The @import rule
	C.5.22 Section 6.4.1 Cascading order
	C.5.23 Section 6.4.1 Cascading order
	C.5.24 Section€7.2.1 The @media rule
	C.5.25 Section 8.3.1 Collapsing margins
	C.5.26 Section 8.3.1 Collapsing margins
	C.5.27 Section 8.3.1 Collapsing margins
	C.5.28 Section€9.2.2 Inline-level elements and inline boxes
	C.5.29 Section€9.2.4 The 'display' property
	C.5.30 Section€9.3.2 Box offsets: 'top', 'right', 'bottom', 'left'
	C.5.31 Section€9.5 Floats
	C.5.32 Section€9.5 Floats
	C.5.33 Section€9.5.2 Controlling flow next to floats: the 'clear' property
	C.5.34 Section€9.6.1 Fixed positioning
	C.5.35 Section€9.9.1 Specifying the stack level: the 'z-index' property
	C.5.36 Section€10.1 Definition of "containing block"
	C.5.37 Section€10.3 Calculating widths and margins
	C.5.38 Section€10.3.1 Inline, non-replaced elements
	C.5.39 Section 10.3.2 Inline, replaced elements
	C.5.40 Section 10.3.2 Inline, replaced elements
	C.5.41 Section€10.3.3 Block-level, non-replaced elements in normal flow
	C.5.42 Section€10.3.7 Absolutely positioned, non-replaced elements
	C.5.43 Section€10.3.7 Absolutely positioned, non-replaced elements
	C.5.44 Section€10.3.8 Absolutely positioned, replaced elements
	C.5.45 Section€10.3.8 Absolutely positioned, replaced elements
	C.5.46 Section€10.3.8 Absolutely positioned, replaced elements
	C.5.47 Section€10.5 Content height: the 'height' property
	C.5.48 Section 10.6.2 Inline replaced elements [¼]
	C.5.49 Section€10.6.4 Absolutely positioned, non-replaced elements
	C.5.50 Section€10.6.5 Absolutely positioned, replaced elements
	C.5.51 Section 10.8.1 Leading and half-leading
	C.5.52 Section€11.1.1 Overflow: the 'overflow' property
	C.5.53 Section€11.1.2 Clipping: the 'clip' property
	C.5.54 Section€12.2 The 'content' property
	C.5.55 Section€12.4.2 Counter styles
	C.5.56 Section€12.5 Lists
	C.5.57 Section€12.5.1 Lists: the 'list-style-type', 'list-style-image', 'list-style-position', and 'list-style' properties
	C.5.58 Section€12.5.1 Lists: the 'list-style-type', 'list-style-image', 'list-style-position', and 'list-style' properties
	C.5.59 Section€12.5.1 Lists: the 'list-style-type', 'list-style-image', 'list-style-position', and 'list-style' properties
	C.5.60 Section€13.2 Page boxes: the @page rule
	C.5.61 Section€13.2.1.1 Rendering page boxes that do not fit a target sheet
	C.5.62 Section€13.2.3 Content outside the page box
	C.5.63 Section€13.3.1 Page break properties: 'page-break-before', 'page-break-after', 'page-break-inside'
	C.5.64 Section€13.3.1 Page break properties: 'page-break-before', 'page-break-after', 'page-break-inside'
	C.5.65 Section€13.3.2 Breaks inside elements: 'orphans', 'widows'
	C.5.66 Section€13.3.2 Breaks inside elements: 'orphans', 'widows'
	C.5.67 Section€13.3.3 Allowed page breaks
	C.5.68 Section€13.3.3 Allowed page breaks
	C.5.69 Section€13.3.3 Allowed page breaks
	C.5.70 Section€13.3.5 "Best" page breaks
	C.5.71 Section€14.2 The background
	C.5.72 Section€14.2 The background
	C.5.73 Section 14.2.1 Background properties: 'background-color', 'background-image', 'background-repeat', 'background-attachment', 'background-position', and 'background'
	C.5.74 Section€15.6 Font boldness: the 'font-weight' property
	C.5.75 Section€16.6 Whitespace: the 'white-space' property
	C.5.76 Section€16.6.1 The 'white-space' processing model
	C.5.77 Section 17.2.1 Anonymous table objects
	C.5.78 Section 17.2.1 Anonymous table objects
	C.5.79 Section€17.4 Tables in the visual formatting model
	C.5.80 Section€17.5.4 Horizontal alignment in a column
	C.5.81 Section€18.1 Cursors: the 'cursor' property
	C.5.82 Section B.2 Informative references
	C.5.83 Appendix€D. Default style sheet for HTML 4
	C.5.84 Appendix€D. Default style sheet for HTML 4
	C.5.85 Section E.2 Painting order
	C.5.86 Appendix G. Grammar of CSS 2.1
	C.5.87 Section€G.1 Grammar
	C.5.88 Section G.2 Lexical scanner
	C.5.89 Section G.2 Lexical scanner
	C.5.90 Section€G.2 Lexical scanner
	C.5.91 Section€G.2 Lexical scanner
	C.5.92 Appendix€I. Index

	Appendix D. Default style sheet for HTML 4
	Appendix E. Elaborate description of Stacking Contexts
	E.1 Definitions
	E.2 Painting order
	E.3 Notes

	Appendix F. Full property table
	Appendix G. Grammar of CSS€2.1
	G.1 Grammar
	G.2 Lexical scanner
	G.3 Comparison of tokenization in CSS€2.1 and CSS1

	
	
	
	
	
	 Appendix H: Has been intentionally left blank

	Appendix I. Index

