
RDFa Core 1.1

Syntax and processing rules for embedding RDF through
attributes

W3C Working Draft 26 October 2010
This version:

http://www.w3.org/TR/2010/WD-rdfa-core-20101026/
Latest published version:

http://www.w3.org/TR/rdfa-core/
Latest editor’s draft:

http://www.w3.org/2010/02/rdfa/drafts#rdfa-core
Previous version:

http://www.w3.org/TR/2010/WD-rdfa-core-20100803/
Latest recommendation:

http://www.w3.org/TR/rdfa-syntax/
Editors:

Ben Adida, Creative Commons ben@adida.net
Mark Birbeck, webBackplane mark.birbeck@webBackplane.com
Shane McCarron, Applied Testing and Technology, Inc. shane@aptest.com
Ivan Herman, W3C ivan@w3.org

This document is also available in these non-normative formats: Diff from previous Working
Draft, PostScript version, and PDF version.

Copyright Â© 2007-2010 W3CÂ® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability,
trademark and document use rules apply.

Abstract
The current Web is primarily made up of an enormous number of documents that have been
created using HTML. These documents contain significant amounts of structured data, which is
largely unavailable to tools and applications. When publishers can express this data more
completely, and when tools can read it, a new world of user functionality becomes available,
letting users transfer structured data between applications and web sites, and allowing browsing
applications to improve the user experience: an event on a web page can be directly imported
into a user’s desktop calendar; a license on a document can be detected so that users can be
informed of their rights automatically; a photo’s creator, camera setting information, resolution,

- 1 -

RDFa Core 1.1RDFa Core 1.1

http://www.w3.org/
http://www.w3.org/TR/2010/WD-rdfa-core-20101026/
http://www.w3.org/TR/rdfa-core/
http://www.w3.org/2010/02/rdfa/drafts#rdfa-core
http://www.w3.org/TR/2010/WD-rdfa-core-20100803/
http://www.w3.org/TR/rdfa-syntax/
http://creativecommons.org/
http://webBackplane.com/
http://blog.halindrome.com/
http://www.aptest.com/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.csail.mit.edu/
http://www.ercim.eu/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents

location and topic can be published as easily as the original photo itself, enabling structured
search and sharing.

RDFa Core is a specification for attributes to express structured data in any markup language.
The embedded data already available in the markup language (e.g., XHTML) can often be
reused by the RDFa markup, so that publishers don’t need to repeat significant data in the
document content. The underlying abstract representation is RDF [RDF-PRIMER [p.58]], which
lets publishers build their own vocabulary, extend others, and evolve their vocabulary with
maximal interoperability over time. The expressed structure is closely tied to the data, so that
rendered data can be copied and pasted along with its relevant structure.

The rules for interpreting the data are generic, so that there is no need for different rules for
different formats; this allows authors and publishers of data to define their own formats without
having to update software, register formats via a central authority, or worry that two formats may
interfere with each other.

RDFa shares some of the same goals with microformats [MICROFORMATS [p.58]]. Whereas
microformats specify both a syntax for embedding structured data into HTML documents and a
vocabulary of specific terms for each microformat, RDFa specifies only a syntax and relies on
independent specification of terms (often called vocabularies or taxonomies) by others. RDFa
allows terms from multiple independently-developed vocabularies to be freely intermixed and is
designed such that the language can be parsed without knowledge of the specific vocabulary
being used.

This document is a detailed syntax specification for RDFa, aimed at:

those looking to create an RDFa Processor, and who therefore need a detailed description
of the parsing rules;
those looking to integrate RDFa into a new markup language;
those looking to recommend the use of RDFa within their organization, and who would like
to create some guidelines for their users;
anyone familiar with RDF, and who wants to understand more about what is happening
’under the hood’, when an RDFa Processor runs.

For those looking for an introduction to the use of RDFa and some real-world examples, please
consult the RDFa Primer.

How to Read this Document

First, if you are not familiar with either RDFa or RDF, and simply want to add RDFa to your
documents, then you may find the RDFa Primer [RDFA-PRIMER [p.59]] to be a better
introduction.

If you are already familiar with RDFa, and you want to examine the processing rules â perhaps
to create an RDFa Processor â then you’ll find the Processing Model [p.22] section of most
interest. It contains an overview of each of the processing steps, followed by more detailed
sections, one for each rule.

- 2 -

RDFa Core 1.1How to Read this Document

http://www.w3.org/TR/xhtml-rdfa-primer/

If you are not familiar with RDFa, but you are familiar with RDF, then you might find reading the
Syntax Overview [p.6] useful, before looking at the Processing Model [p.22] since it gives a
range of examples of markup that use RDFa. Seeing some examples first should make reading
the processing rules easier.

If you are not familiar with RDF, then you might want to take a look at the section on RDF
Terminology [p.12] before trying to do too much with RDFa. Although RDFa is designed to be
easy to author â and authors don’t need to understand RDF to use it â anyone writing
applications that consume RDFa will need to understand RDF. There is a lot of material about
RDF on the web, and a growing range of tools that support RDFa, this document only contains
enough background on RDF to make the goals of RDFa more clear.

Status of This Document
This section describes the status of this document at the time of its publication. Other
documents may supersede this document. A list of current W3C publications and the latest
revision of this technical report can be found in the W3C technical reports index at
http://www.w3.org/TR/.

This is a revision of RDFa Syntax 1.0 [RDFA-SYNTAX [p.59]]. Once development is complete,
if accepted by the W3C membership, this document will supersede the previous
Recommendation. There are a number of substantive differences between this version and its
predecessor, including:

1. The removal of the specific rules for XHTML - these are now defined in XHTML+RDFa
[XHTML-RDFA [p.58]]

2. An expansion of the datatypes of some RDFa attributes so that they can contain Terms,
CURIES, or Absolute URIs.

3. The ability to change the default vocabulary when no ’prefix’ is specified on a CURIE.
4. The ability to reference RDFa Profiles; these are used to ease authoring by creating

collections of terms, prefix definitions, and/or default vocabulary declarations.
5. Host languages are permitted to define collections of default terms, default prefix mappings,

and a default vocabulary mapping via a default RDFa Profile.
6. Terms are required to be compared in a case-insensitive manner.

A sample test harness is available. This set of tests is not intended to be exhaustive. Users may
find the tests to be useful examples of RDFa usage.

This document was published by the RDFa Working Group as a Last Call Working Draft. This
document is intended to become a W3C Recommendation. If you wish to make comments
regarding this document, please send them to public-rdfa-wg@w3.org (subscribe, archives). The
Last Call period ends 06 December 2010. All feedback is welcome.

Publication as a Working Draft does not imply endorsement by the W3C Membership. This is a
draft document and may be updated, replaced or obsoleted by other documents at any time. It is
inappropriate to cite this document as other than work in progress.

- 3 -

Status of This DocumentRDFa Core 1.1

http://www.w3.org/TR/
http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014
http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014
http://rdfa.digitalbazaar.com/test-suite/
http://www.w3.org/2010/02/rdfa
http://lists.w3.org/Archives/Public/public-rdfa-wg/

This is a Last Call Working Draft and thus the Working Group has determined that this document
has satisfied the relevant technical requirements and is sufficiently stable to advance through
the Technical Recommendation process.

This document was produced by a group operating under the 5 February 2004 W3C Patent
Policy. W3C maintains a public list of any patent disclosures made in connection with the
deliverables of the group; that page also includes instructions for disclosing a patent. An
individual who has actual knowledge of a patent which the individual believes contains Essential
Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.

Table of Contents
................... 51. Motivation
.................. 62. Syntax Overview
............... 72.1 The RDFa Attributes
.................. 72.2 Examples
.................. 123. RDF Terminology
.................. 133.1 Statements
................... 133.2 Triples
................. 133.3 URI references
.................. 153.4 Plain literals
................. 153.5 Typed literals
................... 153.6 Turtle
................... 163.7 Graphs
................. 163.8 Compact URIs
............. 163.9 Markup Fragments and RDFa
........... 173.10 A description of RDFa in RDF terms
................... 174. Conformance
............. 174.1 RDFa Processor Conformance
............ 184.2 RDFa Host Language Conformance
................. 185. Attributes and Syntax
............ 205.1 White space within attribute values
................ 206. CURIE Syntax Definition
............. 216.1 Why CURIEs and not QNames?
.................. 227. Processing Model
.................. 227.1 Overview
................ 237.2 Evaluation Context
.................. 247.3 Chaining
.............. 257.4 CURIE and URI Processing
............ 277.4.1 Scoping of Prefix Mappings
.......... 277.4.2 General Use of CURIEs in Attributes
.......... 287.4.3 General Use of Terms in Attributes
.......... 287.4.4 Use of CURIEs in Specific Attributes
............. 297.4.5 Referencing Blank Nodes

- 4 -

RDFa Core 1.1Table of Contents

http://www.w3.org/Consortium/Patent-Policy-20040205/
http://www.w3.org/Consortium/Patent-Policy-20040205/
http://www.w3.org/2004/01/pp-impl/44350/status
http://www.w3.org/Consortium/Patent-Policy-20040205/#def-essential
http://www.w3.org/Consortium/Patent-Policy-20040205/#def-essential
http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure

.................. 307.5 Sequence

................ 367.6 Processor Status

........... 367.6.1 Accessing the Processor Graph

................ 378. RDFa Processing in detail

............. 378.1 Changing the evaluation context

............. 388.1.1 Setting the current subject

............ 388.1.1.1 The current document

.............. 398.1.1.2 Using @about

............... 408.1.1.3 Using @src

......... 418.1.1.4 Creating a new item with @typeof

... 418.1.1.5 Determining the subject with neither @about nor @typeof

....... 428.1.1.5.1 Inheriting subject from @resource

........ 438.1.1.5.2 Inheriting an anonymous subject

............. 448.2 Completing ’incomplete triples’

................ 478.3 Object resolution

............. 488.3.1 Literal object resolution

.............. 488.3.1.1 Plain Literals

............ 488.3.1.1.1 Language Tags

.............. 498.3.1.2 Typed literals

.............. 498.3.1.3 XML Literals

.............. 508.3.2 URI object resolution

......... 508.3.2.1 Using @resource to set the object

.............. 518.3.2.2 Using @href

............. 518.3.2.3 Incomplete triples

.................. 519. RDFa Profiles

.................. 53A. CURIE Datatypes

............... 53A.1 XML Schema Definition

................ 55A.2 XML DTD Definition

........... 55B. The RDFa Vocabulary for Term Assignments

.................... 56C. Changes

........... 56C.1 Major differences with RDFa Syntax 1.0

........ 57C.2 Major changes during development of version 1.1

................. 57D. Acknowledgments

................... 57E. References

............... 57E.1 Normative references

............... 58E.2 Informative references

1. Motivation
This section is non-normative.

- 5 -

1. MotivationRDFa Core 1.1

RDF/XML [RDF-SYNTAX [p.58]] provides sufficient flexibility to represent all of the abstract
concepts in RDF [RDF-CONCEPTS [p.58]]. However, it presents a number of challenges; first it
is difficult or impossible to validate documents that contain RDF/XML using XML Schemas or
DTDs, which therefore makes it difficult to import RDF/XML into other markup languages. Whilst
newer schema languages such as RELAX NG [RELAXNG-SCHEMA [p.59]] do provide a way to
validate documents that contain arbitrary RDF/XML, it will be a while before they gain wide
support.

Second, even if one could add RDF/XML directly into an XML dialect like XHTML, there would
be significant data duplication between the rendered data and the RDF/XML structured data. It
would be far better to add RDF to a document without repeating the document’s existing data.
For example, an XHTML document that explicitly renders its author’s name in the textâperhaps
as a byline on a news siteâshould not need to repeat this name for the RDF expression of the
same concept: it should be possible to supplement the existing markup in such a way that it can
also be interpreted as RDF.

Another reason for aligning the rendered data with the structured data is that it is highly
beneficial to express the web data’s structure ’in context’; as users often want to transfer
structured data from one application to another, sometimes to or from a non-web-based
application, the user experience can be enhanced. For example, information about specific
rendered data could be presented to the user via ’right-clicks’ on an item of interest.

In the past, many attributes were ’hard-wired’ directly into the markup language to represent
specific concepts. For example, in XHTML 1.1 [XHTML11 [p.59]] and HTML [HTML401 [p.58]]
there is @cite; the attribute allows an author to add information to a document which is used to
indicate the origin of a quote.

However, these ’hard-wired’ attributes make it difficult to define a generic process for extracting
metadata from any document since an RDFa Processor would need to know about each of the
special attributes. One motivation for RDFa has been to devise a means by which documents
can be augmented with metadata in a general, rather than hard-wired, manner. This has been
achieved by creating a fixed set of attributes and parsing rules, but allowing those attributes to
contain properties from any of a number of the growing range of available RDF vocabularies. In
most cases the values of those properties are the information that is already in an author’s
document.

RDFa alleviates the pressure on markup language designers to anticipate all the structural
requirements users of their language might have, by outlining a new syntax for RDF that relies
only on attributes. By adhering to the concepts and rules in this specification, language
designers can import RDFa into their environment with a minimum of hassle and be confident
that semantic data will be extractable from their documents by conforming processors.

- 6 -

RDFa Core 1.11. Motivation

2. Syntax Overview
This section is non-normative.

The following examples are intended to help readers who are not familiar with RDFa to quickly
get a sense of how it works. For a more thorough introduction, please read the RDFa Primer
[RDFA-PRIMER [p.59]].

For brevity, in the following examples and throughout this document, assume that the following
vocabulary prefixes [p.20] have been defined:

bibo: http://purl.org/ontology/bibo/

cc: http://creativecommons.org/ns#

dbp: http://dbpedia.org/property/

dbr: http://dbpedia.org/resource/

dcterms: http://purl.org/dc/terms/

ex: http://example.org/

foaf: http://xmlns.com/foaf/0.1/

rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfa: http://www.w3.org/ns/rdfa#

rdfs: http://www.w3.org/2000/01/rdf-schema#

xhv: http://www.w3.org/1999/xhtml/vocab#

xsd: http://www.w3.org/2001/XMLSchema#

2.1 The RDFa Attributes

RDFa makes use of a number of commonly found attributes, as well as providing a few new
ones. Attributes that already exist in widely deployed languages (e.g., HTML) have the same
meaning they always did, although their syntax has been slightly modified in some cases. For
example, in (X)HTML, @rel [p.19] already defines the relationship between one document and
another. However, in (X)HTML there is no clear way to add new values; RDFa sets out to
explicitly solve this problem, and does so by allowing URIs as values. It also introduces the
concepts of terms [p.53] and ’compact URIs [p.53] ’ â referred to as CURIEs in this document â
which allow a full URI value to be expressed succinctly. For a complete list of RDFa attribute
names and syntax, see Attributes and Syntax [p.18] .

- 7 -

2. Syntax OverviewRDFa Core 1.1

2.2 Examples

As an (X)HTML author you will already be familiar with using meta and link to add additional
information to your documents:

<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Page 7</title>
 <meta name="author" content="Mark Birbeck" />
 <link rel="prev" href="page6.html" />
 <link rel="next" href="page8.html" />
 </head>
 <body>...</body>
</html>

RDFa makes use of this concept, enhancing it with the ability to make use of other vocabularies
by using compact URIs:

<html
 xmlns="http://www.w3.org/1999/xhtml"
 prefix="foaf: http://xmlns.com/foaf/0.1/
 dcterms: http://purl.org/dc/terms/"
 >
 <head>
 <title>My home-page</title>
 <meta property="dcterms:creator" content="Mark Birbeck" />
 <link rel="foaf:topic" href="http://www.formsPlayer.com/#us" />
 </head>
 <body>...</body>
</html>

RDFa supports the use of @rel [p.19] and @rev [p.19] on any element. This is even more useful
when with the addition of support for different vocabularies:

This document is licensed under a
<a prefix="cc: http://creativecommons.org/ns#"
 rel="cc:license"
 href="http://creativecommons.org/licenses/by-nc-nd/3.0/">
 Creative Commons License
.

Not only can URLs in the document be re-used to provide metadata, but so can inline text:

<html
 xmlns="http://www.w3.org/1999/xhtml"
 prefix="cal: http://www.w3.org/2002/12/cal/ical#"
 >
 <head><title>Jo’s Friends and Family Blog</title></head>
 <body>
 <p>
 I’m holding

 one last summer Barbecue
 ,

- 8 -

RDFa Core 1.12.2 Examples

 on September 16th at 4pm.
 </p>
 </body>
</html>

If some displayed text is different to the actual ’value’ it represents, more precise values can be
added, which can optionally include datatypes:

<html
 xmlns="http://www.w3.org/1999/xhtml"
 prefix="cal: http://www.w3.org/2002/12/cal/ical#
 xsd: http://www.w3.org/2001/XMLSchema"
 >
 <head><title>Jo’s Friends and Family Blog</title></head>
 <body>
 <p>
 I’m holding

 one last summer Barbecue
 ,
 on
 <span property="cal:dtstart" content="2015-09-16T16:00:00-05:00"
 datatype="xsd:dateTime">
 September 16th at 4pm
 .
 </p>
 </body>
</html>

In many cases a block of markup will contain a number of properties that relate to the same
item; it’s possible with RDFa to indicate the type of that item:

<html
 xmlns="http://www.w3.org/1999/xhtml"
 prefix="cal: http://www.w3.org/2002/12/cal/ical#
 xsd: http://www.w3.org/2001/XMLSchema"
 >
 <head><title>Jo’s Friends and Family Blog</title></head>
 <body>
 <p typeof="cal:Vevent">
 I’m holding

 one last summer Barbecue
 ,
 on
 <span property="cal:dtstart" content="2015-09-16T16:00:00-05:00"
 datatype="xsd:dateTime">
 September 16th at 4pm
 .
 </p>
 </body>
</html>

- 9 -

2.2 ExamplesRDFa Core 1.1

RDFa allows the document to contain metadata information about other documents and
resources:

<html
 xmlns="http://www.w3.org/1999/xhtml"
 prefix="bibo: http://purl.org/ontology/bibo/
 dcterms: http://purl.org/dc/terms/"
 >
 <head>
 <title>Books by Marco Pierre White</title>
 </head>
 <body>
 I think White’s book
 ’<span about="urn:ISBN:0091808189" typeof="bibo:Book"
 property="dcterms:title">
 Canteen Cuisine
 ’
 is well worth getting since although it’s quite advanced stuff, he
 makes it pretty easy to follow. You might also like
 <span about="urn:ISBN:1596913614" typeof="bibo:Book"
 property="dcterms:description">
 White’s autobiography
 .
 </body>
</html>

When dealing with small amounts of markup, it is sometimes easier to use full URIs, rather than
CURIEs. The previous example can also be written as follows:

<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Books by Marco Pierre White</title>
 </head>
 <body>
 I think White’s book
 ’<span
 about="urn:ISBN:0091808189"
 typeof="http://purl.org/ontology/bibo/Book"
 property="http://purl.org/dc/terms/title"
 >Canteen Cuisine’
 is well worth getting since although it’s quite advanced stuff, he
 makes it pretty easy to follow. You might also like
 <span
 about="urn:ISBN:1596913614"
 typeof="http://purl.org/ontology/bibo/Book"
 property="http://purl.org/dc/terms/description"
 >White’s autobiography.
 </body>
</html>

A simple way of defining a portion of a document to use FOAF terms is to use @vocab [p.19] to
define a default vocabulary URI:

- 10 -

RDFa Core 1.12.2 Examples

<div vocab="http://xmlns.com/foaf/0.1/" about="#me">
 My name is John Doe and my blog is called
 Understanding Semantics.
</div>

the following triples will be generated:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
<#me> foaf:name "John Doe" ;
 foaf:homepage <http://example.org/blog/> .

RDFa also permits external definition of collections of prefixes [p.20] . The following (mythical)
example RDFa Profile document, with a URI of
http://www.example.org/vocab-rdf-dc.html, defines the standard RDF prefixes as
well as the FOAF and Dublin Core vocabulary prefixes in RDFa.

<html xmlns="http://www.w3.org/1999/xhtml"
 prefix="rdfa: http://www.w3.org/ns/rdfa#">
 <head>
 ...
 </head>
 <body>
 <p>This is an example to defining the standard RDF and
 Dublin Core prefixes
 </p>

 <p typeof="">
 The "rdf" prefix can
 be used for the URI:
 "http://www.w3.org/1999/02/22-rdf-syntax-ns#".</p>

 <p typeof="">
 The "rdfs" prefix can
 be used for the URI:
 "http://www.w3.org/2000/01/rdf-schema#".</p>

 <p typeof="">
 The "dcterms" prefix can
 be used for the URI:
 "http://purl.org/dc/terms/".</p>

 <p typeof="">
 The "foaf" prefix can
 be used for the URI:
 "http://xmlns.com/foaf/0.1/".</p>
</html>

Using @profile [p.19] , the following RDFa snippet:

<p about="http://www.example.org/doc"
 profile="http://www.example.org/vocab-rdf-dc">
 title of the document
 and this is a longer comment
 on the same document
</p>

- 11 -

2.2 ExamplesRDFa Core 1.1

would yield the following triples:

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix dcterms: <http://purl.org/dc/terms/> .
<http://www.example.org/doc>
 dcterms:title "title of the document" ;
 rdfs:comment "and this is a longer comment on the same document" .

It is also possible to define terms. Given the following RDFa Profile document at
http://www.example.org/vocab-foaf-terms.html:

<html xmlns="http://www.w3.org/1999/xhtml"
 prefix="rdfa: http://www.w3.org/ns/rdfa#">
 <head>
 <title>Example RDFa Vocabulary</title>
 </head>
 <body>
 <p>
 This is an example RDFa vocabulary that makes it easier to
 use the foaf:name and foaf:homepage terms.
 </p>
 <p typeof="">
 The "name" term can
 be used for the URI:
 "http://xmlns.com/foaf/0.1/name".</p>
 <p typeof="">
 The "homepage" term can
 be used for the URI:
 "http://xmlns.com/foaf/0.1/homepage".</p>
 </body>
</html>

and the following HTML markup:

<div profile="http://www.example.org/vocab-foaf-terms" about="#me">
 My name is John Doe and my blog is called
 <a rel="homepage"
 href="http://example.org/blog/">Understanding Semantics.
</div>

the following triples will be generated:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
<#me> foaf:name "John Doe" ;
 foaf:homepage <http://example.org/blog/> .

3. RDF Terminology
This section is non-normative.

The previous section gave examples of typical markup in order to illustrate the structure of RDFa
markup. However, what RDFa represents is RDF. In order to author RDFa you do not need to
understand RDF, although it would certainly help. However, if you are building a system that

- 12 -

RDFa Core 1.13. RDF Terminology

consumes the RDF output of a language that supports RDFa you will almost certainly need to
understand RDF. This section introduces the basic concepts and terminology of RDF. For a
more thorough explanation of RDF, please refer to the RDF Concepts document
[RDF-CONCEPTS [p.58]] and the RDF Syntax Document [RDF-SYNTAX [p.58]].

3.1 Statements

The structured data that RDFa provides access to is a collection of statements. A statement is a
basic unit of information that has been constructed in a specific format to make it easier to
process. In turn, by breaking large sets of information down into a collection of statements, even
very complex metadata can be processed using simple rules.

To illustrate, suppose we have the following set of facts:

Albert was born on March 14, 1879, in the German Empire. There is a picture of him at
the web address, http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg.

This would be quite difficult for a machine to interpret, and it is certainly not in a format that could
be passed from one data application to another. However, if we convert the information to a set
of statements it begins to be more manageable. The same information could therefore be
represented by the following shorter ’statements’:

Albert was born on March 14, 1879.
Albert was born in the German Empire.
Albert has a picture at
 http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg.

3.2 Triples

To make this information machine-processable, RDF defines a structure for these statements. A
statement is formally called a triple, meaning that it is made up of three components. The first is
the subject of the triple, and is what we are making our statements about. In all of these
examples the subject is ’Albert’.

The second part of a triple is the property of the subject that we want to define. In the examples
here, the properties would be ’was born on’, ’was born in’, and ’has a picture at’. These are more
usually called predicates in RDF.

The final part of a triple is called the object. In the examples here the three objects have the
values ’March 14, 1879’, ’the German Empire’, and
’http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg’.

3.3 URI references

Breaking complex information into manageable units helps us be specific about our data, but
there is still some ambiguity. For example, which ’Albert’ are we talking about? If another system
has more facts about ’Albert’, how could we know whether they are about the same person, and
so add them to the list of things we know about that person? If we wanted to find people born in

- 13 -

3.1 StatementsRDFa Core 1.1

the German Empire, how could we know that the predicate ’was born in’ has the same purpose
as the predicate ’birthplace’ that might exist in some other system? RDF solves this problem by
replacing our vague terms with URI references.

URIs are most commonly used to identify web pages, but RDF makes use of them as a way to
provide unique identifiers for concepts. For example, we could identify the subject of all of our
statements (the first part of each triple) by using the DBPedia [http://dbpedia.org] URI for Albert
Einstein, instead of the ambiguous string ’Albert’:

<http://dbpedia.org/resource/Albert_Einstein>
 has the name
 Albert Einstein.
<http://dbpedia.org/resource/Albert_Einstein>
 was born on
 March 14, 1879.
<http://dbpedia.org/resource/Albert_Einstein>
 was born in
 the German Empire.
<http://dbpedia.org/resource/Albert_Einstein>
 has a picture at
 http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg.

URI references are also used to uniquely identify the objects in metadata statements (the third
part of each triple). The picture of Einstein is already a URI, but we could also use a URI to
uniquely identify the country ’German Empire’. At the same time we’ll indicate that the name and
date of birth really are literals (and not URIs), by putting quotes around them:

<http://dbpedia.org/resource/Albert_Einstein>
 has the name
 "Albert Einstein".
<http://dbpedia.org/resource/Albert_Einstein>
 was born on
 "March 14, 1879".
<http://dbpedia.org/resource/Albert_Einstein>
 was born in
 <http://dbpedia.org/resource/German_Empire>.
<http://dbpedia.org/resource/Albert_Einstein>
 has a picture at
 <http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg>.

URI references are also used to ensure that predicates are unambiguous; now we can be sure
that ’birthplace’, ’place of birth’, ’Lieu de naissance’ and so on, all mean the same thing:

<http://dbpedia.org/resource/Albert_Einstein>
 <http://xmlns.com/foaf/0.1/name>
 "Albert Einstein".
<http://dbpedia.org/resource/Albert_Einstein>
 <http://dbpedia.org/property/dateOfBirth>
 "March 14, 1879".
<http://dbpedia.org/resource/Albert_Einstein>
 <http://dbpedia.org/property/birthPlace>

- 14 -

RDFa Core 1.13.3 URI references

http://dbpedia.org/

 <http://dbpedia.org/resource/German_Empire>.
<http://dbpedia.org/resource/Albert_Einstein>
 <http://xmlns.com/foaf/0.1/depiction>
 <http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg>.

3.4 Plain literals

Although URI resources are always used for subjects and predicates, the object part of a triple
can be either a URI or a literal. In the example triples, Einstein’s name is represented by a plain
literal, which means that it is a basic string with no type or language information:

<http://dbpedia.org/resource/Albert_Einstein>
 <http://xmlns.com/foaf/0.1/name> "Albert Einstein".

3.5 Typed literals

Some literals, such as dates and numbers, have very specific meanings, so RDF provides a
mechanism for indicating the type of a literal. A typed literal is indicated by attaching a URI to the
end of a plain literal [p.15] , and this URI indicates the literal’s datatype. This URI is usually
based on datatypes defined in the XML Schema Datatypes specification [XMLSCHEMA-2 [p.58]
]. The following syntax would be used to unambiguously express Einstein’s date of birth as a
literal of type http://www.w3.org/2001/XMLSchema#date:

<http://dbpedia.org/resource/Albert_Einstein>
 <http://dbpedia.org/property/dateOfBirth>
 "1879-03-14"^^<http://www.w3.org/2001/XMLSchema#date>.

3.6 Turtle

RDF itself does not have one set way to express triples, since the key ideas of RDF are the
triple and the use of URIs, and not any particular syntax. However, there are a number of
mechanisms for expressing triples, such as RDF/XML [RDF-SYNTAX-GRAMMAR [p.57]],
Turtle [TURTLE [p.59]], and of course RDFa. Many discussions of RDF make use of the Turtle
syntax to explain their ideas, since it is quite compact. The examples we have just seen are
already using this syntax, and we’ll continue to use it throughout this document when we need to
talk about the RDF that could be generated from some RDFa. Turtle allows long URIs to be
abbreviated by using a URI mapping, which can be used to express a compact URI as follows:

@prefix dbp: <http://dbpedia.org/property/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
<http://dbpedia.org/resource/Albert_Einstein>
 foaf:name "Albert Einstein" .
<http://dbpedia.org/resource/Albert_Einstein>
 dbp:birthPlace <http://dbpedia.org/resource/German_Empire> .

Here ’dbp:’ has been mapped to the URI for DBPedia and ’foaf:’ has been mapped to the URI for
the ’Friend of a Friend’ taxonomy.

- 15 -

3.4 Plain literalsRDFa Core 1.1

Any URI in Turtle could be abbreviated in this way. This means that we could also have used the
same technique to abbreviate the identifier for Einstein, as well as the datatype indicator:

@prefix dbp: <http://dbpedia.org/property/> .
@prefix dbr: <http://dbpedia.org/resource/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
dbr:Albert_Einstein dbp:dateOfBirth "1879-03-14"^^xsd:date .
dbr:Albert_Einstein
 foaf:depiction <http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg> .

When writing examples, you will often see the following URI in the Turtle representation:

<>

This indicates the ’current document’, i.e., the document being processed. In reality there would
always be a full URI based on the document’s location, but this abbreviation serves to make
examples more compact. Note in particular that the whole technique of abbreviation is merely a
way to make examples more compact, and the actual triples generated would always use the full
URIs.

3.7 Graphs

A collection of triples is called a graph. All of the triples that are defined by this specification are
contained in the default graph [p.17] by an RDFa Processor. For more information on graphs
and other RDF concepts, see [RDF-CONCEPTS [p.58]].

3.8 Compact URIs

In order to allow for the compact expression of RDF statements, RDFa allows the contraction of
most URI references into a form called a ’compact URI’, or CURIE [p.53] . A detailed discussion
of this mechanism is in the section CURIE and URI Processing [p.25] .

Note that CURIEs are only used in the markup and Turtle examples, and will never appear in the
generated triple [p.13] s, which are defined by RDF to use URI references.

Full details on how CURIEs are processed are in the section titled CURIE Processing [p.25] .

3.9 Markup Fragments and RDFa

A growing use of embedded metadata is to take fragments of markup and move them from one
document to another. This may happen through the use of tools, such as drag-and-drop in a
browser, or through snippets of code provided to authors for inclusion in their documents. (A
good example of the latter is the licensing fragment provided by Creative Commons [p.8] .)

However, those involved in creating fragments (either by building tools, or authoring snippets),
should be aware that this specification does not say how fragments are processed. Specifically,
the processing of a fragment ’outside’ of a complete document is undefined because RDFa
processing is largely about context. Future versions of this or related specifications may do more

- 16 -

RDFa Core 1.13.7 Graphs

to define this behavior.

Developers of tools that process fragments, or authors of fragments for manual inclusion, should
also bear in mind what will happen to their fragment once it is included in a complete document.
They should carefully consider the amount of ’context’ information that will be needed in order to
ensure a correct interpretation of their fragment.

3.10 A description of RDFa in RDF terms

The following is a brief description of RDFa in terms of the RDF terminology introduced here. It
may be useful to readers with an RDF background:

The aim of RDFa is to allow a single RDF graph [p.17] to be carried in various types of
document markup. An RDF graph comprises nodes linked by relationships. The basic unit of an
RDF graph [p.17] is a triple [p.13] , in which a subject node [p.17] is linked to an object node
[p.17] via a predicate [p.17] . The subject node [p.17] is always either a URI reference or a blank
node (or bnode), the predicate is always a URI reference, and the object of a statement can be a
URI reference, a literal [p.15] , or a bnode [p.17] .

In RDFa, a subject URI reference is generally indicated using @about [p.18] or @src [p.19] , and
predicates are represented using one of @property [p.19] , @rel [p.19] , or @rev [p.19] . Objects
which are URI references are represented using @resource [p.19] , or @href [p.19] , whilst
objects that are literal [p.15] s are represented either with @content [p.19] or the content of the
element in question (with an optional datatype expressed using @datatype [p.19] , and an
optional language expressed using a Host Language-defined mechanism such as @xml:lang).

4. Conformance
As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and
notes in this specification are non-normative. Everything else in this specification is normative.

The key words must, must not, required, should, should not, recommended, may, and optional in
this specification are to be interpreted as described in [RFC2119 [p.57]].

4.1 RDFa Processor Conformance

A conforming RDFa Processor must make available to a consuming application a single RDF
graph [p.17] containing all possible triples generated by using the rules in the Processing Model
[p.22] section. This specification uses the term default graph to mean all of the triples asserted
by a document according to the Processing Model [p.22] section. The processor graph term is
used to denote the collection of all informational, warning, and error triples that are generated by
the RDFa Processor as a result of processing the document. The default graph [p.17] and the
processor graph [p.17] are separate graphs and must not be stored in the same graph by the
RDFa Processor.

- 17 -

4. ConformanceRDFa Core 1.1

A conforming RDFa Processor may make available additional triples that have been generated
using rules not described here, but these triples must not be made available in the default graph
[p.17] . (Whether these additional triples are made available in one or more additional RDF
graph [p.17] s is implementation-specific, and therefore not defined here.)

A conforming RDFa Processor must preserve white space in both plain literal [p.15] s and XML
literals [p.49] . However, it may be the case that the architecture in which a processor operates
does not make all white space available. It is therefore advisable for authors who would like to
make their documents consumable across different processors, to remove any unnecessary
white space in their markup.

4.2 RDFa Host Language Conformance

Host Languages that incorporate RDFa must adhere to the following:

All of the facilities required in this specification must be included in the Host Language.
The attributes defined in this specification must be included in the content model of the Host
Language.
If the Host Language uses XML Namespaces [XML-NAMES [p.58]], the attributes in this
specification should be defined in ’no namespace’. (e.g., when the attributes are used on
elements in the Host Language’s namespace, they can be used with no qualifying prefix:
<myml:myElement property="next">).
If the Host Language has its own definition for any attribute defined in this specification, that
definition must be such that the processing required by this specification remains possible
when the attribute is used in a way consistent with the requirements herein.
The Host Language may define a default RDFa Profile. If it does, the RDFa Profile triples
that establish term or URI mappings associated with that profile must not change without
changing the profile URI. RDFa Processors may embed, cache, or retrieve the RDFa Profile
triples associated with that profile.

Host Languages are required to change the URI of their default profile if items are added or
removed from the default profile document. The URI change is required to accomodate
RDFa Processors that statically embed the terms defined in the profile. Host Languages are
expected to change their profiles very rarely.

5. Attributes and Syntax
This specification defines a number of attributes and the way in which the values of those
attributes are to be interpreted when generating RDF triples. This section defines the attributes
and the syntax of their values.

about
a SafeCURIEorCURIEorURI [p.53] , used for stating what the data is about (a ’subject’ in
RDF terminology);

- 18 -

RDFa Core 1.15. Attributes and Syntax

content
a CDATA string, for supplying machine-readable content for a literal (a ’plain literal object’, in
RDF terminology);

datatype
a TERMorCURIEorAbsURI [p.53] representing a datatype, to express the datatype of a
literal;

href (optional)
a traditionally navigable URI for expressing the partner resource of a relationship (a
’resource object’, in RDF terminology);

prefix
a white space separated list of prefix-name URI pairs of the form

NCName ’:’ ’ ’+ xs:anyURI

profile
a white space separated list of one or more URIs that indicate a profile or terms, prefix
mappings, and/or default vocabulary declarations. See RDFa Profiles [p.51] ;

property
a white space separated list of TERMorCURIEorAbsURIs [p.53] , used for expressing
relationships between a subject and some literal text (also a ’predicate’);

rel
a white space separated list of TERMorCURIEorAbsURIs [p.53] , used for expressing
relationships between two resources (’predicates’ in RDF terminology);

resource
a SafeCURIEorCURIEorURI [p.53] for expressing the partner resource of a relationship that
is not intended to be navigable (e.g., a ’clickable’ link) (also an ’object’);

rev
a white space separated list of TERMorCURIEorAbsURIs [p.53] , used for expressing
reverse relationships between two resources (also ’predicates’);

src (optional)
a URI for expressing the partner resource of a relationship when the resource is embedded
(also a ’resource object’);

typeof
a white space separated list of TERMorCURIEorAbsURIs [p.53] that indicate the RDF
type(s) to associate with a subject;

vocab
A URI that defines the mapping to use when a TERM [p.53] is referenced in an attribute
value. See General Use of Terms in Attributes [p.28] .

xmlns:prefix (optional)
A method of declaring prefix mappings as defined in [XML-NAMES [p.58]]. Prefix mappings
declared via this attribute are equivalent to those declared using @prefix [p.20] . If this
attribute and @prefix [p.20] declare a mapping for the same prefix on the same element, the
mapping from @prefix [p.20] must take precedence. Document authors should use @prefix
[p.20] , and should not mix @prefix [p.20] and this attribute on the same element.

- 19 -

5. Attributes and SyntaxRDFa Core 1.1

5.1 White space within attribute values

Many attributes accept a white space separated list of tokens. This specification defines white
space as:

whitespace ::= (#x20 | #x9 | #xD | #xA)+

When attributes accept a white space separated list of tokens, an RDFa Processor must ignore
any leading or trailing white space.

This definition is consistent with the definition found in [XML10 [p.59]].

6. CURIE Syntax Definition
The key component of RDF is the URI, but these are usually long and unwieldy. RDFa therefore
supports a mechanism by which URIs can be abbreviated, called ’compact URIs’ or simply,
CURIEs.

A CURIE is comprised of two components, a prefix and a reference. The prefix is separated
from the reference by a colon (:). In general use it is possible to omit the prefix, and so create a
CURIE that makes use of the ’default prefix’ mapping; in RDFa the ’default prefix’ mapping is
http://www.w3.org/1999/xhtml/vocab#. It’s also possible to omit both the prefix and the
colon, and so create a CURIE that contains just a reference which makes use of the ’no prefix’
mapping. This specification does not define a default ’no prefix’ mapping. However, Host
Languages may define a default. This mapping may be changed via @vocab [p.19] .

The RDFa ’default prefix’ should not be confused with the ’default namespace’ as defined in
[XML-NAMES [p.58]]. An RDFa Processor must not treat an XML-NAMES ’default namespace’
declaration as if it were setting the ’default prefix’.

The general syntax of a CURIE can be summarized as follows:

prefix ::= NCName

reference ::= irelative-ref (as defined in [RFC3987])

curie ::= [[prefix] ’:’] reference

safe_curie ::= ’[’ [[prefix] ’:’] reference ’]’

The production safe_curie is not required, even in situations where an attribute value is
permitted to be a CURIE or a URI: A URI that uses a scheme that is not an in-scope mapping
cannot be confused with a CURIE. The concept of a safe_curie is retained for backward
compatibility.

In normal evaluation of CURIEs the following context information would need to be provided:

- 20 -

RDFa Core 1.16. CURIE Syntax Definition

http://www.w3.org/TR/2009/REC-xml-names-20091208/#NT-NCName

a set of mappings from prefixes to URIs;
a mapping to use with the default prefix (for example, :p);
a mapping to use when there is no prefix (for example, p);
a mapping to use with the ’_’ prefix, which is used to generate unique identifiers (for
example, _:p).

In RDFa these values are defined as follows:

the set of mappings from prefixes to URIs is provided by the current in-scope prefix
declarations of the current element [p.31] during parsing;
the mapping to use with the default prefix is the current default prefix mapping;
the mapping to use when there is no prefix is not defined (see General Use of Terms in
Attributes [p.28] for the way items with no colon can be interpreted in some datatypes) ;
the mapping to use with the ’_’ prefix, is not explicitly stated, but since it is used to
generate bnode [p.17] s, its implementation needs to be compatible with the RDF definition
and rules in Referencing Blank Nodes [p.29] . A document should not define a mapping for
the ’_’ prefix. A Conforming RDFa Processor must ignore any definition of a mapping for the
’_’ prefix.

A CURIE is a representation of a full URI. The rules for determining that URI are:

If a CURIE consists of an empty prefix and a reference, the URI is obtained by taking
the current default prefix mapping and concatenating it with the reference. If there is no
current default prefix mapping, then this is not a valid CURIE and must be ignored.
Otherwise, if a CURIE consists of a non-empty prefix and reference, and if there is an
in-scope mapping for prefix (when compared case-insensitively), then the URI is created
by using that mapping, and concatenating it with the reference.
Finally, if there is no in-scope mapping for prefix, then the value is not a CURIE.

Note that the resulting URI must be a syntactically valid IRI [RFC3987 [p.57]]. For a more
detailed explanation see CURIE and URI Processing [p.25] . Also note that while the lexical
space of a CURIE is as defined in curie [p.20] above, the value space is the set of IRIs.

6.1 Why CURIEs and not QNames?

This section is non-normative.

In many cases, language designers have attempted to use QNames for an extension
mechanism [XMLSCHEMA-2 [p.58]]. QNames do permit independent management of the name
collection, and can map the names to a resource. Unfortunately, QNames are unsuitable in most
cases because 1) the use of QName as identifiers in attribute values and element content is
problematic as discussed in [QNAMES [p.58]] and 2) the syntax of QNames is overly restrictive
and does not allow all possible URIs to be expressed.

A specific example of the problem this causes comes from attempting to define the name
collection for books. In a QName, the part after the colon must be a valid element name, making
an example such as the following invalid: isbn:0321154991

- 21 -

6.1 Why CURIEs and not QNames?RDFa Core 1.1

This is not a valid QName simply because "0321154991" is not a valid element name. Yet, in the
example given, we don’t really want to define a valid element name anyway. The whole reason
for using a QName was to reference an item in a private scope - that of ISBNs. Moreover, in this
example, we want the names within that scope to map to a URI that will reveal the meaning of
that ISBN. As you can see, the definition of QNames and this (relatively common) use case are
in conflict with one another.

This specification addresses the problem by defining CURIEs. Syntactically, CURIEs are a
superset of QNames.

Note that this specification is targeted at language designers, not document authors. Any
language designer considering the use of QNames as a way to represent URIs or unique tokens
should consider instead using CURIEs:

CURIEs are designed from the ground up to be used in attribute values. QNames are
designed for unambiguously naming elements and attributes.
CURIEs expand to IRIs, and any IRI can be represented by such a mapping. QNames are
treated as value pairs, but even if those pairs are combined into a string, only a subset of
IRIs can be represented.
CURIEs can be used in non-XML grammars, and can even be used in XML languages that
do not support XML Namespaces. QNames are limited to XML Namespace-aware XML
Applications.

7. Processing Model
This section looks at a generic set of processing rules for creating a set of triples that represent
the structured data present in an RDFa document. Processing need not follow the DOM
traversal technique outlined here, although the effect of following some other manner of
processing must be the same as if the processing outlined here were followed. The processing
model is explained using the idea of DOM traversal which makes it easier to describe
(particularly in relation to the evaluation context [p.30]).

Note that in this section, explanations about the processing model or guidance to implementors
are enclosed in sections like this.

7.1 Overview

Evaluating a document for RDFa triples is carried out by starting at the document object, and
then visiting each of its child elements in turn, in document order, applying processing rules.
Processing is recursive in that for each child element the processor also visits each of its child
elements, and applies the same processing rules.

In some environments there will be little difference between starting at the root element of the
document, and starting at the document object itself. It is defined this way because in some
environments important information is present at the document object level which is not present
on the root element.

- 22 -

RDFa Core 1.17. Processing Model

As processing continues, rules are applied which may generate triples, and may also change the
evaluation context [p.30] information that will then be used when processing descendant
elements.

This specification does not say anything about what should happen to the triples generated, or
whether more triples might be generated during processing than are outlined here. However, to
be conforming, an RDFa Processor must act as if at a minimum the rules in this section are
applied, and a single RDF graph [p.17] produced. As described in the RDFa Processor
Conformance [p.17] section, any additional triples generated must not appear in the default
graph [p.17] .

7.2 Evaluation Context

During processing, each rule is applied using information provided by an evaluation context
[p.30] . An initial context is created when processing begins. That context has the following
members:

The base. This will usually be the URL of the document being processed, but it could be
some other URL, set by some other mechanism, such as the (X)HTML base element. The
important thing is that it establishes a URL against which relative paths can be resolved.
The parent subject. The initial value will be the same as the initial value of base [p.23] , but
it will usually change during the course of processing.
The parent object. In some situations the object of a statement becomes the subject of any
nested statements, and this property is used to convey this value. Note that this value may
be a bnode [p.17] , since in some situations a number of nested statements are grouped
together on one bnode [p.17] . This means that the bnode [p.17] must be set in the
containing statement and passed down, and this property is used to convey this value.
A list of current, in-scope URI mappings.
A list of incomplete triples. A triple can be incomplete when no object resource is provided
alongside a predicate that requires a resource (i.e., @rel [p.19] or @rev [p.19]). The triples
can be completed when a resource becomes available, which will be when the next subject
is specified (part of the process called chaining [p.24]).
The language. Note that there is no default language.
The term mappings, a list of terms and their associated URIs. This specification does not
define an initial list. Host Languages may define an initial list. If a Host Language provides
an initial list, it should do so via an RDFa Profile.
The default vocabulary, a value to use as the prefix URI when a term [p.53] is used. This
specification does not define an initial setting for the default vocabulary. Host Languages
may define an initial setting. If a Host Language defines an initial setting, it should do so via
an RDFa Profile document.

During the course of processing, new evaluation context [p.30] s are created which are passed
to each child element. The rules described below will determine the values of the items in the
context. Additionally, some rules will cause new triples to be created by combining information
provided by an element with information from the evaluation context [p.30] .

- 23 -

7.2 Evaluation ContextRDFa Core 1.1

During the course of processing a number of locally scoped values are needed, as follows:

An initially empty list of URI mapping [p.31] s, called the local list of URI mappings.
An initially empty list of incomplete triples, called the local list of incomplete triples.
An initially empty language [p.23] value.
A skip element flag, which indicates whether the current element [p.31] can safely be
ignored since it has no relevant RDFa attributes. Note that descendant elements will still be
processed.
A new subject value, which once calculated will set the parent subject [p.23] property in an
evaluation context [p.30] , as well as being used to complete any incomplete triple [p.23] s,
as described in the next section.
A value for the current object literal, the literal to use when creating triples that have a literal
object.
A value for the current object resource, the resource to use when creating triples that have
a resource object.
The local term mappings, a list of terms and their associated URIs.
A local default vocabulary, a URI to use as a prefix mapping when a term [p.53] is used.

7.3 Chaining

Statement chaining is an RDFa feature that allows the author to link RDF statements together
while avoiding unnecessary repetitive markup. For example, if an author were to add statements
as children of an object that was a resource, these statements should be interpreted as being
about that resource:

<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace" resource="http://dbpedia.org/resource/German_Empire">
 the German Empire
 </div>
</div>

In this example we can see that an object resource (’German_Empire’), has become the subject
for nested statements. This markup also illustrates the basic chaining pattern of ’A has a B has a
C’ (i.e., Einstein has a birth place of the German Empire, which has a long name of "the German
Empire").

It’s also possible for the subject of nested statements to provide the object for containing
statements â essentially the reverse of the example we have just seen. To illustrate, we’ll take
an example of the type of chaining just described, and show how it could be marked up more
efficiently. To start, we mark up the fact that Albert Einstein had both German and American
citizenship:

<div about="http://dbpedia.org/resource/Albert_Einstein">
 <div rel="dbp:citizenship" resource="http://dbpedia.org/resource/German_Empire"></div>
 <div rel="dbp:citizenship" resource="http://dbpedia.org/resource/United_States"></div>
</div>

- 24 -

RDFa Core 1.17.3 Chaining

Now, we show the same information, but this time we create an incomplete triple [p.23] from the
citizenship part, and then use any number of further subjects to ’complete’ that triple, as follows:

<div about="http://dbpedia.org/resource/Albert_Einstein" rel="dbp:citizenship">

</div>

In this example, the incomplete triple [p.23] actually gets completed twice, once for the German
Empire and once for the USA, giving exactly the same information as we had in the earlier
example:

<http://dbpedia.org/resource/Albert_Einstein>
 dbp:citizenship <http://dbpedia.org/resource/German_Empire> .
<http://dbpedia.org/resource/Albert_Einstein>
 dbp:citizenship <http://dbpedia.org/resource/United_States> .

Chaining can sometimes involve elements containing relatively minimal markup, for example
showing only one resource, or only one predicate. Here the img element is used to carry a
picture of Einstein:

<div about="http://dbpedia.org/resource/Albert_Einstein">
 <div rel="foaf:depiction">

 </div>
</div>

When such minimal markup is used, any of the resource-related attributes could act as a subject
or an object in the chaining:

<div about="http://dbpedia.org/resource/Albert_Einstein">
 <div rel="dbp:citizenship">

 </div>
</div>

7.4 CURIE and URI Processing

Since RDFa is ultimately a means for transporting RDF, a key concept is the resource and its
manifestation as a URI. RDF deals with complete URIs (not relative paths); when converting
RDFa to triples, any relative URIs must be resolved relative to the base URI, using the algorithm
defined in section 5 of RFC 3986 [URI [p.58]], Reference Resolution. The values of RDFa
attributes [p.18] that refer to URIs use three different datatypes: URI, SafeCURIEorCURIEorURI
[p.53] , or TERMorCURIEorAbsURI [p.53] . All these attributes are mapped, after processing, to
URIs. The handling of these attributes is as follows:

URI
The content is a URI, and is used as such.

- 25 -

7.4 CURIE and URI ProcessingRDFa Core 1.1

SafeCURIEorCURIEorURI
When the value is surrounded by square brackets, then the content within the brackets
is evaluated as a CURIE according to the CURIE Syntax definition [p.20] . If it is not a
valid CURIE, the value must be ignored.
Otherwise, the value is evaluated as a CURIE. If it is a valid CURIE, the resulting URI
is used; otherwise, the value is processed as a URI.

TERMorCURIEorAbsURI
If the value is an NCName, then it is evaluated as a term according to General Use of
Terms in Attributes [p.28] . Note that this step may mean that the value is to be ignored.
If the value is a valid CURIE, then the resulting URI is used.
If the value is an absolute URI, that value is used.
Otherwise, the value is ignored.

Note that it is possible for all values in an attribute to be ignored. When that happens, the
attribute must be treated as if it were empty.

For example, the full URI for Albert Einstein on DBPedia is:

http://dbpedia.org/resource/Albert_Einstein

This can be shortened by authors to make the information easier to manage, using a CURIE.
The first step is for the author to create a prefix mapping that links a prefix to some leading
segment of the URI. In RDFa these mappings are expressed using the XML namespace syntax:

<div prefix="db: http://dbpedia.org/">
 ...
</div>

Once the prefix has been established, an author can then use it to shorten a URI as follows:

<div prefix="db: http://dbpedia.org/">
 <div about="db:resource/Albert_Einstein">
 ...
 </div>
</div>

The author is free to split the URI at any point, as long as it begins at the left end. However,
since a common use of CURIEs is to make available libraries of terms and values, the prefix will
usually be mapped to some common segment that provides the most re-use, often provided by
those who manage the library of terms. For example, since DBPedia contains an enormous list
of resources, it is more efficient to create a prefix mapping that uses the base location of the
resources:

<div prefix="dbr: http://dbpedia.org/resource/">
 <div about="dbr:Albert_Einstein">
 ...
 </div>
 <div about="dbr:Baruch_Spinoza">
 ...
 </div>
</div>

- 26 -

RDFa Core 1.17.4 CURIE and URI Processing

http://www.w3.org/TR/2006/REC-xml-names-20060816/#NT-NCName

Note that it is generally considered a bad idea to use relative paths in prefix declarations. Since
it is possible that an author may ignore this guidance, it is further possible that the URI obtained
from a CURIE is relative. However, since all URIs must be resolved relative to base [p.23]
before being used to create triples, the use of relative paths should not have any effect on
processing.

7.4.1 Scoping of Prefix Mappings

CURIE prefix mappings are defined on the current element and its descendants. The inner-most
mapping for a given prefix takes precedence. For example, the URIs expressed by the following
two CURIEs are different, despite the common prefix, because the prefix mappings are locally
scoped:

<div prefix="dbr: http://dbpedia.org/resource/">
 <div about="dbr:Albert_Einstein">
 ...
 </div>
</div>
<div prefix="dbr: http://someotherdb.org/resource/">
 <div about="dbr:Albert_Einstein">
 ...
 </div>
</div>

7.4.2 General Use of CURIEs in Attributes

There are a number of ways that attributes make use of CURIEs, and they need to be dealt with
differently. These are:

1. An attribute may allow one or more values that are a mixture of TERMs, CURIEs, and
absolute URIs.

2. An attribute may allow one or more values that are a mixture of CURIEs and URIs. In this
case any value that is not a CURIE, as outlined in section CURIE Syntax Definition [p.20] ,
will be processed as a URI.

3. If the value is surrounded by square brackets, then the content within the brackets is always
evaluated according to the rules in CURIE Syntax Definition [p.20] - and if that content is not
a CURIE, then the content must be ignored.

An empty attribute value (e.g., typeof=’’) is still a CURIE, and is processed as such. The
rules for this processing are defined in Sequence [p.30] . Specifically, however, an empty
attribute value is never treated as a relative URI by this specification.

An example of an attribute that can contain a CURIEorURI is @about [p.18] . To express a URI
directly, an author might do this:

<div about="http://dbpedia.org/resource/Albert_Einstein">
 ...
</div>

- 27 -

7.4 CURIE and URI ProcessingRDFa Core 1.1

whilst to express the URL above as a CURIE they would do this:

<div about="dbr:Albert_Einstein">
 ...
</div>

The author could also use a safe CURIE, as follows:

<div about="[dbr:Albert_Einstein]">
 ...
</div>

Since non-CURIE values must be ignored, the following value in @about [p.18] would not set a
new subject, since @about [p.18] does not permit the use of TERM [p.53] s, and the CURIE has
no prefix separator.

<div about="[Albert_Einstein]">
 ...
</div>

However, this markup would set a subject, since it is not a CURIE, but a valid relative URI:

<div about="Albert_Einstein">
 ...
</div>

Note that several RDFa attributes are able to also take TERMS [p.53] as their value. This is
discussed in the next section.

7.4.3 General Use of Terms in Attributes

Some RDFa attributes have a datatype that permits a term to be referenced. RDFa defines the
syntax of a term as:

term ::= NCName

When an RDFa attribute permits the use of a term, and the value being evaluated matches the
production for term above, it is transformed to a URI using the following logic:

Check if the term matches an item in the list of local term mappings [p.24] . First compare
against the list case-sensitively, and if there is no match then compare case-insensitively. If
there is a match, use the associated URI.
Otherwise, if there is a local default vocabulary [p.24] the URI is obtained by concatenating
that value and the term.
Finally, if there is no local default vocabulary [p.24] , the term has no associated URI and
must be ignored.

- 28 -

RDFa Core 1.17.4 CURIE and URI Processing

http://www.w3.org/TR/2006/REC-xml-names-20060816/#NT-NCName

7.4.4 Use of CURIEs in Specific Attributes

The general rules discussed in the previous sections apply to the RDFa attributes in the
following ways:

@about [p.18] and @resource [p.19] support either a SafeCURIE, a CURIE, or a URI.
@href [p.19] and @src [p.19] are as defined in the Host Language (e.g., XHTML), and
support only a URI.
@profile [p.19] and @vocab [p.19] also only support a URI.
@property [p.19] , @datatype [p.19] , @typeof [p.19] , @rel [p.19] , and @rev [p.19] support
Terms, CURIEs, or URIs.

Any value that matches a defined term must be expanded into a reference to the corresponding
URI. For example in [XHTML-RDFA [p.58]] the following examples:

<link rel="next" href="http://example.org/page2.html" />
<link rel="xhv:next" href="http://example.org/page2.html" />

would each generate the following triple:

<> <http://www.w3.org/1999/xhtml/vocab#next> <http://example.org/page2.html> .

7.4.5 Referencing Blank Nodes

In RDFa, it is possible to establish relationships using various types of resource references,
including bnode [p.17] s. If a subject or object is defined using a CURIE, and that CURIE
explicitly names a bnode [p.17] , then a Conforming Processor must create the bnode [p.17]
when it is encountered during parsing. The RDFa Processor must also ensure that no bnode
[p.17] created automatically (as a result of chaining [p.24]) has a name that collides with a
bnode [p.17] that is defined by explicit reference in a CURIE.

Consider the following example:

<link about="_:john" rel="foaf:mbox"
 href="mailto:john@example.org" />
<link about="_:sue" rel="foaf:mbox"
 href="mailto:sue@example.org" />
<link about="_:john" rel="foaf:knows"
 resource="_:sue" />

In the above fragment, two bnodes [p.17] are explicitly created as the subject of triples. Those
bnodes [p.17] are then referenced to demonstrate the relationship between the parties. After
processing, the following triples will be generated:

_:john foaf:mbox <mailto:john@example.org> .
_:sue foaf:mbox <mailto:sue@example.org> .
_:john foaf:knows _:sue .

- 29 -

7.4 CURIE and URI ProcessingRDFa Core 1.1

RDFa Processors use, internally, implementation-dependent identifiers for bnodes. When triples
are retrieved, new bnode indentifiers are used, which usually bear no relation to the original
identifiers. However, implementations do ensure that these generated bnode identifiers are
consistent: each bnode will have its own identifier, all references to a particular bnode will use
the same identifier, and different bnodes will have different identifiers.

As a special case, _: is also a valid reference for one specific bnode [p.17] .

7.5 Sequence

Processing would normally begin after the document to be parsed has been completely loaded.
However, there is no requirement for this to be the case, and it is certainly possible to use a
stream-based approach, such as SAX [SAX [p.59]] to extract the RDFa information. However, if
some approach other than the DOM traversal technique defined here is used, it is important to
ensure that Host Language-specific processing rules are applied (e.g., XHTML+RDFa
[XHTML-RDFA [p.58]] indicates the base element can be used, and base will affect the
interpretation of URIs in meta or link elements even if those elements are before the base
element in the stream).

At the beginning of processing, an initial evaluation context is created, as follows:

the base [p.23] is set to the URL of the document (or another value specified in a language
specific manner such as the HTML base element);
the parent subject [p.23] is set to the base [p.23] value;
the parent object [p.23] is set to null;
the list of incomplete triples [p.24] is empty;
the language [p.23] is set to null.
the list of URI mappings [p.23] is empty (or a list defined in the Host Language-defined
default RDFa Profile).
the term mappings [p.23] is set to null (or a list defined in the Host Language-defined default
RDFa Profile).
the default vocabulary [p.23] is set to null (or a list defined in the Host Language-defined
default RDFa Profile).

Processing begins by applying the processing rules below to the document object, in the context
of this initial evaluation context [p.30] . All elements in the tree are also processed according to
the rules described below, depth-first, although the evaluation context [p.30] used for each set of
rules will be based on previous rules that may have been applied.

This specification defines processing rules for optional attributes that may not be present in all
Host Languages (e.g., @href). If these attributes are not supported in the Host Language, then
the corresponding processing rules are not relevant for that language.

The working group as not reached consensus as to whether to include the optional attributes in
this specification, or whether to have them defined in the relevant Host Language specifications.

- 30 -

RDFa Core 1.17.5 Sequence

The processing rules are:

1. First, the local values are initialized, as follows:
the skip element [p.24] flag is set to ’false’;
new subject [p.24] is set to null;
current object resource [p.24] is set to null;
the local list of URI mappings [p.24] is set to the list of URI mappings from the
evaluation context [p.30] ;
the local list of incomplete triples [p.24] is set to null;
the current language [p.35] value is set to the language [p.23] value from the evaluation
context [p.30] .
the local term mappings [p.24] is set to the term mappings [p.23] from the evaluation
context [p.30] .
the local default vocabulary [p.24] is set to the default vocabulary [p.23] from the
evaluation context [p.30] .

Note that some of the local variables are temporary containers for values that will be passed
to descendant elements via an evaluation context [p.30] . In some cases the containers will
have the same name, so to make it clear which is being acted upon in the following steps,
the local version of an item will generally be referred to as such.

2. Next the current element [p.31] is parsed for any updates to the local term mappings [p.24] ,
default vocabulary [p.23] , and local list of URI mappings [p.24] via @profile [p.19] . If
@profile [p.19] is present, its value is processed as defined in RDFa Profiles [p.51] . If any
referenced RDFa Profile is not recognized [p.52] , then the current element [p.31] and its
children must not place any triples in the default graph [p.17] .
Any new terms or URI mappings are merged into respective local lists. They are in effect for
this element and for its children.

3. Next the current element is examined for any change to the default vocabulary [p.23] via
@vocab [p.19] . If @vocab [p.19] is present and contains a value, its value updates the local
default vocabulary [p.24] . If the value is empty, then the local default vocabulary [p.24]
must be reset to the Host Language defined default.
A Host Language is not required to define a default vocabulary. In such a case, setting
@vocab [p.19] to the empty value has the effect of clearing the local default vocabulary
[p.24] .

4. Next, the current element [p.31] is then examined for URI mappings and these are added to
the local list of URI mappings [p.24] . Note that a URI mapping [p.31] will simply overwrite
any current mapping in the list that has the same name;
Mappings are defined via @prefix [p.20] . For backward compatibility, some Host
Languages may also permit the definition of mappings via @xmlns [p.19] . In this case, the
value to be mapped is set by the XML namespace prefix, and the value to map is the value
of the attribute â a URI. Regardless of how the mapping is declared, the value to be
mapped must be converted to lower case, and the URI is not processed in any way; in
particular if it is a relative path it must not be resolved against the current base [p.23] .
Authors should not use relative paths as the URI.

5. The current element [p.31] is also parsed for any language information, and if present,
current language [p.35] is set accordingly;
Host Languages that incorporate RDFa may provide a mechanism for specifying the natural

- 31 -

7.5 SequenceRDFa Core 1.1

language of an element and its contents (e.g., XML provides the general-purpose XML
attribute @xml:lang).

6. If the current element [p.31] contains no @rel [p.19] or @rev [p.19] attribute, then the next
step is to establish a value for new subject [p.24] . Any of the attributes that can carry a
resource can set new subject [p.24] ;
new subject [p.24] is set to the URI obtained from the first match from the following rules:

by using the URI from @about [p.18] , if present, obtained according to the section on
CURIE and URI Processing [p.25] ;
otherwise, by using the URI from @src [p.19] , if present, obtained according to the
section on CURIE and URI Processing [p.25] .
otherwise, by using the URI from @resource [p.19] , if present, obtained according to
the section on CURIE and URI Processing [p.25] ;
otherwise, by using the URI from @href [p.19] , if present, obtained according to the
section on CURIE and URI Processing [p.25] .

If no URI is provided by a resource attribute, then the first match from the following rules will
apply:

if @typeof [p.19] is present, then new subject [p.24] is set to be a newly created bnode
[p.17] .
otherwise, if parent object [p.23] is present, new subject [p.24] is set to the value of
parent object [p.23] . Additionally, if @property [p.19] is not present then the skip
element [p.24] flag is set to ’true’;

7. If the current element [p.31] does contain a @rel [p.19] or @rev [p.19] attribute, then the
next step is to establish both a value for new subject [p.24] and a value for current object
resource [p.24] :
new subject [p.24] is set to the URI obtained from the first match from the following rules:

by using the URI from @about [p.18] , if present, obtained according to the section on
CURIE and URI Processing [p.25] ;
otherwise, by using the URI from @src [p.19] , if present, obtained according to the
section on CURIE and URI Processing [p.25] .

If no URI is provided then the first match from the following rules will apply:

if @typeof [p.19] is present, then new subject [p.24] is set to be a newly created bnode
[p.17] ;
otherwise, if parent object [p.23] is present, new subject [p.24] is set to that.

Then the current object resource [p.24] is set to the URI obtained from the first match from
the following rules:

by using the URI from @resource [p.19] , if present, obtained according to the section
on CURIE and URI Processing [p.25] ;
otherwise, by using the URI from @href [p.19] , if present, obtained according to the
section on CURIE and URI Processing [p.25] .

- 32 -

RDFa Core 1.17.5 Sequence

Note that final value of the current object resource [p.24] will either be null (from
initialization) or a full URI.

8. If in any of the previous steps a new subject [p.24] was set to a non-null value, it is now
used to provide a subject for type values;
One or more ’types’ for the new subject [p.24] can be set by using @typeof [p.19] . If
present, the attribute may contain one or more URIs, obtained according to the section on
URI and CURIE Processing [p.25] , each of which is used to generate a triple as follows:
subject

new subject [p.24]
predicate

http://www.w3.org/1999/02/22-rdf-syntax-ns#type
object

full URI of ’type’
Note that none of this block is executed if there is no new subject [p.24] value, i.e., new
subject [p.24] remains null.

9. If in any of the previous steps a current object resource [p.24] was set to a non-null value, it
is now used to generate triples:
Predicates for the current object resource [p.24] can be set by using one or both of the @rel
[p.19] and @rev [p.19] attributes:

If present, @rel [p.19] may contain one or more URIs, obtained according to the section
on CURIE and URI Processing [p.25] each of which is used to generate a triple as
follows:
subject

new subject [p.24]
predicate

full URI
object

current object resource [p.24]
If present, @rev [p.19] may contain one or more URIs, obtained according to the
section on CURIE and URI Processing [p.25] each of which is used to generate a triple
as follows:
subject

current object resource [p.24]
predicate

full URI
object

new subject [p.24]
10. If however current object resource [p.24] was set to null, but there are predicates present,

then they must be stored as incomplete triple [p.23] s, pending the discovery of a subject
that can be used as the object. Also, current object resource [p.24] should be set to a newly
created bnode [p.17] ;
Predicates for incomplete triple [p.23] s can be set by using one or both of the @rel [p.19]
and @rev [p.19] attributes:

If present, @rel [p.19] must contain one or more URIs, obtained according to the
section on CURIE and URI Processing [p.25] each of which is added to the local list of

- 33 -

7.5 SequenceRDFa Core 1.1

incomplete triples [p.24] as follows:
predicate

full URI
direction

forward
If present, @rev [p.19] must contain one or more URIs, obtained according to the
section on CURIE and URI Processing [p.25] , each of which is added to the local list of
incomplete triples [p.24] as follows:
predicate

full URI
direction

reverse
11. The next step of the iteration is to establish any current object literal [p.24] ;

Predicates for the current object literal [p.24] can be set by using @property [p.19] . If
present, one or more URIs are obtained according to the section on CURIE and URI
Processing [p.25] , and then the actual literal value is obtained as follows:

as a typed literal [p.15] if @datatype [p.19] is present, does not have an empty value
according to the section on CURIE and URI Processing [p.25] , and is not set to
XMLLiteral in the vocabulary
http://www.w3.org/1999/02/22-rdf-syntax-ns#.

The actual literal is either the value of @content [p.19] (if present) or a string created by
concatenating the value of all descendant text nodes, of the current element [p.31] in
turn. The final string includes the datatype URI, as described in [RDF-CONCEPTS
[p.58]], which will have been obtained according to the section on CURIE and URI
Processing [p.25] .

as an XML literal [p.49] if @datatype [p.19] is present and is set to XMLLiteral in the
vocabulary http://www.w3.org/1999/02/22-rdf-syntax-ns#.

The value of the XML literal [p.49] is a string created by serializing to text, all nodes that
are descendants of the current element [p.31] , i.e., not including the element itself, and
giving it a datatype of XMLLiteral in the vocabulary
http://www.w3.org/1999/02/22-rdf-syntax-ns#. The format of the resulting
serialized content is as defined in Exclusive XML Canonicalization Version
[XML-EXC-C14N [p.59]].

In order to maintain maximum portability of this literal, any children of the current node
that are elements must have the current in scope profiles, default vocabulary, prefix
mappings, and XML namespace declarations (if any) declared on the serialized
element using their respective attributes. Since the child element node could also
declare new prefix mappings or XML namespaces, the RDFa Processor must be
careful to merge these together when generating the serialized element definition. For
avoidance of doubt, any re-declarations on the child node must take precedence over
declarations that were active on the current node.

- 34 -

RDFa Core 1.17.5 Sequence

otherwise as a plain literal [p.15] .

Additionally, if there is a value for current language then the value of the plain literal
[p.15] should include this language information, as described in [RDF-CONCEPTS
[p.58]]. The actual literal is either the value of @content [p.19] (if present) or a string
created by concatenating the text content of each of the descendant elements of the
current element [p.31] in document order.

The current object literal [p.24] is then used with each predicate to generate a triple as
follows:

subject
new subject [p.24]

predicate
full URI

object
current object literal [p.24]

12. If the skip element [p.24] flag is ’false’, and new subject [p.24] was set to a non-null value,
then any incomplete triple [p.23] s within the current context should be completed:
The list of incomplete triples [p.24] from the current evaluation context [p.30] (not the local
list of incomplete triples [p.24]) will contain zero or more predicate URIs. This list is iterated,
and each of the predicates is used with parent subject [p.23] and new subject [p.24] to
generate a triple. Note that at each level there are two lists of incomplete triple [p.23] s; one
for the current processing level (which is passed to each child element in the previous step),
and one that was received as part of the evaluation context [p.30] . It is the latter that is
used in processing during this step.
Note that each incomplete triple [p.23] has a direction value that it used to determine what
will become the subject, and what will become the object, of each generated triple:

If direction [p.35] is ’forward’ then the following triple is generated:
subject

parent subject [p.23]
predicate

the predicate from the iterated incomplete triple [p.23]
object

new subject [p.24]
If direction [p.35] is not ’forward’ then this is the triple generated:
subject

new subject [p.24]
predicate

the predicate from the iterated incomplete triple [p.23]
object

parent subject [p.23]
13. Next, all elements that are children of the current element [p.31] are processed using the

rules described here, using a new evaluation context [p.30] , initialized as follows:
If the skip element [p.24] flag is ’true’ then the new evaluation context [p.30] is a copy of
the current context that was passed in to this level of processing, with the language
[p.23] and list of URI mappings [p.23] values replaced with the local values;

- 35 -

7.5 SequenceRDFa Core 1.1

Otherwise, the values are:
the base [p.23] is set to the base [p.23] value of the current evaluation context
[p.30] ;
the parent subject [p.23] is set to the value of new subject [p.24] , if non-null, or the
value of the parent subject [p.23] of the current evaluation context [p.30] ;
the parent object [p.23] is set to value of current object resource [p.24] , if non-null,
or the value of new subject [p.24] , if non-null, or the value of the parent subject
[p.23] of the current evaluation context [p.30] ;
the list of URI mappings [p.23] is set to the local list of URI mappings [p.24] ;
the list of incomplete triples [p.24] is set to the local list of incomplete triples [p.24] ;
language [p.23] is set to the value of current language [p.35] .
the term mappings [p.23] is set to the value of the local term mappings [p.24] .
the default vocabulary [p.23] is set to the value of the local default vocabulary
[p.24] .

7.6 Processor Status

The processing rules covered in the previous section are designed to extract as many triples as
possible from a document. The RDFa Processor is designed to continue processing, even in the
event of errors. For example, failing to resolve a prefix mapping or term [p.53] would result in the
RDFa Processor skipping the generation of a triple and continuing with document processing.
There are cases where knowing each RDFa Processor warning or error would be beneficial to
authors. The processor graph [p.17] is designed as a mechanism to capture all informational,
warning, and error messages as triples from the RDFa Processor. These status triples may be
retrieved and used to aid RDFa authoring or automated error detection.

If an RDFa Processor supports the generation of a processor graph, then it must generate a set
of triples when the following processing issues occur:

An ERROR must be generated when the document fails to be fully processed as a result of
non-conformant host language markup.
An ERROR must be generated when a referenced RDFa Profile is not recognized [p.52] ,
as described in RDFa Profiles [p.51] .
A WARNING must be generated when a CURIE prefix fails to be resolved.
A WARNING must be generated when a Term fails to be resolved.

Other implementation-specific INFORMATIONAL, WARNING, or ERROR triples may be
generated by the RDFa Processor.

7.6.1 Accessing the Processor Graph

Accessing the processor graph [p.17] may be accomplished in a variety of ways and is
dependent on the type of RDFa Processor and access method that the developer is utilizing.

- 36 -

RDFa Core 1.17.6 Processor Status

SAX-based processors or processors that utilize function or method callbacks to report the
generation of triples are classified as event-based RDFa Processors. For Event-based RDFa
Processors, the software must allow the developer to register a function or callback that is called
when a triple is generated for the processor graph [p.17] . The callback may be the same as the
one that is used for the default graph [p.17] as long as it can be determined if a generated triple
belongs in the processor graph [p.17] or the default graph [p.17] .

A whole-graph RDFa Processor is defined as any RDFa Processor that processes the entire
document and only allows developer access to the triples after processing has completed. RDFa
Processors that typically fall into this category express their output via a single call using
RDF/XML, N3, TURTLE, or N-Triples notation. For whole-graph RDFa Processors, the software
must allow the developer to specify if they would like to retrieve the default graph [p.17] , the
processor graph [p.17] , or both graphs as a single, combined graph from the RDFa Processor.
If the graph preference is not specified, the default graph [p.17] must be returned.

An web service RDFa Processor is defined as any RDFa Processor that is capable of
processing a document by performing an HTTP GET, POST or similar action on an RDFa
Processor URL. For this class of RDFa Processor, the software must allow the caller to specify if
they would like to retrieve the default graph [p.17] , the processor graph [p.17] , or both graphs
as a single, combined graph from the web service. The rdfagraph query parameter must be
used to specify the value. The allowable values are default, processor or both values, in
any order, separated by a comma character. If the graph preference is not specified, the default
graph [p.17] must be returned.

8. RDFa Processing in detail
This section provides an in-depth examination of the processing steps described in the previous
section. It also includes examples which may help clarify some of the steps involved.

The key to processing is that a triple is generated whenever a predicate/object combination is
detected. The actual triple generated will include a subject that may have been set previously,
so this is tracked in the current evaluation context [p.30] and is called the parent subject [p.23] .
Since the subject will default to the current document if it hasn’t been set explicitly, then a
predicate/object combination is always enough to generate one or more triples.

The attributes for setting a predicate are @rel [p.19] , @rev [p.19] and @property [p.19] , whilst
the attributes for setting an object are @resource [p.19] , @href [p.19] , @content [p.19] , and
@src [p.19] . @typeof [p.19] is unique in that it sets both a predicate and an object at the same
time (and also a subject when it appears in the absence of other attributes that would set a
subject). Inline content might also set an object, if @content [p.19] is not present, but @property
[p.19] is present.

There are many examples in this section. The examples are all written using XHTML+RDFa.
However, the explanations are relevant regardless of the Host Language.

- 37 -

8. RDFa Processing in detailRDFa Core 1.1

8.1 Changing the evaluation context

8.1.1 Setting the current subject

When triples are created they will always be in relation to a subject resource which is provided
either by new subject [p.24] (if there are rules on the current element that have set a subject) or
parent subject [p.23] , as passed in via the evaluation context [p.30] . This section looks at the
specific ways in which these values are set. Note that it doesn’t matter how the subject is set, so
in this section we use the idea of the current subject which may be either new subject [p.24] or
parent subject [p.23] .

8.1.1.1 The current document

When parsing begins, the current subject [p.38] will be the URI of the document being parsed, or
a value as set by a Host Language-provided mechanism (e.g., the base element in (X)HTML).
This means that by default any metadata found in the document will concern the document itself:

<html profile="http://www.example.org/vocab-rdf-dc.html">
 <head>
 <title>Jo’s Friends and Family Blog</title>
 <link rel="foaf:primaryTopic" href="#bbq" />
 <meta property="dcterms:creator" content="Jo" />
 </head>
 <body>
 ...
 </body>
</html>

This would generate the following triples:

<> foaf:primaryTopic <#bbq> .
<> dcterms:creator "Jo" .

It is possible for the data to appear elsewhere in the document:

<html profile="http://www.example.org/vocab-rdf-dc.html">
 <head>
 <title>Jo’s Blog</title>
 </head>
 <body>
 <h1>Jo’s blog</h1>
 <p>
 Welcome to my blog.
 </p>
 </body>
</html>

which would still generate the triple:

<> dcterms:creator "Jo" .

- 38 -

RDFa Core 1.18.1 Changing the evaluation context

In (X)HTML the value of base may change the initial value of current subject [p.38] :

<html profile="http://www.example.org/vocab-rdf-dc.html">
 <head>
 <base href="http://www.example.org/jo/blog" />
 <title>Jo’s Friends and Family Blog</title>
 <link rel="foaf:primaryTopic" href="#bbq" />
 <meta property="dcterms:creator" content="Jo" />
 </head>
 <body>
 ...
 </body>
</html>

An RDFa Processor should now generate the following triples, regardless of the URL from which
the document is served:

<http://www.example.org/jo/blog> foaf:primaryTopic <#bbq> .
<http://www.example.org/jo/blog> dcterms:creator "Jo" .

8.1.1.2 Using @about

As processing progresses, any @about [p.18] attributes will change the current subject [p.38] .
The value of @about [p.18] is a URI or a CURIE. If it is a relative URI then it needs to be
resolved against the current base [p.23] value. To illustrate how this affects the statements, note
in this markup how the properties inside the (X)HTML body element become part of a new
calendar event object, rather than referring to the document as they do in the head of the
document:

<html profile="http://www.example.org/vocab-rdf-dc.html"
 prefix="cal: http://www.w3.org/2002/12/cal/ical#">
 <head>
 <title>Jo’s Friends and Family Blog</title>
 <link rel="foaf:primaryTopic" href="#bbq" />
 <meta property="dcterms:creator" content="Jo" />
 </head>
 <body>
 <p about="#bbq" typeof="cal:Vevent">
 I’m holding

 one last summer barbecue
 ,
 on
 <span property="cal:dtstart" content="2015-09-16T16:00:00-05:00"
 datatype="xsd:dateTime">
 September 16th at 4pm
 .
 </p>
 </body>
</html>

- 39 -

8.1 Changing the evaluation contextRDFa Core 1.1

With this markup an RDFa Processor will generate the following triples:

<> foaf:primaryTopic <#bbq> .
<> dcterms:creator "Jo" .
<#bbq> rdf:type cal:Vevent .
<#bbq> cal:summary "one last summer barbecue" .
<#bbq> cal:dtstart "2015-09-16T16:00:00-05:00"^^xsd:dateTime .

Other kinds of resources can be used to set the current subject [p.38] , not just references to
web-pages. Although not advised, email addresses might be used to represent a person:

John knows
<a about="mailto:john@example.org"
 rel="foaf:knows" href="mailto:sue@example.org">Sue.

Sue knows
<a about="mailto:sue@example.org"
 rel="foaf:knows" href="mailto:jim@example.org">Jim.

This should generate the following triples:

<mailto:john@example.org> foaf:knows <mailto:sue@example.org> .
<mailto:sue@example.org> foaf:knows <mailto:jim@example.org> .

Similarly, authors may make statements about images:

<div about="photo1.jpg">
 this photo was taken by
 Mark Birbeck
</div>

which should generate the following triples:

<photo1.jpg> dcterms:creator "Mark Birbeck" .

8.1.1.3 Using @src

If @about [p.18] is not present, then @src [p.19] is next in priority order, for setting the subject of
a statement. A typical use would be to indicate the licensing type of an image:

<img src="photo1.jpg" rel="license"
 resource="http://creativecommons.org/licenses/by/2.0/" />

Since there is no difference between @src [p.19] and @about [p.18] , then the information
expressed in the last example in the section on @about [p.18] (the creator of an image), could
be expressed as follows:

<img src="photo1.jpg"
 rel="license" resource="http://creativecommons.org/licenses/by/2.0/"
 property="dcterms:creator" content="Mark Birbeck"
/>

- 40 -

RDFa Core 1.18.1 Changing the evaluation context

Since normal chaining rules will apply, the image URL can also be used to complete hanging
triples:

<div about="http://www.blogger.com/profile/1109404" rel="foaf:img">
 <img src="photo1.jpg"
 rel="license" resource="http://creativecommons.org/licenses/by/2.0/"
 property="dcterms:creator" content="Mark Birbeck"
 />
</div>

The complete markup yields three triples:

<http://www.blogger.com/profile/1109404> foaf:img <photo1.jpg> .
<photo1.jpg> xhv:license <http://creativecommons.org/licenses/by/2.0/> .
<photo1.jpg> dcterms:creator "Mark Birbeck" .

8.1.1.4 Creating a new item with @typeof

Whilst @about [p.18] explicitly creates a new context for statements, @typeof [p.19] does so
implicitly. @typeof [p.19] works differently to other ways of setting a predicate since the
predicate is always rdf:type, which means that the processor only requires one attribute, the
value of the type.

Since @typeof [p.19] is setting the type of an item, this means that if no item exists one should
automatically be created. This involves generating a new bnode [p.17] , and is examined in more
detail below; it is mentioned here because the bnode [p.17] used by the new item will become
the subject for further statements.

For example, an author may wish to create markup for a person using the FOAF vocabulary, but
without having a clear identifier for the item:

<div typeof="foaf:Person">
 Albert Einstein
 Albert
</div>

This markup would cause a bnode [p.17] to be created which has a ’type’ of foaf:Person, as
well as name and given name properties:

_:a rdf:type foaf:Person .
_:a foaf:name "Albert Einstein" .
_:a foaf:givenName "Albert" .

A bnode [p.17] is simply a unique identifier that is only available to the processor, not to any
external software. By generating values internally, the processor is able to keep track of
properties for _:a as being distinct from _:b. But by not exposing these values to any external
software, it is possible to have complete control over the identifier, as well as preventing further
statements being made about the item.

- 41 -

8.1 Changing the evaluation contextRDFa Core 1.1

8.1.1.5 Determining the subject with neither @about nor @typeof

As described in the previous two sections, @about [p.18] will always take precedence and mark
a new subject, but if no @about [p.18] value is available then @typeof [p.19] will do the same
job, although using an implied identifier, i.e., a bnode [p.17] .

But if neither @about [p.18] or @typeof [p.19] are present, there are a number of ways that the
subject could be arrived at. One of these is to ’inherit’ the subject from the containing statement,
with the value to be inherited set either explicitly, or implicitly.

8.1.1.5.1 Inheriting subject from @resource

The most usual way that an inherited subject might get set would be when the parent statement
has an object that is a resource. Returning to the earlier example, in which the long name for the
German_Empire was added, the following markup was used:

<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace" resource="http://dbpedia.org/resource/German_Empire" />
 <span about="http://dbpedia.org/resource/German_Empire"
 property="dbp:conventionalLongName">the German Empire
</div>

In an earlier illustration the subject and object for the German Empire were elided by removing
the @resource [p.19] , relying on the @about [p.18] to set the object:

<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace">
 <span about="http://dbpedia.org/resource/German_Empire"
 property="dbp:conventionalLongName">the German Empire
 </div>
</div>

but it is also possible for authors to achieve the same effect by removing the @about [p.18] and
leaving the @resource [p.19] :

<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace" resource="http://dbpedia.org/resource/German_Empire">
 the German Empire
 </div>
</div>

In this situation, all statements that are ’contained’ by the object resource representing the
German Empire (the value in @resource [p.19]) will have the same subject, making it easy for
authors to add additional statements:

- 42 -

RDFa Core 1.18.1 Changing the evaluation context

<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace" resource="http://dbpedia.org/resource/German_Empire">
 the German Empire

 </div>
</div>

Looking at the triples that an RDFa Processor would generate, we can see that we actually have
two groups of statements; the first group are set to refer to the @about [p.18] that contains them:

<http://dbpedia.org/resource/Albert_Einstein> foaf:name "Albert Einstein" .
<http://dbpedia.org/resource/Albert_Einstein> dbp:dateOfBirth "1879-03-14"^^xsd:date .
<http://dbpedia.org/resource/Albert_Einstein> dbp:birthPlace <http://dbpedia.org/resource/German_Empire> .

whilst the second group refer to the @resource [p.19] that contains them:

<http://dbpedia.org/resource/German_Empire>
 dbp:conventionalLongName "the German Empire" .
<http://dbpedia.org/resource/German_Empire>
 dbp:capital <http://dbpedia.org/resource/Berlin> .

Note also that the same principle described here applies to @src [p.19] and @href [p.19] .

8.1.1.5.2 Inheriting an anonymous subject

There will be occasions when the author wants to elide the subject and object as shown above,
but is not concerned to name the resource that is common to the two statements (i.e., the object
of the first statement, which is the subject of the second). For example, to indicate that Einstein
was influenced by Spinoza the following markup could well be used:

<div about="http://dbpedia.org/resource/Baruch_Spinoza" rel="dbp:influenced">
 <div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 </div>
</div>

An RDFa Processor will generate the following triples:

<http://dbpedia.org/resource/Baruch_Spinoza>
 dbp:influenced <http://dbpedia.org/resource/Albert_Einstein> .
<http://dbpedia.org/resource/Albert_Einstein> foaf:name "Albert Einstein" .
<http://dbpedia.org/resource/Albert_Einstein> dbp:dateOfBirth "1879-03-14"^^xsd:date .

However, an author could just as easily say that Spinoza influenced something by the name of
Albert Einstein, that was born on March 14th, 1879:

<div about="http://dbpedia.org/resource/Baruch_Spinoza" rel="dbp:influenced">
 <div>
 Albert Einstein
 1879-03-14
 </div>
</div>

- 43 -

8.1 Changing the evaluation contextRDFa Core 1.1

In RDF terms, the item that ’represents’ Einstein is anonymous, since it has no URI to identify it.
However, the item is given an automatically generated bnode [p.17] , and it is onto this identifier
that all child statements are attached:

An RDFa Processor will generate the following triples:

<http://dbpedia.org/resource/Baruch_Spinoza> dbp:influenced _:a .
_:a foaf:name "Albert Einstein" .
_:a dbp:dateOfBirth "1879-03-14"^^xsd:date .

Note that the div is superfluous, and an RDFa Processor will create the intermediate object
even if the element is removed:

<div about="http://dbpedia.org/resource/Baruch_Spinoza" rel="dbp:influenced">
 Albert Einstein
 1879-03-14
</div>

An alternative pattern is to keep the div and move the @rel [p.19] onto it:

<div about="http://dbpedia.org/resource/Baruch_Spinoza">
 <div rel="dbp:influenced">
 Albert Einstein
 1879-03-14
 </div>
</div>

From the point of view of the markup, this latter layout is to be preferred, since it draws attention
to the ’hanging rel’. But from the point of view of an RDFa Processor, all of these permutations
need to be supported.

8.2 Completing ’incomplete triples’

When a new subject is calculated, it is also used to complete any incomplete triples that are
pending. This situation arises when the author wants to ’chain’ a number of statements together.
For example, an author could have a statement that Albert Einstein was born in the German
Empire:

<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace" resource="http://dbpedia.org/resource/German_Empire" />
</div>

and then a further statement that the ’long name’ for this country is the German Empire:

<span about="http://dbpedia.org/resource/German_Empire"
 property="dbp:conventionalLongName">the German Empire

RDFa allows authors to insert this statement as a self-contained unit into other contexts:

- 44 -

RDFa Core 1.18.2 Completing ’incomplete triples’

<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace" resource="http://dbpedia.org/resource/German_Empire" />
 <span about="http://dbpedia.org/resource/German_Empire"
 property="dbp:conventionalLongName">the German Empire
</div>

But it also allows authors to avoid unnecessary repetition and to ’normalize’ out duplicate
identifiers, in this case the one for the German Empire:

<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace">
 <span about="http://dbpedia.org/resource/German_Empire"
 property="dbp:conventionalLongName">the German Empire
 </div>
</div>

When this happens the @rel [p.19] for ’birth place’ is regarded as a ’hanging rel’ because it has
not yet generated any triples, but these ’incomplete triples’ are completed by the @about [p.18]
that appears on the next line. The first step is therefore to store the two parts of the triple that the
RDFa Processor does have, but without an object:

<http://dbpedia.org/resource/Albert_Einstein> dbp:birthPlace ? .

Then as processing continues, the RDFa Processor encounters the subject of the statement
about the long name for the German Empire, and this is used in two ways. First it is used to
complete the ’incomplete triple’:

<http://dbpedia.org/resource/Albert_Einstein>
 dbp:birthPlace <http://dbpedia.org/resource/German_Empire> .

and second it is used to generate its own triple:

<http://dbpedia.org/resource/German_Empire>
 dbp:conventionalLongName "the German Empire" .

Note that each occurrence of @about [p.18] will complete any incomplete triples. For example,
to mark up the fact that Albert Einstein had both German and American citizenship, an author
need only specify one @rel [p.19] value that is then used with multiple @about [p.18] values:

<div about="http://dbpedia.org/resource/Albert_Einstein" rel="dbp:citizenship">

</div>

In this example there is one incomplete triple:

<http://dbpedia.org/resource/Albert_Einstein> dbp:citizenship ? .

- 45 -

8.2 Completing ’incomplete triples’RDFa Core 1.1

When the processor meets each of the @about [p.18] values, this triple is completed, giving:

<http://dbpedia.org/resource/Albert_Einstein>
 dbp:citizenship <http://dbpedia.org/resource/German_Empire> .
<http://dbpedia.org/resource/Albert_Einstein>
 dbp:citizenship <http://dbpedia.org/resource/United_States> .

These examples show how @about [p.18] completes triples, but there are other situations that
can have the same effect. For example, when @typeof [p.19] creates a new bnode [p.17] (as
described above), that will be used to complete any ’incomplete triples’. To illustrate, to indicate
that Spinoza influenced both Einstein and Schopenhauer, the following markup could be used:

<div about="http://dbpedia.org/resource/Baruch_Spinoza">
 <div rel="dbp:influenced">
 <div typeof="foaf:Person">
 Albert Einstein
 1879-03-14
 </div>
 <div typeof="foaf:Person">
 Arthur Schopenhauer
 1788-02-22
 </div>
 </div>
</div>

First the following incomplete triple is stored:

<http://dbpedia.org/resource/Baruch_Spinoza> dbp:influenced ? .

Then when the RDFa Processor processes the two occurrences of @typeof [p.19] , each
generates a bnode [p.17] , which is used to both complete the ’incomplete triple’, and to set the
subject for further statements:

<http://dbpedia.org/resource/Baruch_Spinoza"> dbp:influenced _:a .
_:a rdf:type foaf:Person .
_:a foaf:name "Albert Einstein" .
_:a dbp:dateOfBirth "1879-03-14"^^xsd:date .
<http://dbpedia.org/resource/Baruch_Spinoza"> dbp:influenced _:b .
_:b rdf:type foaf:Person .
_:b foaf:name "Arthur Schopenhauer" .
_:b dbp:dateOfBirth "1788-02-22"^^xsd:date .

Triples are also ’completed’ if any one of @property [p.19] , @rel [p.19] or @rev [p.19] are
present. However, unlike the situation when @about [p.18] or @typeof [p.19] are present, all
predicates are attached to one bnode [p.17] :

<div about="http://dbpedia.org/resource/Baruch_Spinoza" rel="dbp:influenced">
 Albert Einstein
 1879-03-14
 <div rel="dbp:citizenship">

 </div>
</div>

- 46 -

RDFa Core 1.18.2 Completing ’incomplete triples’

This example has two ’hanging rels’, and so two situations when ’incomplete triples’ will be
created. Processing would proceed as follows; first an incomplete triple is stored:

<http://dbpedia.org/resource/Baruch_Spinoza> dbp:influenced ? .

Next, the RDFa Processor processes the predicate values for foaf:name, dbp:dateOfBirth
and dbp:citizenship, but note that only the first needs to ’complete’ the ’hanging rel’. So
processing foaf:name generates two triples:

<http://dbpedia.org/resource/Baruch_Spinoza> dbp:influenced _:a .
_:a foaf:name "Albert Einstein" .

but processing dbp:dateOfBirth generates only one:

_:a dbp:dateOfBirth "1879-03-14"^^xsd:date .

Processing dbp:citizenship also uses the same bnode [p.17] , but note that it also
generates its own ’incomplete triple’:

_:a dbp:citizenship ? .

As before, the two occurrences of @about [p.18] complete the ’incomplete triple’, once each:

_:a dbp:citizenship <http://dbpedia.org/resource/German_Empire> .
_:a dbp:citizenship <http://dbpedia.org/resource/United_States> .

The entire set of triples that an RDFa Processor should generate are as follows:

<http://dbpedia.org/resource/Baruch_Spinoza> dbp:influenced _:a .
_:a foaf:name "Albert Einstein" .
_:a dbp:dateOfBirth "1879-03-14"^^xsd:date .
_:a dbp:citizenship <http://dbpedia.org/resource/German_Empire> .
_:a dbp:citizenship <http://dbpedia.org/resource/United_States> .

8.3 Object resolution

Although objects have been discussed in the previous sections, as part of the explanation of
subject resolution, chaining, evaluation contexts, and so on, this section will look at objects in
more detail.

There are two types of object, URI resource [p.47] s and literal [p.15] s.

A literal [p.15] object can be set by using @property [p.19] to express a predicate [p.17] , and
then using either @content [p.19] , or the inline text of the element that @property [p.19] is on.
Note that the use of @content [p.19] prohibits the inclusion of rich markup in your literal. If the
inline content of an element accurately represents the object, then documents should rely upon
that rather than duplicating that data using the @content [p.19] .

A URI resource object can be set using one of @rel [p.19] or @rev [p.19] to express a predicate
[p.17] , and then either using one of @href [p.19] , @resource [p.19] or @src [p.19] to provide an
object resource explicitly, or using the chaining techniques described above to obtain an object

- 47 -

8.3 Object resolutionRDFa Core 1.1

from a nested subject, or from a bnode [p.17] .

8.3.1 Literal object resolution

An object literal will be generated when @property [p.19] is present. @property [p.19] provides
the predicate, and the following sections describe how the actual literal to be generated is
determined.

8.3.1.1 Plain Literals

@content [p.19] can be used to indicate a plain literal [p.15] , as follows:

<meta about="http://internet-apps.blogspot.com/"
 property="dcterms:creator" content="Mark Birbeck" />

The plain literal [p.15] can also be specified by using the content of the element:

<span about="http://internet-apps.blogspot.com/"
 property="dcterms:creator">Mark Birbeck

Both of these examples give the following triple:

<http://internet-apps.blogspot.com/> dcterms:creator "Mark Birbeck" .

The value of @content [p.19] is given precedence over any element content, so the following
would give exactly the same triple as shown above:

<span about="http://internet-apps.blogspot.com/"
 property="dcterms:creator" content="Mark Birbeck">John Doe

8.3.1.1.1 Language Tags

RDF allows plain literal [p.15] s to have a language tag, as illustrated by the following example
from [RDF-TESTCASES [p.58]]:

<http://example.org/node>
 <http://example.org/property> "chat"@fr .

In RDFa the Host Language may provide a mechanism for setting the language tag. In
XHTML+RDFa [XHTML-RDFA [p.58]], for example, the XML language attribute @xml:lang or
the attribute @lang is used to add this information, whether the plain literal is designated by
@content [p.19] , or by the inline text of the element:

<meta about="http://example.org/node"
 property="ex:property" xml:lang="fr" content="chat" />

Note that the language value can be inherited as defined in [XML10-4e [p.58]], so the following
syntax will give the same triple as above:

- 48 -

RDFa Core 1.18.3 Object resolution

<html xmlns="http://www.w3.org/1999/xhtml"
 prefix="ex: http://www.example.com/ns/" xml:lang="fr">
 <head>
 <title xml:lang="en">Example</title>
 <meta about="http://example.org/node"
 property="ex:property" content="chat" />
 </head>
 ...
</html>

8.3.1.2 Typed literals

Literals can be given a data type using @datatype [p.19] .

This can be represented in RDFa as follows:

<span property="cal:dtstart" content="2015-09-16T16:00:00-05:00"
 datatype="xsd:dateTime">
 September 16th at 4pm
.

The triples that this markup generates include the datatype after the literal:

<> cal:dtstart "2015-09-16T16:00:00-05:00"^^xsd:dateTime .

8.3.1.3 XML Literals

XML documents cannot contain XML markup in their attributes, which means it is not possible to
represent XML within @content [p.19] (the following would cause an XML parser to generate an
error):

<head>
 <meta property="dcterms:title"
 content="E = mc²: The Most Urgent Problem of Our Time" />
</head>

RDFa therefore supports the use of normal markup to express XML literals, by using @datatype
[p.19] :

<h2 property="dcterms:title" datatype="rdf:XMLLiteral">
 E = mc²: The Most Urgent Problem of Our Time
</h2>

This would generate the following triple, with the XML preserved in the literal:

<> dcterms:title "E = mc²: The Most Urgent Problem of Our Time"^^rdf:XMLLiteral .

This requires that a URI mapping for the prefix rdf has been defined.

In the examples given here the sup element is actually part of the meaning of the literal, but
there will be situations where the extra markup means nothing, and can therefore be ignored. In
this situation omitting the @datatype [p.19] attribute or specifying an empty @datatype [p.19]
value can be used create a plain literal:

- 49 -

8.3 Object resolutionRDFa Core 1.1

<p>You searched for Einstein:</p>
<p about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 (b. March 14, 1879, d. April 18, 1955) was a German-born theoretical physicist.
</p>

Although the rendering of this page has highlighted the term the user searched for, setting
@datatype [p.19] to nothing ensures that the data is interpreted as a plain literal, giving the
following triples:

<http://dbpedia.org/resource/Albert_Einstein> foaf:name "Albert Einstein" .

The value of this XML Literal [p.49] is the exclusive canonicalization [XML-EXC-C14N [p.59]] of
the RDFa element’s value.

8.3.2 URI object resolution

Most of the rules governing the processing of objects that are resources are to be found in the
processing descriptions given above, since they are important for establishing the subject. This
section aims to highlight general concepts, and anything that might have been missed.

One or more URI objects are needed when @rel [p.19] or @rev [p.19] is present. Each attribute
will cause triples to be generated when used with @href [p.19] , @resource [p.19] or @src [p.19]
, or with the subject value of any nested statement if none of these attributes are present.

@rel [p.19] and @rev [p.19] are essentially the inverse of each other; whilst @rel [p.19]
establishes a relationship between the current subject [p.38] as subject, and the current object
resource [p.24] as the object, @rev [p.19] does the exact opposite, and uses the current object
resource [p.24] as the subject, and the current subject [p.38] as the object.

8.3.2.1 Using @resource to set the object

RDFa provides the @resource [p.19] attribute as a way to set the object of statements. This is
particularly useful when referring to resources that are not themselves navigable links:

<html profile=’http://www.example.org/vocab-rdf-dc.html’>
 <head>
 <title>On Crime and Punishment</title>
 <base href="http://www.example.com/candp.xhtml" />
 </head>
 <body>
 <blockquote about="#q1" rel="dcterms:source" resource="urn:ISBN:0140449132" >
 <p id="q1">
 Rodion Romanovitch! My dear friend! If you go on in this way
 you will go mad, I am positive! Drink, pray, if only a few drops!
 </p>
 </blockquote>
 </body>
</html>

- 50 -

RDFa Core 1.18.3 Object resolution

The blockquote element generates the following triple:

<http://www.example.com/candp.xhtml#q1>
 <http://purl.org/dc/terms/source> <urn:ISBN:0140449132> .

8.3.2.2 Using @href

If no @resource [p.19] is present, then @href [p.19] is next in priority order, for setting the
object.

When a predicate has been expressed using @rel [p.19] , the @href [p.19] on the [RDFa
statement]’s element is used to identify the object with a [URI reference]. Its type is a URI:

<link about="mailto:john@example.org"
 rel="foaf:knows" href="mailto:sue@example.org" />

It’s also possible to use both @rel [p.19] and @rev [p.19] at the same time on an element. This
is particularly useful when two things stand in two different relationships with each other, for
example when a picture is taken by Mark, but that picture also depicts him:

<img src="photo1.jpg" rel="dcterms:creator" rev="foaf:img"
 href="http://www.blogger.com/profile/1109404" />

which then yields two triples:

<photo1.jpg>
 dcterms:creator <http://www.blogger.com/profile/1109404> .
<http://www.blogger.com/profile/1109404>
 foaf:img <photo1.jpg> .

8.3.2.3 Incomplete triples

When a triple predicate has been expressed using @rel [p.19] or @rev [p.19] , but no @href
[p.19] , @src [p.19] , or @resource [p.19] exists on the same element, there is a ’hanging rel’.
This causes the current subject and all possible predicates (with an indicator of whether they are
’forwards, i.e., @rel [p.19] values, or not, i.e., @rev [p.19] values), to be stored as ’incomplete
triples’ pending discovery of a subject that could be used to ’complete’ those triples.

This process is described in more detail in Completing ’Incomplete Triples’ [p.44] .

9. RDFa Profiles
RDFa Profiles are collections of terms, prefix mappings, and/or default vocabulary declarations.
A profile is either intrinsically known to the parser, or it is loaded as an external document and
processed. These documents must be defined in an approved RDFa Host Language (currently
XHTML+RDFa [XHTML-RDFA [p.58]]). They may also be defined in other formats (e.g.,
JSON-LD [JSON-LD [p.58]], RDF/XML [RDF-SYNTAX-GRAMMAR [p.57]], or Turtle [TURTLE
[p.59]]). RDFa Profiles are referenced via @profile [p.19] , and can be used by document
authors to simplify the task of adding semantic markup. When an RDFa document includes
@profile [p.19] , each URI in the value is processed as follows:

- 51 -

9. RDFa ProfilesRDFa Core 1.1

1. If the URI is known to the parser then:
all prefix mappings are loaded into the local list of URI mappings [p.24] ;
all term mappings are loaded into the local term mappings [p.24] ;
any default vocabulary setting is used to update the default vocabulary [p.23] .

2. If the URI is not known to the parser, then attempt to retrieve the content of the URI. If the
retrieval fails, the referenced profile is considered to be not recognized - stop processing
any additional URIs, generate an error (see Processor Status [p.36]), and do not perform
any potential mapping updates.

When a profile is not retrievable, an RDFa Processor will not generate triples from the
element the profile is referenced from, nor from any of its children. Consequently, any
further processing of the triples would be effectively ignored.

3. Otherwise, parse the retrieved content (according to the processing rules for that document
type) and extract the triples into a collection associated with that URI. Note: These triples
must not be co-mingled with the triples being extracted from any other URI.

4. For every extracted triple that is the common subject of an rdfa:prefix and an
rdfa:uri predicate, create a mapping from the object literal of the rdfa:prefix
predicate to the object literal of the rdfa:uri predicate. Add or update this mapping in the
local list of URI mappings [p.24] after transforming the ’prefix’ component to lower-case.

5. For every extracted triple that is the common subject of an rdfa:term and an rdfa:uri
predicate, create a mapping from the object literal of the rdfa:term predicate to the object
literal of the rdfa:uri predicate. Add or update this mapping in the local term mappings
[p.24] .

6. For an extracted triple that has a predicate of rdfa:vocabulary, update the default
vocabulary [p.23] to be the object literal of the rdfa:vocabulary predicate.

When an RDFa Profile is defined using an RDF serialization, it must use the vocabulary terms
above to declare the components of the profile.

Once all the URIs in the @profile [p.19] value have been processed, continue with the normal
processing of the current element [p.31] .

If any conflict arises between two RDFa Profiles associated with URIs in the @profile [p.19]
value, the declaration from the RDFa Profile associated with the left-most URI takes
precedence.

It is possible that a referenced RDFa document will in turn reference other documents via
@profile [p.19] . Regardless of the depth to which such references might go, only the triples in
the top level document effect current processing.

Caching of the relevant triples retrieved via this mechanism is recommended. Embedding
definitions for well known, stable RDFa Profiles in the implementation is recommended.

The object literal for the rdfa:uri predicate must be an absolute URI. The object literal for the
rdfa:term predicate must match the production for term [p.28] . The object literal for the
rdfa:prefix predicate must match the production for prefix [p.20] . The object literal for the

- 52 -

RDFa Core 1.19. RDFa Profiles

rdfa:vocabulary predicate must be an absolute URI. If one of the objects is not a Literal,
does not match its associated production, if there is more than one rdfa:vocabulary
predicate, or if there are additional rdfa:uri or rdfa:term predicates sharing the same
subject, an RDFa Processor must not update the associated mapping.

A. CURIE Datatypes
In order to facilitate the use of CURIEs in markup languages, this specification defines some
additional datatypes in the XHTML datatype space
(http://www.w3.org/1999/xhtml/datatypes/). Markup languages that want to import
these definitions can find them in the "datatypes" file for their schema grammar:

DTD xhtml-datatypes.mod
XML Schema xhtml-datatypes.xsd

Specifically, the following datatypes are defined:

CURIE
A single curie [p.20]

CURIEs
A white space separated list of CURIEs

CURIEorURI
A CURIE [p.53] or a URI

CURIEorURIs
A white space separated list of CURIEorURI [p.53] s

SafeCURIE
A single safe_curie [p.20]

SafeCURIEorCURIEorURI
A single SafeCURIE [p.53] or CURIEorURI [p.53]

SafeCURIEorCURIEorURIs
A white space separated list of SafeCURIEorCURIEorURI [p.53] s.

TERM
A single term [p.28]

TERMorCURIEorAbsURI
A TERM [p.53] or a CURIEorURI [p.53]

TERMorCURIEorAbsURIs
A white space separated list of TERMorCURIEorAbsURI [p.53] s

A.1 XML Schema Definition

This section is non-normative.

The following informative XML Schema definition for these datatypes is included as an example:

- 53 -

A. CURIE DatatypesRDFa Core 1.1

http://www.w3.org/MarkUp/DTD/xhtml-datatypes-1.mod
http://www.w3.org/MarkUp/SCHEMA/xhtml-datatypes-1.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.w3.org/1999/xhtml/datatypes/"
 xmlns:xh11d="http://www.w3.org/1999/xhtml/datatypes/"
 targetNamespace="http://www.w3.org/1999/xhtml/datatypes/"
 elementFormDefault="qualified"
>
 <xs:simpleType name="CURIE">
 <xs:restriction base="xs:string">
 <xs:pattern value="(([\i-[:]][\c-[:]]*)?:)?.+" />
 <xs:minLength value="1"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="CURIEs">
 <xs:list itemType="xh11d:CURIE"/>
 </xs:simpleType>

 <xs:simpleType name="SafeCURIE">
 <xs:restriction base="xs:string">
 <xs:pattern value="\[(([\i-[:]][\c-[:]]*)?:)?.+\]" />
 <xs:minLength value="3"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="SafeCURIEs">
 <xs:list itemType="xh11d:SafeCURIE"/>
 </xs:simpleType>

 <xs:simpleType name="TERM">
 <xs:list itemType="xs:NCName"/>
 <xs:simpleType>

 <xs:simpleType name="CURIEorURI">
 <xs:union memberTypes="xh11d:CURIE xs:anyURI" />
 </xs:simpleType>

 <xs:simpleType name="CURIEorURIs">
 <xs:list itemType="xh11d:CURIEorURI"/>
 </xs:simpleType>

 <xs:simpleType name="SafeCURIEorCURIEorURI">
 <xs:union memberTypes="xh11d:SafeCURIE xh11d:CURIE xs:anyURI" />
 </xs:simpleType>

 <xs:simpleType name="SafeCURIEorCURIEorURIs">
 <xs:list itemType="xh11d:SafeCURIEorCURIEorURI"/>
 </xs:simpleType>

 <xs:simpleType name=’AbsURI’>
 <xs:restriction base=’xs:string’>
 <xs:pattern value="[\i-[:]][\c-[:]]+:.+" />
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="TERMorCURIEorAbsURI">

- 54 -

RDFa Core 1.1A.1 XML Schema Definition

 <xs:union memberTypes="xh11d:TERM xh11d:CURIE xh11d:AbsURI" />
 </xs:simpleType>

 <xs:simpleType name="TERMorCURIEorAbsURIs">
 <xs:list itemType="xh11d:SafeCURIEorCURIEorAbsURI"/>
 </xs:simpleType>
</xs:schema>

A.2 XML DTD Definition

This section is non-normative.

The following informative XML DTD definition for these datatypes is included as an example:

<!ENTITY % CURIE.datatype "CDATA" >
<!ENTITY % CURIEs.datatype "CDATA" >
<!ENTITY % CURIEorURI.datatype "CDATA" >
<!ENTITY % CURIEorURIs.datatype "CDATA" >
<!ENTITY % SafeCURIEorCURIEorURI.datatype "CDATA" >
<!ENTITY % SafeCURIEorCURIEorURIs.datatype "CDATA" >
<!ENTITY % TERMorCURIEorAbsURI.datatype "CDATA" >
<!ENTITY % TERMorCURIEorAbsURIs.datatype "CDATA" >

B. The RDFa Vocabulary for Term Assignments
The RDFa Vocabulary is used to modify RDFa processing behavior and to define the terms
usable in the processor graph [p.17] . Its URI is http://www.w3.org/ns/rdfa#.

The Vocabulary includes the following term definitions (shown here in Turtle [TURTLE [p.59]]
format):

@prefix dcterms: <http://purl.org/dc/terms/> .
@prefix dist: <http://www.w3.org/2007/08/pyRdfa/distiller#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfa: <http://www.w3.org/ns/rdfa#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xhv: <http://www.w3.org/1999/xhtml/vocab#> .
@prefix xml: <http://www.w3.org/XML/1998/namespace> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

rdfa:PrefixMapping a rdfs:Class ;
 dcterms:description "used in conjunction with the definition of prefixes as the domain of the rdfa:prefix property"@en ;
 rdfs:subClassOf rdfa:VocabularyMapping .

rdfa:TermMapping a rdfs:Class ;
 dcterms:description "used in conjunction with the definition of terms as the domain of the rdfa:term property"@en ;
 rdfs:subClassOf rdfa:VocabularyMapping .

rdfa:VocabularyMapping a rdfs:Class .

<http://www.w3.org/ns/rdfa#> a owl:Ontology ;
 dcterms:creator <http://www.ivan-herman.net/foaf#me> ;
 dcterms:date "2010-07-23"@en ;
 dcterms:description "This document describes the RDFa Vocabulary for Term and Prefix Assignment. The Vocabulary is used to modify RDFa1.1 processing behavior."@en ;
 dcterms:title "RDFa Vocabulary for Term and Prefix Assignment"@en ;
 rdfs:isDefinedBy <http://www.w3.org/TR/rdfa-core/> ;
 rdfs:seeAlso <http://www.w3.org/TR/rdfa-core/> ;
 owl:versionInfo "$Date: 2010/10/21 19:24:17 $"@en .

rdfa:prefix a rdf:Property, owl:DatatypeProperty, owl:FunctionalProperty ;
 dcterms:description "defines a prefix"@en ;
 rdfs:domain rdfa:PrefixMapping ;
 rdfs:range xsd:NMTOKEN .

rdfa:term a rdf:Property, owl:DatatypeProperty, owl:FunctionalProperty ;
 dcterms:description "defines a term"@en ;
 rdfs:domain rdfa:TermMapping ;
 rdfs:range xsd:NMTOKEN .

rdfa:uri a rdf:Property, owl:DatatypeProperty, owl:FunctionalProperty ;
 dcterms:description "defines a uri string to be used either with a term or a prefix definition"@en ;
 rdfs:domain rdfa:VocabularyMapping ;
 rdfs:range xsd:anyURI .

- 55 -

B. The RDFa Vocabulary for Term AssignmentsRDFa Core 1.1

rdfa:vocabulary a rdf:Property, owl:DatatypeProperty ;
 dcterms:description "defines a uri string to be used as a default vocabulary"@en ;
 rdfs:range xsd:anyURI .

<http://www.w3.org/ns/rdfa.html> xhv:stylesheet <http://www.w3.org/StyleSheets/TR/base.css> .

<http://www.ivan-herman.net/foaf#me> a foaf:Person ;
 rdfs:seeAlso <http://www.ivan-herman.net/foaf> ;
 foaf:mbox <mailto:ivan@w3.org> ;
 foaf:name "Ivan Herman"@en ;
 foaf:title "Semantic Web Activity Lead"@en ;
 foaf:workplaceHomepage <http://www.w3.org> .

 [a owl:AllDisjointClasses ;
 owl:members (rdfa:PrefixMapping rdfa:TermMapping)].

This vocabulary is also available in an separate file in Turtle format and in RDF/XML format.

These predicates can be used to ’pair’ URI strings and their usage in the form of a prefix and/or
a term as part of, for example, a blank node. An example can be as follows:

[] rdfa:uri "http://xmlns.com/foaf/0.1/name" ;
 rdfa:prefix "foaf" .

which defines a prefix for the foaf URI.

an RDFa version of the vocabulary should be provided - we still need to write it.

C. Changes
This section is non-normative.

C.1 Major differences with RDFa Syntax 1.0

This specification introduces a number of new features, and extends the behavior of some
features from the previous version. The following summary may be helpful to RDFa Processor
developers, but is not meant to be comprehensive.

Specific rules about XHTML have been moved into a companion specification:
[XHTML-RDFA [p.58]].
Prefix mappings can now be declared using @prefix [p.20] in addition to @xmlns [p.19] .
Prefix names are now required be be converted to lower-case when the mapping is defined.
Prefixes are checked in a case-insensitive manner during CURIE expansion.
You can now use an Absolute URI everywhere you could previously only use a CURIE
(e.g., in the value of @datatype [p.19]).
There is now a concept of a term [p.53] . This concept has replaced the concept of a
’reserved word’. It is possible now to use a ’term’ in most places where you could previously
only use a CURIE.
You can define a default prefix (via @vocab [p.19]) that will be used on non-prefixed
CURIEs that are not terms.
You can define collections of prefix mappings, terms, and a default vocabulary in an
external RDFa Profile document.
When a triple would include an object literal, and there is no explicit datatype attribute, the
object literal will now be a ’plain literal’. In version 1.0 it would have been an ’XMLLiteral’.

- 56 -

RDFa Core 1.1C. Changes

http://www.w3.org/ns/rdfa.ttl
http://www.w3.org/ns/rdfa.rdf

C.2 Major changes during development of version 1.1

2010-07-26: Added the ’vocabulary’ term to the RDFa Profile handling.

2010-02-25: Split into RDFa Core and XHTML+RDFa.

2010-01-01: Applied changes to start production of version 1.1. This includes the re-integration
of datatype CURIEorURI.

D. Acknowledgments
This section is non-normative.

At the time of publication, the members of the RDFa Working Group were:

Ben Adida, Creative Commons (Co-Chair)
Benjamin Adrian, German Research Center for Artificial Intelligence (DFKI) Gmbh
Mark Birbeck, webBackplane.com (Invited Expert)
Abhijit Galkward, Rochester Institute of Technology
Markus Gylling, DAISY Consortium
Ivan Herman, W3C
Toby Inkster (Invited Expert)
Shane McCarron, Applied Testing and Technology, Inc. (Invited Expert)
Knud MÃ¶ller (DERI Galway at the National University of Ireland)
John O’Donovan, British Broadcasting Corporation
Steven Pemberton, Centre for Mathematics and Computer Science (CWI)
Jeffrey Sonstein, Rochester Institute of Technology
Manu Sporny, Digital Bazaar (Co-Chair, Invited Expert)
Robert Weir, IBM Corporation

E. References

E.1 Normative references

[RDF-SYNTAX-GRAMMAR]
Dave Beckett. RDF/XML Syntax Specification (Revised). 10 February 2004. W3C
Recommendation. URL: http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997.
Internet RFC 2119. URL: http://www.ietf.org/rfc/rfc2119.txt

[RFC3987]
M. DÃ¼rst; M. Suignard. Internationalized Resource Identifiers (IRIs). January 2005.
Internet RFC 3987. URL: http://www.ietf.org/rfc/rfc3987.txt

- 57 -

D. AcknowledgmentsRDFa Core 1.1

http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc3987.txt
http://www.ietf.org/rfc/rfc3987.txt

[URI]
T. Berners-Lee; R. Fielding; L. Masinter. Uniform Resource Identifiers (URI): generic syntax.
January 2005. Internet RFC 3986. URL: http://www.ietf.org/rfc/rfc3986.txt

[XHTML-RDFA]
Shane McCarron; et. al. XHTML+RDFa 1.1. 3 August 2010. W3C Working Draft. URL:
http://www.w3.org/TR/WD-xhtml-rdfa-20100803

[XML-NAMES]
Richard Tobin; et al. Namespaces in XML 1.0 (Third Edition). 8 December 2009. W3C
Recommendation. URL: http://www.w3.org/TR/2009/REC-xml-names-20091208/

[XML10-4e]
C. M. Sperberg-McQueen; et al. Extensible Markup Language (XML) 1.0 (Fourth Edition).
16 August 2006. W3C Recommendation. URL:
http://www.w3.org/TR/2006/REC-xml-20060816/

[XMLSCHEMA-2]
Paul V. Biron; Ashok Malhotra. XML Schema Part 2: Datatypes Second Edition. 28 October
2004. W3C Recommendation. URL:
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

E.2 Informative references

[HTML401]
David Raggett; Ian Jacobs; Arnaud Le Hors. HTML 4.01 Specification. 24 December 1999.
W3C Recommendation. URL: http://www.w3.org/TR/1999/REC-html401-19991224

[JSON-LD]
Manu Sporny, et al. JSON-LD - Linked Data Expression in JSON 15 October 2010.
Unofficial Draft. URL: http://json-ld.org/spec/latest/

[MICROFORMATS]
Microformats. URL: http://microformats.org

[QNAMES]
N. Walsh. Using Qualified Names (QNames) as Identifiers in XML Content 17 March, 2004.
TAG Finding. URL: http://www.w3.org/2001/tag/doc/qnameids-2004-03-17

[RDF-CONCEPTS]
Graham Klyne; Jeremy J. Carroll. Resource Description Framework (RDF): Concepts and
Abstract Syntax. 10 February 2004. W3C Recommendation. URL:
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210

[RDF-PRIMER]
Frank Manola; Eric Miller. RDF Primer. 10 February 2004. W3C Recommendation. URL:
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/

[RDF-SYNTAX]
Ora Lassila; Ralph R. Swick. Resource Description Framework (RDF) Model and Syntax
Specification. 22 February 1999. W3C Recommendation. URL:
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222

[RDF-TESTCASES]
Jan Grant; Dave Beckett. RDF Test Cases. 10 February 2004. W3C Recommendation.
URL: http://www.w3.org/TR/2004/REC-rdf-testcases-20040210

- 58 -

RDFa Core 1.1E.2 Informative references

http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.w3.org/TR/2010/WD-xhtml-rdfa-20100803
http://www.w3.org/TR/2010/WD-xhtml-rdfa-20100803
http://www.w3.org/TR/2009/REC-xml-names-20091208/
http://www.w3.org/TR/2009/REC-xml-names-20091208/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/1999/REC-html401-19991224
http://www.w3.org/TR/1999/REC-html401-19991224
http://json-ld.org/spec/latest/
http://json-ld.org/spec/latest/
http://microformats.org/
http://microformats.org/
http://www.w3.org/2001/tag/doc/qnameids-2004-03-17
http://www.w3.org/2001/tag/doc/qnameids-2004-03-17
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222
http://www.w3.org/TR/2004/REC-rdf-testcases-20040210
http://www.w3.org/TR/2004/REC-rdf-testcases-20040210

[RDFA-PRIMER]
Mark Birbeck; Ben Adida. RDFa Primer. 14 October 2008. W3C Note. URL:
http://www.w3.org/TR/2008/NOTE-xhtml-rdfa-primer-20081014

[RDFA-SYNTAX]
Ben Adida, et al. RDFa in XHTML: Syntax and Processing. 14 October 2008. W3C
Recommendation. URL: http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014

[RELAXNG-SCHEMA]
Information technology -- Document Schema Definition Language (DSDL) -- Part 2:
Regular-grammar-based validation -- RELAX NG. ISO/IEC 19757-2:2008. URI:
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html

[SAX]
D. Megginson, et al. SAX: The Simple API for XML. May 1998. URL:
http://www.megginson.com/downloads/SAX/

[TURTLE]
David Beckett, Tim Berners-Lee. Turtle: Terse RDF Triple Language January 2008. W3C
Team Submission. URL: http://www.w3.org/TeamSubmission/turtle/

[XHTML11]
Murray Altheim; Shane McCarron. XHTMLâ¢ 1.1 - Module-based XHTML. 31 May 2001.
W3C Recommendation. URL: http://www.w3.org/TR/2001/REC-xhtml11-20010531

[XML-EXC-C14N]
Donald E. Eastlake 3rd; Joseph Reagle; John Boyer. Exclusive XML Canonicalization
Version 1.0. 18 July 2002. W3C Recommendation. URL:
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/

[XML10]
C. M. Sperberg-McQueen; et al. Extensible Markup Language (XML) 1.0 (Fifth Edition). 26
November 2008. W3C Recommendation. URL:
http://www.w3.org/TR/2008/REC-xml-20081126/

- 59 -

E.2 Informative referencesRDFa Core 1.1

http://www.w3.org/TR/2008/NOTE-xhtml-rdfa-primer-20081014
http://www.w3.org/TR/2008/NOTE-xhtml-rdfa-primer-20081014
http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014
http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
http://www.megginson.com/downloads/SAX/
http://www.megginson.com/downloads/SAX/
http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/TR/2001/REC-xhtml11-20010531
http://www.w3.org/TR/2001/REC-xhtml11-20010531
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2008/REC-xml-20081126/

	RDFa Core 1.1
	Syntax and processing rules for embedding RDF through attributes
	W3C Working Draft 26 October 2010
	Abstract
	How to Read this Document

	Status of This Document
	Table of Contents
	1. Motivation
	2. Syntax Overview
	2.1 The RDFa Attributes
	2.2 Examples

	3. RDF Terminology
	3.1 Statements
	3.2 Triples
	3.3 URI references
	3.4 Plain literals
	3.5 Typed literals
	3.6 Turtle
	3.7 Graphs
	3.8 Compact URIs
	3.9 Markup Fragments and RDFa
	3.10 A description of RDFa in RDF terms

	4. Conformance
	4.1 RDFa Processor Conformance
	4.2 RDFa Host Language Conformance

	5. Attributes and Syntax
	5.1 White space within attribute values

	6. CURIE Syntax Definition
	6.1 Why CURIEs and not QNames?

	7. Processing Model
	7.1 Overview
	7.2 Evaluation Context
	7.3 Chaining
	7.4 CURIE and URI Processing
	7.4.1 Scoping of Prefix Mappings
	7.4.2 General Use of CURIEs in Attributes
	7.4.3 General Use of Terms in Attributes
	7.4.4 Use of CURIEs in Specific Attributes
	7.4.5 Referencing Blank Nodes

	7.5 Sequence
	7.6 Processor Status
	7.6.1 Accessing the Processor Graph

	8. RDFa Processing in detail
	8.1 Changing the evaluation context
	8.1.1 Setting the current subject
	8.1.1.1 The current document
	8.1.1.2 Using @about
	8.1.1.3 Using @src
	8.1.1.4 Creating a new item with @typeof
	8.1.1.5 Determining the subject with neither @about nor @typeof
	8.1.1.5.1 Inheriting subject from @resource
	8.1.1.5.2 Inheriting an anonymous subject

	8.2 Completing 'incomplete triples'
	8.3 Object resolution
	8.3.1 Literal object resolution
	8.3.1.1 Plain Literals
	8.3.1.1.1 Language Tags

	8.3.1.2 Typed literals
	8.3.1.3 XML Literals

	8.3.2 URI object resolution
	8.3.2.1 Using @resource to set the object
	8.3.2.2 Using @href
	8.3.2.3 Incomplete triples

	9. RDFa Profiles
	A. CURIE Datatypes
	A.1 XML Schema Definition
	A.2 XML DTD Definition

	B. The RDFa Vocabulary for Term Assignments
	C. Changes
	C.1 Major differences with RDFa Syntax 1.0
	C.2 Major changes during development of version 1.1

	D. Acknowledgments
	E. References
	E.1 Normative references
	E.2 Informative references

