
Installable Unit Deployment Descriptor Version 1.0

 Page 1 of 219

Installable Unit Deployment Descriptor

Specification

Incorporating

Solution Module Definition
Container Installable Unit

Smallest Installable Unit

Version 1.0
June 10, 2004

Installable Unit Deployment Descriptor Version 1.0

 Page 2 of 219

Copyright ©2004 InstallShield Software Corporation, International Business
Machines, Inc., Novell, Inc., and Zero G Software, Inc.. This document is available
under the W3C Document License. See the W3C Intellectual Rights Notices and
Disclaimers for additional information.

Installable Unit Deployment Descriptor Version 1.0

 Page 3 of 219

Table Of Contents

1 Document Control .. 8

1.1 Contributing Authors.. 8
2 Introduction... 9

2.1 Purpose ... 9
2.2 Scope .. 10
2.3 Audience... 10
2.4 Notational Convention.. 10

3 Installable Unit Deployment Descriptor Overview .. 11
3.1 Deployment architectural pattern ... 12
3.2 Roles... 14
3.3 XML schema files .. 14
3.4 UML representation of the RootIU type... 15

3.4.1 IUorFixDefinition.. 15
3.4.2 Variables.. 15
3.4.3 ConditionedIU... 17
3.4.4 RootIU.rootInfo... 17
3.4.5 RootIU.features ... 17
3.4.6 RootIU.groups ... 17
3.4.7 RootIU.topology.. 17
3.4.8 RootIU.customCheckDefinitions .. 18
3.4.9 RootIU.requisites... 18
3.4.10 RootIU.files ... 18

4 Software Change Management... 19
4.1 Hosting Environments .. 21
4.2 Software Life-Cycle Operations... 21

4.2.1 Create .. 22
4.2.2 Update ... 22
4.2.3 InitialConfig .. 23
4.2.4 Migrate .. 23
4.2.5 Configure... 23
4.2.6 VerifyIU .. 24
4.2.7 VerifyConfig ... 24

Installable Unit Deployment Descriptor Version 1.0

 Page 4 of 219

4.2.8 Repair .. 24
4.2.9 Delete .. 24
4.2.10 Optional operations: Undo and Commit ... 25

4.3 The configuration process .. 25
5 Installable Unit Deployment Descriptor ... 27

5.1 Installable Unit Identity.. 28
5.1.1 Rules for assigning the UUID ... 30
5.1.2 IU Identity Example .. 31

5.2 Temporary Fix Identity... 31
5.3 Root Installable Unit... 33
5.4 Features and Installation Groups .. 36

5.4.1 Feature... 38
5.4.2 Referenced Features .. 40
5.4.3 Scoping of Features ... 41
5.4.4 Installation Groups .. 41
5.4.5 Scoping of Installation Groups.. 42

5.5 Root IU Information ... 44
5.6 Target Topology ... 45

5.6.1 Target .. 45
5.6.2 Scoping of Targets .. 49
5.6.3 Target Maps... 49
5.6.4 Deployed Target .. 50

5.7 Bundled requisite IUs ... 52
5.8 Files .. 53

6 Installable Units .. 55
6.1 Solution Module ... 56
6.2 Referenced IU... 58

6.2.1 Parameter Maps... 60
6.3 Federated IU ... 60
6.4 Container Installable Unit... 62

7 Dependencies.. 64
7.1 Checks .. 64

7.1.1 Scoping of Checks... 66
7.2 Requirements.. 67

7.2.1 Uses relationships.. 69

Installable Unit Deployment Descriptor Version 1.0

 Page 5 of 219

7.2.2 Example – Install requirements ... 70
7.2.3 Example – Adding Requirements for Configuration... 72
7.2.4 Example – Declaring non exclusive alternatives... 72
7.2.5 Requirements in referenced installable units... 74

7.3 Built-in checks.. 74
7.3.1 Capacity check .. 74
7.3.2 Consumption check ... 75
7.3.3 Property check... 77
7.3.4 Version check.. 78
7.3.5 Software check .. 79
7.3.6 Installable Unit Check ... 83
7.3.7 Relationship Check ... 85
7.3.8 Custom Check ... 87

8 Variables, Expressions and Conditions .. 91
8.1 Variables... 91

8.1.1 Parameter... 92
8.1.2 Derived Variable ... 93
8.1.3 Property Query .. 94
8.1.4 IU Discriminant Query.. 95
8.1.5 Resolved Target List ... 96
8.1.6 Inherited Variable.. 97
8.1.7 Scoping rules for variables .. 97

8.2 Variable Expressions .. 98
8.3 Conditional Expressions... 98

8.3.1 Example... 99
8.4 Evaluation of variables, checks and conditions.. 99

9 Software Smallest Installable Unit ... 100
9.1 Installable Unit Definition.. 101

9.1.1 IU Constraints Example .. 104
9.1.2 Obsoleted IUs.. 104
9.1.3 Superseded Fixes... 104

9.2 Temporary Fix Definition... 104
9.2.1 Fix Dependencies .. 105
9.2.2 Fix Definition Example ... 106

9.3 Unit - Artifact Sets.. 107

Installable Unit Deployment Descriptor Version 1.0

 Page 6 of 219

9.4 Install Artifacts and IU Lifecycle Operations... 110
9.5 Artifact.. 113

9.5.1 Declarative Hosting Environment Restart... 114
10 Configuration Unit.. 116

10.1 Configuration Artifact Set .. 117
10.2 Configuration Artifacts and IU life cycle ... 118

11 Temporary Fixes and Updates .. 119
11.1 Full update use for Create and Update ... 124
11.2 Requirements checking on updates .. 125

11.2.1 Target instances selected for the update.. 126
11.2.2 Reference to variables in the base IU descriptor ... 126
11.2.3 Updating dependencies.. 126
11.2.4 Requirements with multiple alternatives ... 127

11.3 Update to an instance with non superseded fixes ... 129
11.4 Bundling updates to a federated IU .. 129
11.5 Configuration units and the update process.. 130

12 Evaluation Order... 131
12.1 Variable evaluation... 131
12.2 Target evaluation .. 131
12.3 IU dependency evaluation .. 131
12.4 Order of installation.. 132
12.5 IU lifecycle operations and prerequisites ... 133

12.5.1 Multiple updates with pre-requisites ... 135
12.5.2 Updates to an IU federated by an aggregate.. 137

13 Installable Unit Signatures.. 139
13.1 File Signatures .. 140

13.1.1 File Signatures Example.. 141
13.2 Windows Registry Signatures .. 142

13.2.1 Windows Registry signatures examples.. 143
13.3 Os Registry Signatures ... 144

13.3.1 Example of generic OS Registry signature ... 145
13.4 Signature definitions in a temporary fix ... 145

14 Action Definition .. 146
14.1 Variables... 147
14.2 Built-In Variables ... 148

Installable Unit Deployment Descriptor Version 1.0

 Page 7 of 219

14.2.1 Example... 148
14.3 Required Action Set ... 149
14.4 UnitActionGroup.. 150

14.4.1 BaseAction .. 150
14.4.2 Concrete Action Set Example ... 151
14.4.3 Artifact Example ... 152

15 Resource Properties Definition... 154
16 Multi-Artifact.. 156
17 Display Elements .. 159
18 Root IU Descriptor Validation.. 160
19 Version comparison .. 162
20 References... 163
A. Solution Module IUDD example.. 164
B. Example of a container installable unit... 168
C. Example of features and installation groups... 171
D. Example of update installable unit.. 173
E. iudd.xsd... 176
F. siu.xsd ... 187
G. base.xsd... 194
H. version.xsd .. 205
I. relationships.xsd ... 206
J. resourceTypes.xsd .. 207
K. signatures.xsd.. 211
L. action.xsd .. 214
M. config.xsd ... 217
N. multiartifact.xsd .. 218

Installable Unit Deployment Descriptor Version 1.0

 Page 8 of 219

1 Document Control

1.1 Contributing Authors

The owner of this document is:

Marcello Vitaletti Autonomic Computing
Architecture

marcello.vitaletti@it.ibm.com

The authors of this document are:

Christine Draper IBM Autonomic
Computing
Architecture

cdraper@uk.ibm.com

Marcello Vitaletti IBM Autonomic
Computing
Architecture

marcello.vitaletti@it.ibm.com

Randy George IBM Tivoli
Architecture

randyg@us.ibm.com

Julia McCarthy IBM SWG
Componentization
Architecture

julia@us.ibm.com

Devin Poolman Zero G Software devin.poolman@zerog.com

Tim Miller Zero G Software tim.miller@ZeroG.com

Art Middlekauff InstallShield Software
Corp.

artm@installshield.com

Carlos Montero-Luque Novell carlos@novell.com

Installable Unit Deployment Descriptor Version 1.0

 Page 9 of 219

2 Introduction

The purpose of this specification is to define the schema of an XML document describing
the characteristics of an installable unit (IU) of software that are relevant for its
deployment, configuration and maintenance. The XML schema is referred to as the
Installable Unit Deployment Descriptor or IUDD schema.

IUDDs are intended to describe the aggregation of installable units at all levels of the
software stack, including middleware products aggregated together into a platform; and
user solutions composed of application-level artifacts which run on such a platform. The
XML schema is flexible enough to support the definition of atomic units of software
(Smallest Installable Units) as well as complex solutions.

A solution is any combination of products, components or application artifacts addressing
a particular user requirement. This includes what would traditionally be referred to as a
product offering (e.g. a database product), as well as a solution offering (e.g. a business
integration platform comprising multiple integrated products), or a user application (e.g. a
set of application artifacts like J2EE applications and database definitions). All the
software constituents of a solution can be represented by a single IUDD as a hierarchy of
installable unit aggregates. The top-level aggregation is the root installable unit. In
addition to the installable units that comprise a solution, the IUDD also describes the
logical topology of targets onto which the solution can be deployed.

2.1 Purpose

The IUDD provides a unique identification of each installable unit and it supports a
declarative specification of dependencies that each IU may have on its hosting
environment and on other units of software. This information can be leveraged by
common tools and services to reduce the human interactions required for

• the integration of multiple units of software into an aggregated solution;

• building packages that ensure a consistent deployment experience;

• checking that dependencies are satisfied before creating or updating a
software instance;

• rapid deployment and configuration with reduced costs;

• checking the integrity of relationships that an IU instance is expected to
maintain with other IU instances during its life cycle.

Installable Unit Deployment Descriptor Version 1.0

 Page 10 of 219

2.2 Scope

This specification defines

• Smallest Installable Unit (SIU) – the elementary unit of software;

• Configuration Unit (CU) – the elementary unit of configuration;

• Container Installable Unit (CIU) – an aggregated IU that is deployed
entirely into a single target hosting environment;

• Solution Module (SM) – an aggregated IU spanning multiple targets;

• Root Installable Unit – the top-level aggregation within an IUDD.

This document does not define how the contents of a root installable unit, including
the descriptor, are physically packaged together. This is defined in a separate
specification [IUPACK].

2.3 Audience

This document is intended as a technical specification for people who require an in-
depth understanding of the installable unit deployment descriptor. This includes
developers of the IUDDs themselves, and developers of the associated tooling and
applications for constructing and deploying IUDDs. This document is not intended as
an introduction to the concepts of solution deployment or as a tutorial for developers.

2.4 Notational Convention

The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,”
“SHOULD,” “SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL”
are to be interpreted as described in [RFC2119].

Installable Unit Deployment Descriptor Version 1.0

 Page 11 of 219

3 Installable Unit Deployment Descriptor Overview

The installable unit deployment descriptor (IUDD) is a means for describing the
components of a solution, and for providing instructions on how to deploy and configure
that solution. The IUDD is a reusable asset that can be deployed onto many different
physical topologies, and can be aggregated into larger solutions. It establishes knowledge
of the relationships and dependencies between components of the solution, which can
then be used for its lifecycle management.

Installable Units (IU) are the key abstraction governing the structure of the IUDD.
Within the IUDD, installable units are aggregated in a tree-like hierarchy whose leaf
nodes are Smallest Installable Units (SIU) and Configuration Units (CU).

An SIU is limited in scope to describing a unit of software that is targeted to and is
entirely contained by the single hosting environment where it is deployed. Analogously, a
CU defines the configuration applying to a single resource (target) in the topology.

Container Installable Units (CIU) aggregate SIUs, CUs and other CIUs, again for
deployment onto a single hosting environment.

Solution Modules (SM) aggregate SIUs, CUs, CIUs and other solution modules. IUs
aggregated in a solution module are typically deployed into multiple hosting
environments, possibly located on multiple physical computers.

The IUDD defines a single-rooted installable unit – the root IU – that aggregates one or
more installable units of the above types as its base content and may define one or more
selectable IUs (features). The root IU represents a “unit of manufacture”. The following
elements of information are specifically associated to the root IU:

• Root IU information such as schema version and build date;

• Target topology;

• Features (definitions of selectable IUs within the root IU aggregate);

• Installation Groups (pre-defined groups of feature selections);

• Custom Checks (definitions of custom action code referenced by checks);

• File definitions (these are used to link references to packaged files that are made
in various IUDD elements with the files physically bundled in a package and
described in a separate package media descriptor; see [IUPACK]).

Other key elements of a RootIU that are also part of any other IU definition are:

• Identity of the whole aggregated IU, and

• Variables.

Installable Unit Deployment Descriptor Version 1.0

 Page 12 of 219

Figure 1 shows the structure of the IUDD, effectively the structure of the associated root
IU definition.

Contents

File definitions

Root IU Definition

Root IU

SM/CIU/SIU/CU
Fixes

Topology
Installation Groups

Root IU Info

Features

Figure 1: Structure of the root IU definition

Information in the IUDD is independent from the package format, which is covered by a
separate specification [IUPACK]. The latter describes how to construct a package
including the IUDD and all the other files that may need to be accessed in order to deploy
the root IU.

The independence of the IUDD and packaging specifications allows an IU to be
composed flexibly, and to make packaging decisions independently from the logical
definition of the installable units.

3.1 Deployment architectural pattern

Figure 2 shows the fundamental architectural pattern for solution deployment. An
installable unit is the fundamental building block or component from which products
or solutions are composed. An installable unit package consists of a descriptor, which
describes the content of the installable unit, and one or more artifacts that are to be
installed. The installable unit is installed into a hosting environment, which is a
container that can accept the artifacts in the installable unit.

This architectural pattern is reusable at all levels of the software stack, from the
operating system, through the middleware, up to application artifacts such as EJBs and
database tables.

Installable Unit Deployment Descriptor Version 1.0

 Page 13 of 219

RDBMSCreate DB TableD

J2EEEJBD

Operating
System

D

HardwareOperating SystemD

In general, things that gets installed or
created can fit into the “IU – HE” design
pattern.

A “package” structure
like a JAR file that
includes a descriptor and
some collection of files.

A descriptor.
Describes the
content of the
installable unit.

Hosting
Environment.
Container that
can accept an
artifact.

An artifact
that can be
installed.

ADInstallable
Unit (IU)

Software Product

Figure 2: Installable Unit/Hosting Environment design pattern

Figure 3 describes the installable unit types introduced in section 11.

AD
Smallest
Installable
Unit

This installable unit
contains one,
atomic artifact.

IU IU IUDContainer
Installable
Unit

This IU aggregates a
set of IUs for a
particular container
type and instance.

IU IU IUD

AD

AD

Solution
Module
Installable
Unit

D
An IU that contains
other IUs (SIUs, CIUs
or other solution
modules) for many
different containers.

Figure 3: Types of installable unit

Installable Unit Deployment Descriptor Version 1.0

 Page 14 of 219

3.2 Roles

The overall process for developing and deploying a solution is illustrated in Figure 4.
A solution is developed by application developers and/or product developers; it is then
packaged as one or more root installable units, at which point the requirements on the
target topology is defined; and distributed to deployers. The deployer makes
installation-specific decisions about how the installable unit is to be configured, and
the solution depoyment tooling assists in mapping the logical target topology defined
in the IUDD onto the physical topology. The solution components (installable units)
are then distributed and installed.

Tooling

Deploy

Solution
Artifacts

Software development

Solution deployment
Solution integration

Installable
Units

Aggregate,
Refactor

Publish

Solution Manager

Solution Deployer
Solution Integrator

Application
Developers, etc

Tooling

Test Environment

Deploy

Solution Tester

Solution
Modules

Product Developers

Product Install
Packages

Solution
Knowledge

Figure 4: Solution development, integration test and deployment

3.3 XML schema files

The IUDD schema is implemented by eight schema files. Types defined in each file
are identified by a specific prefix, as indicated in the following:

• iudd.xsd (prefix: iudd) – See Appendix E.
This is the main schema file. rootIU is the single global element defined in
iudd.xsd. This element defines the whole content of an IUDD XML
document. This file contains definitions for the elements of a root IU and for
the installable unit aggregates.

• siu.xsd (prefix: siu) – See Appendix F.
This file contains definitions of the SIU and CU types

Installable Unit Deployment Descriptor Version 1.0

 Page 15 of 219

• base.xsd (prefix: base) – See Appendix G.
This file contains definitions of basic types, like identity, variables and check
types, as well as types that are re-used by several derived types.

• version.xsd (prefix: vsn) – See Appendix H.
This file defines normalized string formats for version information.

• iudd.relationships (prefix: rel) – See Appendix I.
This file contains an enumeration of relationships defined between resources.

• resourceTypes.xsd (prefix: rtype) – See Appendix J.
This file contains enumerations of resource types.

• signatures.xsd (prefix: sigt) – See Appendix K.
This file contains types defining signatures associated to an IU.

Artifacts associated to an installable unit (see Section 3.1 above) also have an
associated XML descriptor. However, artifacts are referenced from within the IUDD
through an identifier of the corresponding file. Since they are not defined inline within
the IUDD, the XML schema for artifacts are independent from the IUDD schema files.
See Section 14 and Section 15 for a proposed artifact schema.

3.4 UML representation of the RootIU type

The class diagram in the following page illustrates the composition relationships of the
RootIU class with other types defined in the IUDD schema. The following sections
provide an overview of types represented in the diagram. This provides an
introduction to the detailed XML schema definitions of those types that are described
later in this document.

3.4.1 IUorFixDefinition

IUorFixDefinition is the type providing identity information for the root IU.
Different elements of this type are applicable depending on the installable unit type
(base IU, full or incremental update and temporary fix).

3.4.2 Variables

Variables is an aggregate containing the variable definitions associated with the
root IU.

Installable Unit Deployment Descriptor Version 1.0

 Page 16 of 219

RootIU

+ «XSDattribute» targetRef : IDREF
+ «XSDattribute» language_bundle : token = smd_bundle
+ «XSDattribute» Name : ID

RootIU.instanceIdentity
Constraints

+ constraint : IdentityConstraint

+ instanceIdentityConstraints
0..1

RootIU.customCheckDefinitions

+ customCheckDefinitions*

RootIU.requisites

+ requisites 0..1

RootIU.files

+ files1

RootIU.groups

+ default : token

+ groups0..1

RootIU.topology
+ topology

1

RootIU.features

+ features 0..1

RootIU.rootInfo

+ schemaVersion : VersionString
+ build : nonNegativeInteger
+ size : integer
+ bigIcon : RootIU.rootInfo.bigIcon
+ smallIcon : RootIU.rootInfo.smallIcon

+ rootInfo

1

«XSDgroup»
Variables

1

«XSDgroup»
IUorFixDefinition

+ supersededFixes : ListOfNCNames

1

ConditionedIU

+ «XSDattribute» condition : VariableExpression
+ «XSDattribute» sequenceNumber : nonNegativeInteger
+ «XSDattribute» Name : ID

+ installableUnit

0..*
- selectableContent

0..*

Feature

+ «XSDattribute» featureID : ID
+ «XSDattribute» required : boolean = false
+ «XSDattribute» type : string

+ feature 1..*

«enumeration»
type

Offering
Assembly
CommonComponent

Target

+ «XSDattribute» id : ID
+ «XSDattribute» type : AnyResourceType

+ target

1..*

DeployedTarget

+ «XSDattribute» id : ID
+ «XSDattribute» type : AnyResourceType

+ deployedTarget
*

InstallationGroup

+ groupName : token

+ group1..*

ReferencedIU

+ «XSDattribute» Name : ID

+ referencedIU 1..*

File

+ «XSDattribute» id : ID
+ «XSDattribute» compression : boolean = true
+ «XSDattribute» charEncoding : CharacterEncoding
+ pathname : RelativePath
+ length : integer
+ checksum : CheckSum

+ file1..*

Installable Unit Deployment Descriptor Version 1.0

 Page 17 of 219

3.4.3 ConditionedIU

ConditionedIU is the generic type describing any contained IU defined within the
root IU. Two compositions of this type are defined by a root IU: one is for the base
content (installableUnit) while the other is for features (selectableContent).

IUs that can appear in an IU aggregate have an associated condition. The condition
is a boolean variable expression. When the condition is false, the IU is not selected
for install. IUs defined within the aggregate may have siblings. A sequence
number may be associated to the IU to specify the order in which the IU should be
processed with respect to its siblings.

3.4.4 RootIU.rootInfo

The rootInfo element defines characteristics of the root IU instance, such as the
schema version on which it is based and the size of all files associated to artifacts
defined in this root IU.

3.4.5 RootIU.features

A root IU may define zero or more features. Either each feature represents a top-
level IUs defined inline within the RootIU or it is a reference to a feature in a
referenced, separately packaged IU. In both cases, the IU referred to by the feature
definition MUST be defined within the root IU selectable content composite.

3.4.6 RootIU.groups

The root IU may define zero or more groups of features (installation groups). Each
group represents a combination of installable units that could be chosen for a given
configuration or role, e.g. minimal versus typical; administrator versus developer
versus client.

3.4.7 RootIU.topology

The root IU topology is a composite of one or more target definitions. A target can
be a hosting environment onto which one or more IUs are to be deployed, or it can
be a generic resource that is needed for the proper functioning of the solution.
Ordinary targets pre-exist the solution deployment. Deployed targets are defined in
the topology to represent resources that are created by instantiating an installable
unit.

Installable Unit Deployment Descriptor Version 1.0

 Page 18 of 219

3.4.8 RootIU.customCheckDefinitions

The customCheckDefinitions element includes definitions of check artifacts. Each
artifact is a descriptor of actions that need to be performed on a target to establish if
the latter satisfies some given requirements. Some of the actions defined in a check
artifact may specify the execution of custom code. Multiple checks defined in
different IUs may need to reuse the same custom check artifact. For this reason, the
identification of check artifacts is factored out in the root IU.

3.4.9 RootIU.requisites

In addition to IUs that are part of the aggregate, the root IU may define requisite
IUs, i.e. bundled packaged IUs, which may be installed on a target to satisfy a
software requirement.

3.4.10 RootIU.files

The files element of the root IU is a composite of File definitions. Each File
definition includes a file identifier. Any element within a root IU that is associated
to a physical file declares that association by means of a reference to the
corresponding file identifier. Examples of elements associated to a physical file are
Referenced IUs and bundled requisite IUs. Actions specified within install artifacts
(see Section 9.4) may also contain references to physical files that need to be
bundled with the root IU. These files need to be defined in the files element.

Installable Unit Deployment Descriptor Version 1.0

 Page 19 of 219

4 Software Change Management

The following data-flow diagram provides a model for the process involved in a software
change. This model is provided as an illustrative example and alternative processes MAY
be supported by an implementation of an install runtime. The process is a sequence of
five logical activities: Environment Checks, Input, Dependency Check, Change and
Register. These activities interact with the target hosting environment, and the installable
unit database. The hosting environment (e.g. a configured operating system image) is the
actual destination of the software being installed. The installable unit database is the
repository holding information about the installable unit configuration for a set of hosting
environments within a given scope (for example those on a single machine, or those
within a complete administrative domain). The user provides input, in this process, either
interactively or via a response file, and that input drives the activity of a software installer
program.

Environ
Checks Input ChangeReqts

Checks Register

Hosting
Environment IU Database

User Input/
Response File

IU
Descriptor

Artifact
Descriptor Files

Files

Artifact

Installable Unit

Figure 5: Model of the software change management process

The rectangles at the bottom of Figure 5 represent entities defined in this specification:

Installable Unit Deployment Descriptor Version 1.0

 Page 20 of 219

The rectangle on the left represents the IU descriptor, conforming to the IUDD XML
descriptor defined by this specification.

The rectangles on the right side represent artifacts associated to an SIU or to a CU. An
SIU or CU may define multiple artifacts, each one associated to a different type of
change (operation). Each artifact includes one artifact descriptor defining actions – such
as the ones for creating or removing files on an operating system environment. Action
definitions in the artifact descriptor are interpreted on the IU’s hosting environment to
implement the change, and may reference files that need to be available when the actions
are performed.

The following list provides a description of the five logical activities illustrated in
Figure 5:

• Environment Checks.

Gather information about the current environment (e.g. the presence of installed
software on the target system). This activity generally executes before entering
into the interactive stage of an attended installation or other change management
operation, because the information may be used by an installer to determine the
additional input that the user should provide during an interactive install. The
environment checks should not be affected by user input: any variable contained
in the specification of a check, if any, should have a well-defined initial value.

• Input.

Obtain replacement values for parameters defined in a package, either through
interactive user input or from a response file.

• Requirements Checks.

Ensure that all requirements stated in the IU descriptor for a given type of change
are satisfied before starting the change.

• Change.

Perform the requested change operation on the installable unit, such as Create,
Configure or Delete. The full list of change management operations, and the
corresponding states of the installable unit, are described in section 4.2.

• Register.

Persist information about the installable unit. For a Create operation, this
information may include the identity of the newly created IU instance, its target,
its relationships to other installable units, and the values of variables used in its
installation.

Installable Unit Deployment Descriptor Version 1.0

 Page 21 of 219

4.1 Hosting Environments

Software deployment has been traditionally designed and implemented as a process by
which a software package (artifact) is installed on the running operating system image
on one or more physical computers. In general, deployment of a software component
(e.g. a database client) on one target needs to be coordinated with deployment of a
different software component (e.g. a database server) onto another target.

“Hosting Environment” is a term used to denote the target of a software component
with specific characteristics. Therefore, the term “OS hosting environment” is used to
denote the hosting environment of traditional software products that are installed on an
operating system, while the term “J2EE hosting environment” is used to denote a
J2EE application server hosting J2EE applications. Other hosting environment types
may be defined, such as RDBMS databases, messaging systems, and other middle-
ware.

4.2 Software Life-Cycle Operations

The following state diagram applies to an instance of any installable unit (SIU or
aggregate). During its life-cycle an IU instance makes state transitions as a
consequence of Change Management (CM) operations being applied to it. A CM
operation MAY require an artifact specifying the actions to be executed on the hosting
environment.

Created

UsableUpdated

Create

Update

Migrate

InitialConfig

VerifyIU

Delete Delete
Delete

VerifyIU

VerifyIU

Figure 6: State diagram of an installable unit instance.

Installable Unit Deployment Descriptor Version 1.0

 Page 22 of 219

Error states that result from errors encountered when performing any of the indicated
operations are not covered in this specification, and are not shown in the above
diagram.

The following sections 4.2.1 to 4.2.10 describe the operations that create an IU
instance, apply updates and configuration to that instance and delete the instance when
it is no longer needed. The descriptions focus on the meaning of the operation for an
SIU. Applying updates to an IU aggregate is discussed in Section 11. Ordering of
install, applying to both Create and Update, is defined in Section 12.

4.2.1 Create

The Create operation creates a new instance of an SIU. The Install artifact
associated to the SIU, see Section 9.4, defines the actions to be executed on the
hosting environment to instantiate the SIU.

The newly created IU instance transitions directly to the Usable state if no
InitialConfig artifact is specified and there are no sibling configuration units
defined in the same aggregate. Otherwise, the instance enters the Created state and
an InitialConfig operation is needed to bring the instance to the Usable state.

On some hosting environments, the operation MAY be used to overwrite an
existing instance of the SIU. The end result SHOULD be the same that would be
obtained by performing the Create operation after applying the Delete operation to
the existing instance.

An SIU may define a new base, an IU update or a temporary fix. An update can be
full, in which case it is possible to use if for a fresh install; or incremental, in which
case it must be applied to an existing instance. The Create operation can only be
performed for an SIU defining a new base or a full update. An SIU defining a
temporary fix or an incremental update can only be applied to an existing instance
using the Update operation.

4.2.2 Update

The Update operation updates an existing instance. The SIU defining an update or
temporary fix contains a declaration of the version range of a base IU instance onto
which it can be applied (update base). The Install artifact associated to the SIU, see
Section 9.4, defines the actions to be executed on the hosting environment to
update the base instance.

After the update, the version of the updated instance is changed to reflect the
version specified by the SIU update.

The updated IU instance transitions directly to the Usable state if no Migrate
artifact is specified and there are no sibling configuration units defined in the same
aggregate. Otherwise, the instance enters the Updated state and the Migrate
operation is needed to bring the instance to the Usable state.

Installable Unit Deployment Descriptor Version 1.0

 Page 23 of 219

The update may be applied in undo-able mode. In this case, any resources (e.g.
files) associated to the instance being updated that are being replaced or modified
need to be saved, in order to support the roll-back of the update.

SIU updates and fixes may supersede fixes that are already applied to the instance
being updated.

4.2.3 InitialConfig

The InitialConfig operation applies the initial configuration to an instance of the
installable unit that is in the Created state, causing the transition to the Usable state.
The operation can only be performed for an SIU defining a new base or a full
update. The operation CANNOT be performed for an SIU defining a temporary fix
or an incremental update.

The InitConfig artifact associated with the SIU, see Section 9.4, defines actions to
be executed on the hosting environment to make a created instance usable. This
artifact implements the non repeatable part of the initial configuration.

Sibling configuration units MAY be defined in the same IU aggregate to implement
the repeatable part of the initial configuration. These configuration units are
applied at the end of the InitialConfig operation, after the InitConfig artifacts have
been processed for all SIUs in the whole root IU. See Section 4.3.

4.2.4 Migrate

The Migrate operation applies configuration to an installable unit instance that is in
the Updated state, causing the transition to the Usable state. The operation can
only be performed for an SIU defining an update (full or incremental). The
operation CANNOT be performed for a fix.

The Migrate artifact associated with the SIU, see Section 9.4, defines actions to be
executed on the hosting environment to make an updated instance usable. Actions
in the artifact set the configuration by using existing installable unit instance data:
the actions may implement the migration of configuration data used in the previous
version within the instance being superseded. The Migrate artifact implements the
non repeatable part of the configuration process.

Sibling configuration units MAY be defined in the same IU aggregate to capture
the repeatable part of the configuration process. These configuration units are
applied at the end of the Migrate operation, after the Migrate artifacts have been
processed for all SIUs in the whole root IU. See Section 4.3.

4.2.5 Configure

The Configure operation applies artifacts associated with configuration units, see
Section 10.2, which modify the configuration of a resource (topology target). The
operation can be used to re-configure an installable unit instance. The operation can
be re-applied multiple times to change the configuration of resources.

Installable Unit Deployment Descriptor Version 1.0

 Page 24 of 219

The Configure operation SHOULD be supported with two execution modes: full
and delta.

In full mode, the operation applies all CUs defined in the base IU, all updates and
all of the fixes to the latest level.

In delta mode, the operation can be applied to process either the set of CUs
associated to the latest update level or the CUs associated to one of the fixes that
were applied to the latest level.

When a full IU is applied as an update to an existing instance, all CUs associated to
aggregates of the base that are not obsoleted are replaced, see Section 11.1.

4.2.6 VerifyIU

The Verify IU operation performs integrity checking of an installable unit instance
with respect to its current state (Created, Updated, Usable). The final state is the
same as the initial state unless the integrity checks fail, in which case the unit is put
in an error state.

A VerifyInstall artifact MAY be associated to an SIU, see Section 9.4. If specified,
the artifact defines actions to be executed on the hosting environment to perform
integrity checking of the SIU instance. Some integrity checking MAY be possible
on some hosting environments without specifying an artifact.

4.2.7 VerifyConfig

The VerifyConfig operation uses the VerifyConfig artifact, see Section 10.2, to
verify the configuration of a manageable resource.

4.2.8 Repair

Some implementations MAY support the repair operation to perform the repair of
an installable unit instance that failed a previous verification (VerifyIU). The
installable unit instance remains in the error state if there are parts whose state was
found in error for which a repair capability is not implemented. The Repair
operation has no associated artifact.

4.2.9 Delete

The delete operation deletes an existing IU instance from the hosting environment.

The Uninstall artifact associated with the SIU, see Section 9.4, defines the actions
to be executed on the hosting environment to remove resources (e.g. files) created
as part of the instance.

Some hosting environments MAY support using the install artifact for both the
Create and the Delete operation. In that case, the install artifact is processed by the

Installable Unit Deployment Descriptor Version 1.0

 Page 25 of 219

Delete operation to identify resources created during install that need to be
removed.

The IU instance may have gone through multiple updates during its lifecycle. The
semantic of the Delete operation is that all resources created as part of the IU initial
creation and subsequent updates SHOULD be removed, unless they already existed
when the instance was first created (or updated) in which case they SHOULD NOT
be removed.

4.2.10 Optional operations: Undo and Commit

Undo support is OPTIONAL. Each hosting environment that can be the target of
IU lifecycle operations specifies which operations, if any, can be performed in
undoable mode. The number of levels of the Undo stack are also specified by the
hosting environment. The release of backup resources MAY be controlled by the
explicit invocation of a Commit operation. A hosting environment MAY
implement an automatic Commit (e.g. because it does not implement more that a
single undoable operation for the same IU instance).

The semantic of the Undo operation is explained below, by contrast to the Delete
operation.

The result of applying Undo to an operation is to revert the IU instance to a
previous state. For example, applying the Undo after an Update will revert the IU
instance to its state prior to the update, while Delete would remove the instance.
The Undo applied to a new IU instance after Create would produce the same effect
of the Delete operation if the Create did not cause any pre-existing resources (e.g.
shared files or registry entry) to be modified. While if the Create did modify or
remove some pre-existing resources, these SHOULD be restored by Undo while
Delete would leave the modified resources in their current state.

In some cases, restoring the previous state of a shared resource may not be
desirable, namely when the resource has been subject to further modifications after
the backup copy was created. Also, artifacts may contain actions that cannot be
executed in undoable mode. The conditions that MAY limit Undo support on a
given hosting environment are specified by each implementation. In particular,
actions that can be defined in the install artifacts MAY support the specification of
the desired behavior when the action should be undone.

4.3 The configuration process

InitialConfig and Migrate artifacts SHOULD only cover the non-repeatable part of an
IU instance configuration so that they are NOT normally re-applied.

Installable Unit Deployment Descriptor Version 1.0

 Page 26 of 219

An implementation MAY support re-applying the InitialConfig and Migrate1 artifacts
on an IU instance that is already in the Usable state. This MAY be done in an attempt
to restore a configuration baseline in case of a malfunction, although this MAY
generally cause loss of data2.

Configuration units can be included at any aggregate IU level within the root IU to
define the repeatable part of the configuration process. CUs are used to configure
resources created by installing the IU and other resources on which the IU is
dependent for being usable.

Resources created by installing an IU may be configured by CUs targeted to the same
hosting environment where the IU was deployed, or by CUs targeted to resources that
were created by the IU install process (see deployed targets in section 5.6.4).

When Configuration Units (CU) are defined in an aggregate IU, that IU cannot be
considered Usable before the associated configuration have been applied. However, it
SHOULD be possible to apply all configuration units at the end of the Create or
Update process, when all the InitConfig and Migrate artifacts have been processed.

See Section 12.5.1 for a motivation of the above rule in a scenario where multiple
chained dependencies need to be installed during an Update.

Configuration units are applied the first time during the InitialConfig operation. In this
case, configuration units SHOULD be applied after all InitConfig artifacts for all SIUs
in the whole root IU have been processed, without requiring the explicit invocation of
a separate Configure operation to apply the configuration units.

Configuration units can be successively processed multiple times by invoking the
Configure operation to change (or to re-apply) the current configuration.

Consistently, configuration units are applied during the Migrate operation. These
configuration units SHOULD be applied after all Migrate artifacts, without requiring
the explicit invocation of a separate Configure operation.

Only the new CUs introduced by the update or fix are applied during the Migrate
process.

The Create operation leaves an aggregate IU instance directly in the Usable state if the
IU descriptor specifies no Configuration Unit for that IU and SIUs under the aggregate
specify no InitConfig artifacts. Similarly, the Update operation leaves the IU instance
in the Usable state if no CUs are defined for the aggregate and SIUs under the
aggregate specify no Migrate artifacts.

1 Note that unlike InitialConfig the Migrate operation generally depends on the availability of previous data
to migrate, which might not be available after the operation was first completed on the IU instance.
2 Example: InitialConfig may create a data base table that gets corrupted. Re-applying InitialConfig would
re-create the table (if the artifact logic allows that) but would generally cause data to be lost.

Installable Unit Deployment Descriptor Version 1.0

 Page 27 of 219

5 Installable Unit Deployment Descriptor

The Installable Unit Deployment Descriptor (IUDD) is the XML instance document
defining a root IU. The IUDD defines a single instance of the iudd:rootIU element.

A number of attributes must be specified for the root element iudd:rootIU in order to
make it possible to locate the schema files. The following XML fragment illustrates these
attributes for a simple root IU whose content is targeted exclusively at the operating
system hosting environment:

The name prefix (xmlns:prefix) and schema location (xsi:schemaLocation) are already
specified in the main schema file for all the referenced schema files except signatures.xsd
and do not need to be specified in the instance document. The prefix and schema location
attributes for signatures.xsd need to be specified in the instance document, if the latter
includes signatures information.

OSRT is the prefix for the namespace xmlns:OSRT defining operating system resource
types. Other namespaces are defined in the resourceTypes.xsd schema file. One or more
of these namespaces may need to be added if the topology includes target resources of the
corresponding type.

Schema diagrams are included in the following sections to support the description of
elements defined in a schema type. These diagrams only show XML schema elements;
they do not include a graphical representation of XML schema attributes. The latter are
described in the text. The following graphical conventions are used in these diagrams:

• A solid line border indicates a required element (minOccurs=”1”)

• A dotted line border indicates an optional element (minOccurs=”0”)

• Multiple rectangles beneath an element’s name indicate that there may be
multiple occurrences. In that case, there is a label showing the multiplicity.

• A small square with an inner “+” symbol at the right end of a rectangle indicates
that the corresponding element is an instance of a complex type (not expanded).

• A connector with horizontally aligned dots indicates a sequence content model.

• A switch connector with vertically aligned dots indicates a choice content model.

<?xml version="1.0" encoding="UTF-8"?>

<iudd:rootIU xmlns:iudd="http://www.ibm.com/namespaces/autonomic/solutioninstall/IUDD"
xmlns:sig="http://www.ibm.com/namespaces/autonomic/solutioninstall/Signatures"
xmlns:OSRT="http://www.ibm.com/namespaces/autonomic/OS_RT"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ibm.com/namespaces/autonomic/solutioninstall/IUDD
iudd.xsd " IUName="MyRootIU" targetRef="MyTargetOperatingSystem">

Installable Unit Deployment Descriptor Version 1.0

 Page 28 of 219

5.1 Installable Unit Identity

The identity element is required for any installable unit. The element is an instance of
base:IUIdentity, which is illustrated by the following diagram.

• UUID [type=base:UUID]
UUID is a REQUIRED element. A unique identifier for the IU type is provided
by the union of the UUID and version values.

The UUID type is defined to be compatible with existing standards dictating the
generation and string representation of universal identifiers. The schema required
representation of the UUID is by a hexBinary XML type of length=16-octets (32
chars). Two categories of generation algorithms have been considered, which both
generate a 16-byte binary UUID. The first category includes the ISO compliant
algorithms based on the use of IEEE 802 identifiers (MAC address) for the
“space” part, e.g. the DCE-RPC UUID generator. The second category includes
algorithms that make no use of the MAC address.

Installable Unit Deployment Descriptor Version 1.0

 Page 29 of 219

Note: the hyphenated string version of the UUID specified by the ISO standard
cannot be used as a value of the base:UUID type. The value must be obtained as
the 16-octects hexadecimal representation of the binary value (no hyphenation).

• name [type=token]
This is a REQUIRED element: both name and UUID MUST be specified. The
value is an internal, not language sensitive name of the software component
represented by the IU. A name is needed for the following non exclusive uses:

• Some implementations of a hosting environment3 MAY NOT support
UUIDs. However, since both name and UUID are always available it is
not necessary to use multiple IU definitions to deploy the same IU on
different hosting environments.

• The IU MAY be installed on a system and be registered in a legacy
registry of installed software by some printable name. This element could
specify the same printable name in the IU XML descriptor, thus making it
possible to identify an instance found in the legacy registry as an instance
of the same IU.

• A system providing life-cycle management of installable unit descriptors,
e.g. an IUDD library system, needs to provide means by which an
installable unit can be referred to by a user-friendly name. As an example:
when creating a new version of an existing installable unit, a developer
may need to retrieve the UUID of the base version. The base application
can be retrieved by searching the library system with the user-friendly
name.

• One may need to search for different products that have different UUID
yet are all members of a product family. For example, assuming
“MyProduct” version 10 does not declare backward compatibility with
“MyProduct” version 3 the two MAY have different UUID values (see
5.1.1 below) . A management application may need to locate all instances
of “MyProduct”, regardless of version. This can be achieved by a name
search if the name of both versions contains a common sub-string.

• displayName [type=base:DisplayElement]
This OPTIONAL element associates text labels and a description with the
corresponding IU. See Section 17 for a general description of display elements
and their localization.

• manufacturer [type=base:DisplayElement]
This OPTIONAL element specifies the name and description of the IU

3 Such environments, e.g. J2EE applications servers, MAY impose restrictions that make it impossible to
install two units of software with the same name. In that case, the IU name can be thought of as a surrogate
of a UUID, although the risk exists that two independently developed units of software be accidentally
given the same name.

Installable Unit Deployment Descriptor Version 1.0

 Page 30 of 219

manufacturer. See Section 17 for a general description of display elements and
their localization.

• buildID [type=token]
This OPTIONAL element is provided to allow a correlation to a build identifier
used in a vendor-specific build process.

• buildDate [type=dateTime]
This OPTIONAL element contains the build date for the installable unit.

• version [type=vsn:VersionString]
This element defines the IU version. The version value is a string composed of up
to four parts, according to a Version.Release.Modification.Level (V.R.M.L)
scheme. The first and second parts are required (Version.Release). XML types
used in this specifications for version data are defined in Appendix H.

• backward_compatibility [anonymous type – sequence of vsn:VersionString]
This element defines a sequence of version elements, each one for a previous
version of the same component, that the current one declares to be backward
compatible with. These previous versions relate to the same UUID: it is not
possible to specify backwards compatibility to a different UUID. Backwards
compatibility implies that any dependency on version “X” of component “B”
stated by a component “A” CAN be satisfied by a version “Y” of component “B”
that exists in the system if version “Y” is declared to be backward compatible
with version “X”.

At least the first two parts of the version MUST be specified in each of these
elements. When some of the trailing version parts in the value of one of these
elements are omitted, the IU being defined is assumed to be backward compatible
with any possible version matching the parts which are specified.

• full [anonymous type]
The presence of this element indicates that the IU can be used for creating a new
instance. The OPTIONAL specification of a upgrade base indicates that it can be
used also as an update to an existing IU instance. See Section 11.

• incremental [anonymous type]
The presence of this element indicates that the IU can only be used as an update to
an existing IU instance. See Section 11.

5.1.1 Rules for assigning the UUID

A new version of an existing installable unit that maintains compatibility to a
previous version and that is eligible to satisfy dependencies originally stated for
that previous version MUST have the same UUID. In that case, the
backward_compatibility element of the IU identity is used to formally declare the
backward compatibility with one or more previous versions.

Installable Unit Deployment Descriptor Version 1.0

 Page 31 of 219

An installable unit that does not retain full backward compatibility with a previous
version, MUST still retain the same UUID of a previous level if it can install as a
full or incremental update on top of that level.

A new UUID SHOULD be created when the component is first created or in case
the component is broken apart and pieces used to reconstruct something different.

A new UUID MAY be also created for a new version which breaks backward
compatibility with and cannot be installed as an upgrade to the previous version.

5.1.2 IU Identity Example

The following XML fragment illustrates the elements of IU identity.

<identity>
 <name>Human readable name, possibly used in a native registry</name>
 <UUID>12345678901234567890123456789012</UUID>
 <displayName>
 <defaultLineText key="ST_01">Line text about package</defaultLineText>
 <defaultText key="LT_01"> Paragraph text about package</defaultText>
 </displayName>
 <manufacturer>
 <defaultLineText key="ST_02">ACME Software</defaultLineText>
 <defaultText key="LT_02">The true ACME Software</defaultText>
 </manufacturer>
 <buildID>1234XYZ</buildID>
 <buildDate>2001-12-31T12:00:00</buildDate>
 <version>1.1</version>
 <backward_compatibility>
 <version>1.0</version>
 </backward_compatibility>
</identity>

5.2 Temporary Fix Identity

A temporary fix is an installable unit that is not part of the normal sequence of
released versions, although it has a definition similar to that of an ordinary IU. In
particular, the identity of a fix is defined by the base:FixIdentity type, illustrated by
the following diagram. This type and base:IUIdentity are both derived types of
base:BaseIUIdentity. Therefore, a fix repeats the definition of the following elements
described in the previous section (the name and UUID elements identify the installable
unit to which the fix is intended to be applied)

• name

• UUID

• displayName

• manufacturer

• buildID

• buildDate

Installable Unit Deployment Descriptor Version 1.0

 Page 32 of 219

Additional elements of the fix identity are described below.

• incremental/requiredBase [type=base:RequiredBase]
This is a REQUIRED element specifying the range of versions (minVersion
and maxVersion elements, both instances of vsn:VersionString) to which this
fix can be applied.

• fixName [type=NCName]
This is a REQUIRED element specifying the fix name. This name MUST be
unique among all fixes that apply to installable units with the specified UUID.

• fixType [anonymous type]
This is an OPTIONAL element, used to categorize the fix. See Section 9.2.

• fixDependencies [anonymous type]
This is an OPTIONAL element, used to express dependencies (pre-requisites,
co-requisites and ex-requisites) among fixes that could be applied to the same
IU instance. This element can only be specified for an IU deployed to a single
target (SIU or CIU). See Section 9.2.

Installable Unit Deployment Descriptor Version 1.0

 Page 33 of 219

5.3 Root Installable Unit

A root installable unit describes a complete “unit of manufacture”, as shipped by the
installable unit developer. There is exactly one root IU in an installable unit descriptor.

A root installable unit is a derived type of iudd:AggregatedInstallableUnit, which in
turn is a derived type of siu:InstallableUnit. The relationships between these two types
are illustrated in the following diagram.

The base type – siu:InstallableUnit – includes a definition of the IU via the group
siu:IUorFixDefinition – this can select different contents depending on whether this is
an ordinary IU of a temporary fix – and the group base:Variables. A key element in
the first group is the IU identity whose elements are described in sections 5.1 and 5.2.
Other elements of an IU definition are covered in Section 9 (Software Smallest
Installable Unit). Variables are covered in section 8 (Variables, Expressions and
Conditions).

The AggregatedInstallableUnit type defines the base content of the root IU, as a set of
installableUnit elements. Each element is an instance of type iudd:ConditionedIU,
described in Section 6, and may represent any of the following:

• An inline IU aggregate, i.e. a Solution Module (SM) or Container Installable
Unit (CIU), respectively described in Sections 6.1 and 6.4.

• An inline leaf node, i.e. a Smallest Installable Unit (SIU) or a Configuration
Unit (CU), respectively described in Sections 9 and 10.

• A bundled referenced IU, described in Section 6.2.

• A federated IU, described in Section 6.3.

The other top-level elements of the RootIU type are illustrated in the following
diagram.

Installable Unit Deployment Descriptor Version 1.0

 Page 34 of 219

A root installable unit has the following attributes:

• IUName [type=ID]
A REQUIRED IUName, which uniquely identifies the IU within the scope of
the descriptor. The value MUST be unique within the descriptor.

• targetRef [type=IDREF]
An OPTIONAL targetRef attribute which if specified MUST refer to one of
the targets defined in the topology. When specified, this attribute implies that
all installable units defined within this root IU MUST be deployed onto the
same target. Consistently with this declaration, all the installable units that are
part of the the root IU MUST specify the same target.

• language_bundle [type=token]
An OPTIONAL attribute which has a default value of “iudd_bundle”. This is
used for the localization of display elements. See Section 17.

A root installable unit has the following elements:

• selectableContent [anonymous type]
This element defines the selectable content of the root IU as a set of
installableUnit elements. These are instances of iudd:ConditionedIU. The
inclusion of installable units defined as part of the base content is determined

Installable Unit Deployment Descriptor Version 1.0

 Page 35 of 219

by the associated condition. The inclusion of installable units defined by this
element is also dependent on the selection of features. See Section 5.4.

• features [anonymous type]
The set of features that may be selected. See Section 5.4.

• rootInfo [anonymous type]
The rootInfo element, which describes the product or offering contained in the
root IU. See Section 5.5.

• customCheckDefinitions [anonymous type]
The set of custom checks that is used within the root IU and its embedded
(inline) installable units. Custom checks use artifacts that can be executed on a
target (e.g. an operating system) to check dependencies that are not defined in
this schema. See Section 7.3.8.

• topology [anonymous type]
The target topology onto which the installable unit is to be deployed. The
target topology consists of a set of target definitions, covering both targets that
must be there before the root IU can be installed, and targets that may be
installed as part of the install of the root IU. See Section 5.6.

• groups [anonymous type]
The installation groups that the product or offering supports, and the default
installation group that should be selected if no other selection is made. An
installation group defines a set of features that should be installed together. See
Section 5.4.

• requisites [anonymous type]
The bundled requisite IUs that are shipped with the root IU. These are
referenced IUs that may be used to satisfy unmet dependencies. See Section
5.7.

• files [anonymous type]
The set of files that comprise the root IU. These files are given a file ID by
which they can be referenced within the root IU and are subject to integrity
checks. Each file ID MUST be unique within the root IU. See Section 5.8.

Installable Unit Deployment Descriptor Version 1.0

 Page 36 of 219

5.4 Features and Installation Groups

Features provide the means for external (e.g. user) selection of the installable units
within the root IU. This is in contrast to conditions, which filter what is installed based
on environmental properties.

Installation groups provide a means of specifying recommended selections of features,
for example tailored to a particular use, user role or resource constraints. An example
of a set of installation groups might be “Custom”, “Typical” and “Full”. An
installation group specifies which features the user is able to select from, and which
features are selected by default. Optionally, a default installation group can be
specified.

Features may be specified as the target of dependency checks. They are identified by a
feature name that is unique within the root IU.

The diagram above illustrates how features are used. The root IU contains IUs, which
are partitioned into base content (always installed) and those IUs that are selectable via
features. Features contain subfeatures and/or selectable content. The selectable content
can be shared between multiple features, but subfeatures are not shared. The features
must select the top-level of the content: they cannot arbitrarily select subtrees.

Referenced IUs also contain features, and the aggregating IU needs to specify what
features within these referenced IUs should be selected. There are two mechanisms for
doing this. First, the referenced IU definition may specify an installation group and

F IU IU IUF

RIU

IUIU

RIU

RIU Referenced Root IU

F Feature within a referenced Root IU

F

IU IU

RIU

Base content

F F

F F

IURIU

F

Selectable contentFeatures

Installable Unit Deployment Descriptor Version 1.0

 Page 37 of 219

may also specify explicit selections within the referenced IU. This will establish the
features in the referenced IU that are to be installed when that referenced IU is
selected. Second, individual features may federate features within a referenced IU.
This will cause the selection of that feature if it is not already selected. Further, it will
associate the lifecycle of the referenced feature with the feature federating it, so that if
the federating feature is uninstalled and the referenced feature is no longer used, it
may also be uninstalled.

The selection of features is controlled as follows:

• As previously identified, what the user can select and the default selections are
set via installation groups.

• Some features are identified as “required”. These features are always selected
if their parent is selected (a top-level required feature is always selected).

• Features may identify the following selection constraints on other features:

o Select if selected

o Deselect if selected

o Select if deselected

o Deselect if deselected

• Referenced features may express a set of “ifreq” relationships to other features.
The referenced feature is only selected if at least one of its “ifreqs” is satisfied.
If an “ifreq” is subsequently installed, any features previously selected but not
installed because of the “ifreq” should now be installed.

The following illustrates how features and installation groups may be used, e.g. during
an interactive install.

If the root IU defines installation groups, the user is presented with the set of
installation groups to choose from. If a default installation group is specified, this
indicates the initial selection that should be presented. If no installation group is
defined, the user may select from any of the features.

Each defined installation group indicates the set of default feature selections, and
indicates whether the user can change the selection.

Within an install group, a feature’s selection can be specified as “not changeable”.
This means that the selection state of the feature is determined entirely by internal
selection rules, and not by user selection. In this case a user should not be allowed to
change the feature’s selection state.

The user selects a single install group, and then makes selections from the offered
features.

When the user had made their selections, the install program will determine which IUs
are to be installed. This will consist of the base content, plus all IUs that are federated
by the selected features, plus the IUs that are selected in referenced IUs through the
referenced IU definition (see below) or through feature references. These IUs are then

Installable Unit Deployment Descriptor Version 1.0

 Page 38 of 219

filtered based on any conditions: only IUs with no condition or a condition that
evaluates to true will be installed.

The features to be selected in referenced IUs are determined as follows:

• An explicit install group can be specified. If so, this install group specifies the
default selections.

• If no explicit install group is specified, the default install group specifies the
default selections.

• If no explicit or default install group is specified, no features are selected for
the referenced IU (unless referenced feature definitions are specified in the root
IU, see below).

• Further explicit feature selections can be specified in the referenced IU
definition. These are in addition to the selections in the install group. They are
not subject to any constraints specified in the install group.

Features selected by feature references are then selected in addition to the selections
specified in the referenced IU definition.

Feature selection is illustrated in the example in Section C.

Install group and features selections determine the set of IU that are being installed,
but not the order in which these are installed, which is determined by the IU hierarchy,
sequence numbers and intra-IU dependencies.

Install group selections and feature selection rules are provided for use by install
programs and their implementation is OPTIONAL. It is the responsibility of those
components to determine the appropriate behavior if the constraints are violated (e.g.
ignore, warn, error).

5.4.1 Feature

A feature definition includes the following attributes:

• featureID [type=ID]
This REQUIRED attribute provides a unique identifier to reference the
feature definition within the root IU. The value MUST be unique within the
descriptor.

• required [type=boolean]
If this OPTIONAL attribute is true, then the feature is always selected if it
is either a top-level feature, or if its parent feature is selected.

• type [type=iudd:FeatureType]
The type of this OPTIONAL attribute is defined as a union of the XML
type NCName and iudd:StandardFeatureType. Therefore, a user defined
feature type can be specified as an NCName value. “Documentation”,
“Language” and “Samples” are the standard enumerated values defined in
iudd:StandardFeatureType.

Installable Unit Deployment Descriptor Version 1.0

 Page 39 of 219

A feature definition includes the elements illustrated in the following diagram.

• identity [anonymous type]
This is an instance of a type containing the following elements

o name [type=token]
This is a name by which the feature can be registered, and by which
it is possible to reference the feature from an external descriptor.
The value MUST be unique among features defined within the same
root IU.

o displayName [type=base:DisplayElement]
This OPTIONAL element may be used to associate a language
sensitive name and description to the feature. See Section 17.

• feature [type=iudd:Feature]
Zero or more feature elements can be specified, each one describing a child
feature. The parent-child relationship between two features implies that
children SHOULD NOT be selected when their parent is selected.

Installable Unit Deployment Descriptor Version 1.0

 Page 40 of 219

• IUNameRef [type=IDREF]
Zero or more IUNameRef elements, each one selecting a top-level IU
defined as part of the root IU selectable content.

• referencedFeature [type=iudd:ReferencedFeature]
Zero or more referencedFeature elements, each one referencing a feature
within a referenced IU. See Section 5.4.2.

• selectionRules [type=anonymous]
Zero or more selection rules. Each selection rule identifies the feature name
of a different feature within the root IU, which is the subject of the rule. The
possible rules are:

o SelectIfSelected [type=IDREF]
The specified feature is selected if this feature is selected.

o DeselectIfSelected [type=IDREF]
The specified feature is deselected if this feature is selected.

o SelectIfDeselected [type=IDREF]
The specified feature is selected if this feature is deselected.

o DeselectIfDeselected [type=IDREF]
The specified feature is deselected if this feature is deselected.

5.4.2 Referenced Features

A referenced feature is illustrated in the diagram below:

A “referenced feature” defines a selection of a feature in a referenced IU or in a
federated IU. A referenced feature has the following elements:

• IUNameRef [type=IDREF]
This REQUIRED element is the identifier of the referenced or federated IU
that the feature is in. See Section 6.2 for a definition of referenced IUs, and
Section 6.3 for a definition of federated IUs.

• externalName [type=token]
The value of this REQUIRED element MUST match the name of the
feature, within the referenced IU descriptor, that needs to be selected. When
the feature is associated to a federated IU, any IU check in the federated IU
definition MUST identify an IU that has a feature with the specified name.

Installable Unit Deployment Descriptor Version 1.0

 Page 41 of 219

• ifReq [type=anonymous]
This OPTIONAL element can be used to specify one or more featureIDRef
elements. These are references of the IDREF type to features defined within
the same root IU of the feature being defined. The selection of any of the
specified features in the root IU causes the selection of the feature in the
referenced IU. See Appendix C for an example.

A referenced feature can only refer to a contained referenced IU or a federated IU
that is part of the base or of the selectable content. A referenced feature CANNOT
refer to a requisite IU.

5.4.3 Scoping of Features

The following rules apply to feature scope and override.

• Features are defined in the root IU. The featureID must be unique within the
descriptor.

• Referenced IUs have a separate namespace for features. The only
interaction is via the specification of the selection of a feature within a
referenced IU or referenced feature.

5.4.4 Installation Groups

An installation group is defined by the iudd:InstallationGroup type. A group
defines a set of features that should be installed if the group is selected.

A group definition includes the elements illustrated in the above diagram.

• groupName [type=token]
This REQUIRED element is the name of the group. The value MUST be
unique within the descriptor.

• feature [anonymous type]
A list of the feature selections that are to be made as part of the installation
group. A feature selection element consists of the following attributes:

o featureIDRef [type=IDREF]
This must be a valid reference to a feature within the root IU.

Installable Unit Deployment Descriptor Version 1.0

 Page 42 of 219

o selection [type=iudd:Selection]
This is an enumerated type whose possible values are “selected” and
“not_selected”. This specifies whether the feature is to be selected or
not selected by default. The default value is “selected”.

o selectionChangeable [type=boolean]
This element provides an indication of whether the selection is
externally changeable (e.g. by the user or automated install
program). If this indication is “false”, then the feature’s selection is
only changed in response to internal selection rules. The default
value is “true”.

• description [type=base:DisplayElement]
This is an OPTIONAL human-readable description. See Section 17.

A feature may be a member of multiple groups, or of no groups.

Groups cannot contain other groups.

The use of installation groups is illustrated in the example in Appendix C.

5.4.5 Scoping of Installation Groups

The following rules apply to installation group scope.

• Groups are defined in the root IU. The value of the groupName element
must be unique within the descriptor.

• Each referenced IU has a separate namespace for installation groups. The
only interaction is via the specification of the selection of an install group
within a referenced IU.

The following UML class diagram illustrates features and installation groups.

Installable Unit Deployment Descriptor Version 1.0

 Page 43 of 219

Feature

+ «XSDattribute» featureID : ID
+ «XSDattribute» required : boolean = false
+ «XSDattribute» type : string

Feature.selectionRules

+ selectIfSelected : IDREF
+ deselectIfDeselected : IDREF
+ deselectIfSelected : IDREF

+ selectionRules0..1

RootIU.features

+ feature1..*

«XSDchoice»
subfeatures

1..*

feature

«XSDgroup»
FeatureDefinition

1

ReferencedFeature

+ IUNameRef : IDREF
+ externalName : token

«XSDsimpleType»
Top-Level_IU_Ref

+ IUNameRef : IDREF

ReferencedFeature.ifReq

+ featureIDRef : IDREF

+ ifReq0..1

InstallationGroup

+ groupName : token

RootIU.groups

+ default : token

+ group1..*
- _Feature1..*

Installable Unit Deployment Descriptor Version 1.0

 Page 44 of 219

5.5 Root IU Information

The information included by the rootInfo element are illustrated in the following
diagram.

The rootInfo element is a container for the following elements

• schemaVersion [type=vsn:VersionString]
This REQUIRED element identifies the version of the schema being used.

• build [type=nonNegativeInteger]
This REQUIRED element is the root IU build number. This identifies the
version of the descriptor separately from the version of installable units that the
descriptor contains. A newer (better) descriptor may be the result of replacing
the implementation of a custom check (external command), or of identifying a
previously unrecognized dependency, or of relaxing a previous dependency
because testing has now validated a wider range of valid environments. The IU
developer is responsible for the decision as to whether the changes should
affect the versioning of an installable unit.

• size [type=integer]
This OPTIONAL element defines the size of the root IU, in Kilo-bytes
(1K=1024). The value indicates the amount of disk space required to store the
whole root IU including all descriptors, files and referenced IUs, in an
unpackaged form.

• bigIcon [anonymous type]
This OPTIONAL element has a REQUIRED attribute – fileIdRef – of IDREF
type. This is a reference to a GIF file containing a 32x32 icon associated with
the root IU.

• smallIcon [anonymous type]
This OPTIONAL element has a REQUIRED attribute – fileIdRef – of IDREF
type. This is a reference to a GIF file containing a 16x16 icon associated with
the root IU.

Installable Unit Deployment Descriptor Version 1.0

 Page 45 of 219

• type [type=NCName]
This OPTIONAL element can be used to categorize the root IU. One among
the following enumerated values can be specified for this element, to support a
componentization strategy:

o Offering

o Assembly

o CommonComponent

5.6 Target Topology

The topology definition consists of a set of one or more targets and an OPTIONAL set
of deployed targets. Both types define some manageable resource that play a role in
the solution being deployed. In particular, deployed targets define resources that are
created as a result of deploying the solution.

Targets are described in Section 5.6.1. Deployed targets are described in Section 5.6.4.

5.6.1 Target

A target defines a manageable resource that plays a role in the solution. A target
definition MAY be referenced within installable units because

• it represents the installable unit’s hosting environment, or

• it is the target of a property query associated to a variable definition, or

• it is the target on which a check must be performed, or

• it is one end of a binary relationship that must exist between two resources.

The target element is an instance of the iudd:Target type, illustrated in the
following diagram.

Installable Unit Deployment Descriptor Version 1.0

 Page 46 of 219

A target definition is used to identify one or more instances of a given resource
type based on scope, selection requirements and validation requirements. A target
definition has the following attributes:

• id [type=ID]
This REQUIRED attribute is used as an identifier for the target. References
to a target MAY be made from within the same root IU descriptor or they
MAY be made in a target map within another root IU which the current one
is contained (or federated) by. Targets MUST NOT be referenced from
referenced installable units: a target map MAY be used to correlate between
targets in different root IUs. See 5.6.3 for a description of target maps.

• type [type=iudd:AnyResourceType]
This REQUIRED attribute is used to specify the target resource type, e.g. an
operating system type, or a J2EE application server type. The type of this
attribute is defined as a union of the XML type QName and rtype:RType.
Therefore, a user defined resource type is specified as a QName value.
Standard enumerated values for this field are defined in rtype:Rtype.

A target definition has the following elements:

• description [type=base:DisplayElement]
This OPTIONAL element allows to associate text labels and a description
with the target. See Section 17 for a general description of display elements
and their localization.

• scope [anonymous type]
This REQUIRED element identifies how to resolve the target instances

Installable Unit Deployment Descriptor Version 1.0

 Page 47 of 219

among the ones satisfying the selection requirements (dependencies and
relationships). One of the following values can be specified (the default
target scope value is one):

o one – the target set MUST be resolved to a single instance;

o all – the target set MUST include every selected instance;

o some – the target set MUST include one or more selected instances.

If scope is one or some and there is more than one match, the deployment
application MAY apply some pre-defined policy, select from matching
targets based on validation dependencies or interact with the user to make
the selection.

• members [anonymous type]
This OPTIONAL element may be used to set the initial selection of targets
from the union of two or more other targets. The element includes one or
more member elements:

o member [type=IDREF]
One or more member elements must be specified if the members
element is present. Each element is a reference to a target that is part
of the union being defined.

If any member elements are present, then the selection dependencies apply
only to the union of the referenced target sets; the final target set SHALL
not include any additional targets (not part of the union) that might match
the selection dependencies. Referenced targets MUST be defined within the
same root IU.

Targets with members are useful when there are platform specific
components in the root IU and components that are platform independent.
As an example, the root IU may include versions of a platform specific
language interpreter for two different operating systems, each one of the
latter being represented by a topology target. The root IU may also include
an installable unit for scripts that should be installed on instances of both
operating systems, on which the scripts can be run using the language
interpreter. The platform independent IU containing the scripts could be
conveniently associated to a new target which defines each of the operating
system targets as a member target.

• checks [type=siu:CheckSequence]
The set of checks that SHOULD be performed on this target, and made
available for use in requirements specified on the target and within any
inline IU within the root IU. See Section 7.1 for a definition of checks.

• selectionRequirements [anonymous type]
This OPTIONAL element is used to specify the set of selection
requirements that SHOULD be used to select resource instances in this
target set. Requirements are described in Section 7.2.

Installable Unit Deployment Descriptor Version 1.0

 Page 48 of 219

Selection requirements and the target scope attribute (one, some or all)
determine the set of instances, for a logical target, that are expected to play
the target’s role in the solution. Examples: one instance of an operating
system with client runtime code installed to access a database; or all J2EE
application servers that are federated by a cluster resource. A target scope of
some implies that one or more instances MUST be selected among the ones
that satisfy the selection requirements. When selection requirements are
omitted, the set of potential target instances is determined by the target type
and scope attributes.

Not all targets defined in the topology need to be resolved. As an example,
a target “T” may only be referenced as the hosting environment of one
feature that is not selected. An implementation SHOULD be able to deploy
the solution successfully even if there are no instances satisfying the
selection requirements for target “T”. In general, an implementation
SHOULD only validate selection requirements for a target that

o is the hosting environment of at least one IU in the base content, OR

o is the hosting environment of at least one selected feature, OR

o is referenced by checks (see Section 7.1) defined by one base IU or
by a selected feature, OR

o is related (transitively) by relationship checks to one or more targets
satisfying the previous criteria.

In particular, one or more member targets of a target “U” may be not
resolved according to the above criteria. However, there MUST be at least
one member target resolved if the target “U” itself needs to be resolved.

• validationRequirements [anonymous type]
This OPTIONAL element is used to specify the set of validation
requirements that SHOULD be met by any target instance that have been
selected in this target set, in order for the instance to function in the target’s
role within the solution. Requirements are described in Section 7.2.

A requirement MAY provide information that is needed to modify the target
so that the requirement can be met. Validation requirements MAY be used
to assist in further selection from the target set if the scope is one or some.

Declaring a requirement in the validation group has a different effect than
declaring the same requirement in the selection group. In particular the
following conditions for install failure are determined by the target’s scope
and requirements:

o Scope= “one”
Solution install fails if the selected target instance fails to meet a
validation requirement.

Installable Unit Deployment Descriptor Version 1.0

 Page 49 of 219

o Scope= “all”
Solution install fails if any selected target instance fails to meet a
validation requirement.

o Scope= “some”
Install fails on any selected target instance that fails to meet a
validation requirement. However, the solution can be successfully
installed if at least one target instance meets the requirements.

• targetMap [type=iudd:TargetMap]
This OPTIONAL element defines a correspondence between this target and
targets defined within referenced IUs. See Section 5.6.3.

5.6.2 Scoping of Targets

The following rules apply to the visibility of target definitions:

• Targets and deployed targets are defined in the topology of the root IU and are
available to be referenced by any IU in the package: each one of the targets and
deployed targets that are referenced within an IU MUST be declared in the root
IU topology.

• Targets and deployed targets MUST have a unique identifier (id) within the
descriptor.

• Referenced IUs have a separate namespace for targets. The only interaction is
via target maps.

5.6.3 Target Maps

Target maps provide a mechanism to map topology in the top-level root IU to
targets into the topology of referenced IUs. A referenced IU MAY contain targets
that are not contained in the aggregating root IU, and vice versa.

A selected target SHOULD satisfy the requirements specified in the topology, plus
the requirements specified in any selected referenced IU for which a target map to
the selected target has been specified. This applies recursively to any referenced
IUs within the referenced IU.

The target map is defined within a given target element using the iudd:TargetMap
type. The targetMap element has the following attribute:

• IUNameRef [type=IDREF]
This REQUIRED attribute type identifies the referenced IU, within the
descriptor, that the map refers to.

A target map includes one or more instances of the following element:

• externalName [type=NCName]
The value of this element must be identical to the target identifier used in
that referencedIU for the mapped target.

Installable Unit Deployment Descriptor Version 1.0

 Page 50 of 219

The following shows an example of using target maps. In this example, the
containing root IU has a topology with only a single target (a J2EE application
server). The root IU references two other root IUs (SM1 and SM2), which also
have a target of the same type (J2EE Application Server) but which have used
different names to refer to that target. When this root IU is deployed, the three
targets tSvr, AppServer (in SM1) and tServer (in SM2) SHOULD all resolve to the
same physical target.

5.6.4 Deployed Target

The topology may include the definition of resources, including target hosting
environments, that are created during the deployment of the IU, and do not already
exist prior to deployment. This allows an IU to be targeted at a hosting environment
that has not yet been created. In general, deployed targets are manageable resources
that play a role in the solution and that MAY need to be configured using
Configuration Units (CU).

<topology>

 <target id="tSvr" type="J2EE Application Server">

 <scope>one</scope>

 <targetMap IUNameRef="SM1">

 <externalName>AppServer</externalName>

 </targetMap>

 <targetMap IUNameRef="SM2">

 <externalName>tServer</externalName>

 </targetMap>

 </target>

</topology>

Installable Unit Deployment Descriptor Version 1.0

 Page 51 of 219

Figure 7: Example of a deployed target – initial deployment

In the above diagram, a solution module (SM) consists of an SIU that deploys a
hosting environment (J2EE Server), and then deploys a J2EE application into that
server. The first step is to specify the initial required topology, which consists of a
Linux operating system, and a relational database. The J2EE Server is to be
installed into the operating system.

The second step is to specify the deployed topology which will be created by the
first SIU, and into which the J2EE application will be deployed. The deployed
target definition associates the J2EE server target with the SIU that instantiates the
resource.

Figure 8: Example of a deployed target – deploying into the deployed target

DB

OS

HostedBy

Linux OS

Required Topology

SIU

(J2EE app)

 SIU

(J2EE Serv)

SM

DB

OS

HostedBy

Linux OS

Required Topology

 SIU

(J2EE app)

 SIU

(J2EE Serv)

 SM

J2EE
Server

HostedBy

Uses

Deployed Topology

DeployedBy

Installable Unit Deployment Descriptor Version 1.0

 Page 52 of 219

Each deployed target definition is an instance of the iudd:DeployedTarget type.
This type is illustrated in the following diagram.

A deployed target definition has the following attributes:

• id [type=ID]
This REQUIRED attribute is used as an identifier for the target.

• type [type=iudd:AnyResourceType]
This REQUIRED attribute is used to specify the target resource type.

A deployed target definition has the following elements:

• description [type=base:DisplayElement]
This OPTIONAL element allows to associate text labels and a description
with the target. See Section 17 for a general description of display elements
and their localization.

EITHER (element of a CHOICE)

• IUNameRef [type=IDREF]
The value of this element is a reference to the IU within the root IU that will
deploy the target resource. The value MUST refer to the IUName identifier
of an IU specified within the base or selectable contents of the root IU.

OR (element of a schema CHOICE)

• targetMap [type=iudd:TargetMap]
This element maps the target to a corresponding deployed target in a
referenced IU. Target maps are described in Section 5.6.3.

5.7 Bundled requisite IUs

The requisites element of the root IU identifies bundled requisites that are distributed
with the root IU. Bundled requisite IUs are a form of Referenced IUs, see Section 6.2.
Note that bundled requisites need to have targeting information, so that it is known
where to install the individual SIUs. This means target maps need to be provided in
the topology section, for the bundled requisites as well as the aggregated referenced
IUs.

Installable Unit Deployment Descriptor Version 1.0

 Page 53 of 219

IU A.2

SM A

IU A.1 IU C
(referenced)

IU B
(referenced)

Uses

HasComponent

HasComponent

SM D

IU E
(referenced)

Federates

Federates

Figure 9: Federated and bundled requisite IUs

Figure 9 illustrates a bundled requisite IU, IU “C”, which may be used to satisfy the
dependency expressed by IU “A.2”.

A bundled requisite IU can be used to create an instance satisfying the requirement of
a contained IU (inline or referenced) or it can be used to create an instance of a
federated IU.

In the first case, the bundled requisite IU is referenced via the canBeSatisfiedBy
element in a software check or in an IU check within the contained IU. The created
instance of the bundled requisite IU MAY be deleted, if it is not shared by other IUs,
when the contained IU depending on that instance is deleted.

In the second case, the bundled requisite IU is used to create an instance of the
federated IU, if one is NOT found. The created instance of the federated IU is meant
to be a shared component and SHOULD NOT be deleted before all parent IUs are
deleted.

In general, sharing of an IU MAY be limited by specifying the maximumSharing
identity constraint in its definition. See Section 9.1.

5.8 Files

The descriptor contains a definition for each file that needs to be available during
deployment together with the root IU descriptor. Files in the following categories
MUST be defined in this section of the root IU descriptor:

• A file containing the IU deployment descriptor (XML document) of a
referenced (or requisite) IU.

Installable Unit Deployment Descriptor Version 1.0

 Page 54 of 219

• A file containing an artifact (descriptor) referenced in an SIU or CU definition.
See Sections 9.3 and 10.1 for a description of artifacts.

• A file referenced within any of the above artifacts.

Multiple file elements can be specified within the files section. These are instances of
the iudd:File type, illustrated in the following diagram.

A file element definition has the following attributes:

• id [type=ID]
This REQUIRED attribute is used as a key to reference the file element from
other types. The value MUST be unique within the descriptor.

• compression [type=boolean]
An OPTIONAL attribute specifying whether the file needs to be automatically
compressed during packaging and automatically decompressed before use by
actions (default is “true”).

• charEncoding [type=base:CharacterEncoding]
This is an OPTIONAL attribute. When specified it indicates that the file
contains text in the specified encoding. The code is identified by the IANA
character set name (http://www.iana.org/assignments/character-sets).

A file element definition has the following elements:

• pathname [type=base:RelativePath]
This REQUIRED element provides the relative path of the file image relative
to a logical source as specified in the IU Package Format specification (see
[IUPACK]). This logical source is the same for all files defined in the root IU.

• length [type=integer]
A REQUIRED element specifying the length of the file image as included in
the root IU, in bytes. If the file compression attribute is specified, this is the
length of the compressed image.

• checksum [type=base:CheckSum]
A REQUIRED element specifying the checksum of the file image as included
in the root IU. If the file compression attribute is specified, this is the
checksum calculated on the compressed image

Installable Unit Deployment Descriptor Version 1.0

 Page 55 of 219

6 Installable Units

Installable units can be aggregated in a tree-like hierarchy whose leaf nodes are Smallest
Installable Units (SIU) and Configuration Units (CU). The following three aggregate
types can be defined for installable units:

• Root Installable Unit
This the top-level aggregate. As described in the previous section, the IUDD
defines a single root IU.

• Solution Module (SM)
This IU aggregate type is the most general that can be defined within a root IU,
because installable units contained in the solution module can be associated to
different topology targets. Solution modules are defined in Section 6.1.

• Container Installable Unit (CIU)

This IU aggregate type contains installable units that are associated to the same
topology target. The whole CIU is deployed onto each instance of the target.
Container Installable Units are defined in Section 6.4.

An independently packaged root IU may be aggregated within another root IU by a
reference made in the aggregating root IU to the bundle file containing its deployment
descriptor (IUDD). An independently packaged root IU is referred to in this specification
as a referenced IU. Referenced IUs are described in Section 6.2.

A root IU may be shared by one or more root IUs, in which case it is referred to as a
federated IU. This relationship is declared in the federating root IU by means of
installable unit checks. Federated IUs are defined in Section 6.3.

The following restriction MUST be satisfied by all of the IU aggregates defined in this
specification:

An IU aggregate MUST NOT have two children with the same UUID.

See Section 12.5.1 for a motivation of the above restriction.

Installable Unit Deployment Descriptor Version 1.0

 Page 56 of 219

6.1 Solution Module

A solution module is a type of aggregated installable unit, as described in Section 5.3.
Specifically, it is a multi-target installable unit, and therefore SHOULD NOT specify
a target reference. The structure of a solution module is illustrated in the above
diagram.

Each installableUnit element contained in a solution module is an instance of the type
iudd:ConditionedIU, illustrated in the following diagram.

These installable units are either targeted at a single hosting environment (SIU, CIU,
containedCIU, federatedCIU, configurationUnit), or at multiple hosting environments
(solutionModule, containedIU, federatedIU).

The installableUnit element [type=iudd:ConditionedIU] has the following attributes:

• targetRef [type=IDREF]
This is an OPTIONAL attribute. If specified the value MUST refer to one of
the targets defined in the topology, see Section 5.6. The targetRef MUST be

Installable Unit Deployment Descriptor Version 1.0

 Page 57 of 219

specified if the aggregating IU is a multi-target IU and the conditioned IU is a
single-target IU (e.g. a CIU or a referenced IU with a targetRef attribute on the
root IU). If the aggregating IU is a single-target IU then the targetRef attribute
MAY NOT be specified: if it is specified, it MUST have the same value as the
aggregating IU’s target.

• condition [type=base:VariableExpression]
This is an OPTIONAL variable expression representing a condition. The latter
determines whether the installable unit should be installed. The default is
“true”. See Section 8.3 for a description and syntax of conditional expressions.

• sequenceNumber [type=nonNegativeInteger]
This OPTIONAL attribute can be used to control the order of install. See
Section 12.4.

Each installableUnit element [type=iuddConditionedIU] includes one (XML schema
choice) among the following elements:

• SIU [type=siu:SmallestInstallableUnit]
See Section 9.

• CIU [type=iudd:ContainerInstallableUnit]
See Section 6.4.

• containedCIU [type=iudd:ReferencedIU]
This is a single-target referenced IU. See Section 6.2.

• federatedCIU [type=iudd:FederatedIU]
This is a single-target federated IU. See Section 6.3.

• configurationUnit [type=siu:ConfigurationUnit]
This element defines a configuration unit. See Section 10.

• solutionModule [type=iudd:SolutionModule]
This is a nested solution module definition.

• containedIU [type=iudd:ReferencedIU]
This is a multi-target referenced IU. See Section 6.2.

• federatedIU [type=iudd:FederatedIU]
This is a multi-target federated IU. See Section 6.3.

Installable Unit Deployment Descriptor Version 1.0

 Page 58 of 219

6.2 Referenced IU

A referenced IU is defined by an instance of iudd:ReferencedIU, the type illustrated in
the above diagram.

A referenced installable unit has the following attribute:

• IUName [type=ID]
This is a REQUIRED attribute by which the installable unit MAY be
referenced within the root IU. The value MUST be unique within the
descriptor.

A referenced installable unit has the following elements:

• fileIdRef [type=IDREF]
This element is REQUIRED. The value is a reference to the file that contains
the descriptor for the referenced installable unit.

• parameterMaps [type=base:Maps]
This is an OPTIONAL element, defining a set of parameter maps. See Section
6.2.1 for a definition of parameter maps.

• featureSelections [anonymous type]
This is an OPTIONAL element, defining a set of feature selections. It consists
of the following elements:

o externalInstallGroup [type=token]
This element is OPTIONAL. The value SHOULD match the name of
an install group in the referenced IU. If specified, this install group
specifies the initial selections for features within the referenced IU.
Otherwise, the default install group for the referenced IU is used to
determine initial feature selections. If no explicit or default install
group is specified, no features are selected via group definitions.

Installable Unit Deployment Descriptor Version 1.0

 Page 59 of 219

o featureSelection [anonymous type]
Zero or more instances of this element can be specified to provide
OPTIONAL further feature selections. Each selection identifies the
name of the feature in the referenced IU (externalName) and whether it
should be selected or not.

 externalName [type=token]
This element is REQUIRED. The value SHOULD match the
name of a feature (name [type=token]) defined in the
referenced IU.

 selection [type=iudd:Selection]
This element is REQUIRED. This type allows to specify one of
the following enumerated values: “not_selected” and “selected”.

• additionalRequirements [anonymous type]
This element is OPTIONAL. It may be used to specify additional requirements
consisting of solution-level checks and requirements that are to be applied in
addition to any checks and requirements defined within the referenced IU, to
the specified target. These MAY be used to further constrain the use of an
installable unit: for example to restrict the install of a J2EE Server to use one
specific database product, where the J2EE Server may be capable of using
multiple database products. They MAY also be used to specify additional
resource requirements: for example, if a diskspace consumption requirement of
100MB is specified within the referenced IU, and one of 50MB is specified in
the solution module, the overall requirement for this IU in the context of the
solution is 150MB. These additional requirements do not override checks
defined in the referenced IU, so they MAY NOT be used to specify more
permissive checks. One or more instances of the following target element are
REQUIRED:

o target [anonymous type]
This element has the following attribute:

 targetRef [type=IDREF]
The targetRef of the target. This MUST correspond to the target
identifier of a target or deployed target defined in the descriptor.

Each target definition has the following elements:

 checks [type=siu:CheckSequence]
The set of checks to be performed on the target. See Section 7.1
for a definition of checks.

 requirements [anonymous type] (sequence of siu:Requirement)
The set of requirements to be met on the target. See Section 7.2
for a definition of requirements.

Installable Unit Deployment Descriptor Version 1.0

 Page 60 of 219

6.2.1 Parameter Maps

A parameter map maps one or more variables defined within the root IU to
parameter variables of a referenced installable unit. Input parameters in the
referenced IU that do not have a parameter map SHOULD be initialized with their
specified default value. Parameter maps MAY be used to override these default
values. These maps SHOULD NOT be used to override the value of queries or
derived variables. The type defining maps – base:Maps – is illustrated in the
following diagram.

Each map in the set includes the following elements to map a variable in this
descriptor into a parameter defined within the referenced IU:

• internalName [type=IDREF]
This element is REQUIRED. The value SHOULD be a reference to a
variable that is in scope, i.e. that is defined in a parent aggregate of the
referenced IU. See Section 8.1.7 for a definition of variable scope.

• externalName [type=NCName]
This element is REQUIRED. The value SHOULD match the name
attribute [type=ID] of a parameter variable defined in the referenced IU. See
Section 8.1.1 for a definition of parameter variables.

The type base:Maps is also used in different contexts for mapping IUDD variables
to artifact variables (see Section 9.5). For this reason the map element includes an
attribute – direction – that can be used (only for check artifacts) to specify the
direction of the mapping (“in” or “out”). Only the default value (“in”) is
appropriate for a map appearing in the context of a referenced IU definition.

6.3 Federated IU

During install, if an IU is specified inline, a new dedicated IU instance will be created
(unless it is an update or fix IU). However, for a referenced IU, a decision may be
taken to share an existing IU instance. Such a shared referenced IU is known as a
federated IU. A federated IU is defined by a set of IU checks that identify acceptable
IU instances, and a bundled requisite IU (see Section 5.7) that may be used to create a
new instance if an existing IU cannot be selected.

Figure 9 illustrates the different possible relationships between contained IUs. IUA.1
and IUA.2 are inline and have HasComponent relationships (i.e. dedicated
containment) with SM A. IU B is a referenced IU (i.e. it has its own root IU and a
separate descriptor), and also is dedicated. However, IU E is a referenced IU which is
federated, which means it may be shared by an external IU such as SM D.

Installable Unit Deployment Descriptor Version 1.0

 Page 61 of 219

A federated IU is defined by an instance of iudd:FederatedIU, the type illustrated in
the following diagram.

A federated installable unit has the following attribute:

• IUName [type=ID]
This is a REQUIRED attribute by which the installable unit MAY be
referenced within the root IU. The value MUST be unique within the
descriptor.

A federated installable unit defines a set of one or more alternatives:

• alternative [anonymous type]
This element is REQUIRED. Each alternative is defined by an IU Check:

o iu [type=base:IUCheck].
See Section 7.3.6 for a definition of IU checks. Within each IU Check,
the canBeSatisfiedBy element SHOULD be specified and MUST
identify the bundled requisite IU (declared within the requisites element
of the root IU) that could be installed to satisfy the dependency. The IU
Check SHOULD NOT specify the iuNameRef or featureIDRef
elements, which are intended for specifying internal dependencies.

The reason for allowing a federated IU definition to contain multiple alternatives (IU
checks) is that the required function may be provided by each member of a family of
related software units that do not share the same UUID (e.g. different types of
database).

Two alternatives in the same federated IU definition SHOULD NOT specify the same
UUID. This restriction is necessary to support the deployment of bundled updates to
federated IUs (see Section 11.4).

Note that contained IUs (referenced or in-line) are dedicated components of their
aggregating IU and SHOULD be deleted when their parent is deleted. By contrast,
federated IUs are shared components and SHOULD NOT be deleted before all
dependent IUs are deleted.

When a referencedFeature definition in a feature that is selected, see Section 5.4.2, is
associated to the federated IU, an IU instance MUST have the referenced feature
installed to be eligible to satisfy an IU check in the federated IU definition. An
implementation MAY deploy a new instance if a bundled requisite is specified via the
canBeSatisfiedBy element. Some implementations MAY support installing the
requested feature on an existing instance that does not have the feature installed.

Installable Unit Deployment Descriptor Version 1.0

 Page 62 of 219

6.4 Container Installable Unit

The above diagram illustrates elements that are defined in a container installable unit.

The container installable unit is a type of AggregatedInstallableUnit targeted at a
single hosting environment. A definition of iudd:AggregatedInstallableUnit is
provided in Section 5.3.

A CIU has the following attributes:

• IUName [type=ID]
This is a REQUIRED attribute by which the installable unit MAY be
referenced within the root IU. The value MUST be unique within the
descriptor.

• hostingEnvType [type=siu:AnyResourceType]
This OPTIONAL attribute is used to specify the resource type of the IU target
hosting environment, e.g. an operating system type, or a J2EE application
server type. When specified, the value of this attribute SHOULD be equal to
the one specified by the type attribute of the target onto which the CIU is
installed, see Section 5.6.1. The latter is identified by the targetRef attribute of
the installableUnit element defining this SIU. The IU hosting environment type
may be specified to exploit tooling support for the prevention of incorrect
targeting. The type of this attribute is defined as a union of the XML type
QName and rtype:RType. Therefore, a user defined resource type can be
specified as a QName value. Standard enumerated values for this field are
defined in rtype:Rtype. When specified, the value of this attribute SHOULD
be equal to the one specified by the hostingEnvType attribute of the target onto
which the CIU is installed. The latter is identified by the targetRef attribute of
the installableUnit element defining this CIU. by the target identified hosting
environment.

Installable Unit Deployment Descriptor Version 1.0

 Page 63 of 219

Each installableUnit element in a CIU [type=iudd:ConditionedIU] includes one (XML
schema choice) among the following elements:

• SIU [type=siu:SmallestInstallableUnit]
See Section 9.

• CIU [type=iudd:ContainerInstallableUnit]
See Section 6.4.

• containedCIU [type=iudd:ReferencedIU]
This is a single-target referenced IU. See Section 6.2.

• federatedCIU [type=iudd:FederatedIU]
This is a single-target federated IU. See Section 6.3.

• configurationUnit [type=siu:ConfigurationUnit]
This element defines a configuration unit. See Section 10.

A CIU CANNOT aggregate any of the multi-target installable unit types defined by
iudd:ConditionedIU, although this restriction is not enforced in the schema.

The schema group siu:SingleTargetIUDefinition defines additional elements that are
common to a CIU and an SIU, namely signatures, checks and requirements. Checks
and requirements are defined in Section 7, while signatures are defined in Section 13.

Section B contains an example of a container installable unit.

Installable Unit Deployment Descriptor Version 1.0

 Page 64 of 219

7 Dependencies

A dependency is a requirement that a certain condition involving the results of one or
more elementary checks, SHOULD be satisfied by a topology resource. A software
dependency is a requirement involving the result of a software check, defined in Section
7.3.5, or the result of an installable unit check, defined in Section 7.3.6.

The IUDD schema implements a separation between checks and requirements. The result
of a check may provide information about the target resources and can be used to
condition the install behavior. Requirements formally express one or more alternatives,
one of which at least MUST be satisfied in order for a component to be installable, or for
an instance of a target to be selected.

Checks and requirement MAY be used within the topology target definition, illustrated in
Section 5.6.1, to declare the selection and validation criteria for the target.

Single-target installable unit definitions, see Section 6.4, MAY include checks and
requirements defining the IU specific dependencies. These MAY be dependencies on the
installable unit hosting environment target as well as any other target defined by the
topology.

Requirements MAY also be defined for contained referenced IUs, see Section 6.2, in
addition to those already stated in the referenced IU descriptor.

Federated IU definitions, see Section 6.3, can be also regarded as one form of software
dependency.

7.1 Checks

The checks that can be performed on a single managed resource fall into several
categories, each of which might imply different processing. These distinctions are
made either because different syntax or semantics apply to specifying or evaluating
the requirement or because greater flexibility is offered to deployment application
implementers to evaluate the requirement efficiently. For example, the capacity
requirements are distinguished because they require specific syntax and processing.

The IUDD supports the following check categories:

• Capacity of the hosting environment. This specifies a property of the hosting
environment, such as processor speed, which must satisfy some minimum or
maximum value.

• Consumable resource allocation of the hosting environment. This specifies
resource, such as diskspace, that will be consumed by the installation.
Consumption requirements are cumulative across installable units.

• Value of named instance properties of the resource or hosting environment.

Installable Unit Deployment Descriptor Version 1.0

 Page 65 of 219

• Version of a resource, such as the resource software version or the version of a
supported standard or protocol.

• Software requirements: the minimum and/or maximum version of software
identified by its UUID or name.

• Installable unit requirement: the installation of a given IU.

• Relationship with another manageable resource.

• Custom checks, involving the execution of a defined command.

The element checks is an instance of siu:CheckSequence. It can appear in a target
definition (see Section 5.6.1), in a single-target IU definition (see Section 6.4) or in a
referenced IU definition (see Section 6.2). The type siu:CheckSequence is defined in
the following diagram.

Different types of check are supported: capacity, consumption, property, version,
software, iu, relationship and custom.

All checks extend the base class base:Check, which has the following two attributes
that can be specified for all types of checks:

• checkId [type=ID]
This REQUIRED attribute associates a symbolic name to the check. This name
is used to refer to the result of the check in conditions and requirements. The
value MUST be unique within the descriptor.

• targetRef [type=IDREF]
This OPTIONAL attribute MAY be used to specify the target on which the
check MUST be performed. If specified, the value MUST correspond to the
target identifier of a target or deployed target within the descriptor.

The targetRef attribute SHOULD NOT be specified for a check within a
topology target definition, or for a check within a referenced IU definition. If it
is specified, it MUST identify the target in which the check definition itself is

Installable Unit Deployment Descriptor Version 1.0

 Page 66 of 219

included.

If the targetRef attribute is NOT specified for a check within a CIU, SIU or
federated CIU, the check is applied to the target hosting environment of the
single-target IU in which it is defined.

The targetRef attribute specified for a check within a single-target IU MAY
identify a target, TR that is different from the IU target hosting environment,
THE. In that case, either the scope of the target TR is “one” or there MUST be
one or more relationships connecting the IU target THE to the check target TR,
so that it is possible to navigate these associations from any instance of THE to
a single corresponding instance of TR.

The following element is defined in the base class base:Check. It MAY be specified
for all types of checks:

• description [type=base:DisplayElement]
This OPTIONAL element allows to associate text labels and a description
with the check. See Section 17 for a general description of display elements
and their localization.

The supported checks are described in Sections 7.3 (Built-in checks) and 7.3.8
(Custom Check).

7.1.1 Scoping of Checks

The result of a check is a boolean value, which can be referenced through the
checkId attribute of the check. References to the results of a check are made in the
declaration of requirements, see Section 7.2 below, and in variable expressions, see
Section 8.2. In particular, a token $(<checkId>) appearing in a variable expression
is expanded to the boolean value (“false” or “true”) that is the result of the check
identified by the “<checkId>” value of the checkId attribute.

The following rules apply to check scope.

• Each one of the checks that are referenced within an IU MUST be declared.

• Check identifiers (checkId) MUST be unique within the descriptor. They
MUST also be distinct from any variable name within the descriptor.

• The scope of a check defined in an IU is that IU, and any inline IUs that the
IU contains.

• The scope of a check defined on a target is any IU that is targeted at that
target. Variables definitions at the root IU level MAY reference checks
defined within a topology target.

• Referenced IUs have a separate namespace for checks.

Installable Unit Deployment Descriptor Version 1.0

 Page 67 of 219

7.2 Requirements

Requirements are specified by identifying a set of combinations – alternatives – that
must be met. The requirement is met when any one of these alternatives is met.
Alternatives MAY have a priority indicator, so that it is possible to determine which
alternative should be preferred when more that one satisfies the associated checks.

The check combination in each alternative consists of a list of the checks to be
performed, which may either be specified by reference, or included in-line. All of the
items in the check combination MUST be satisfied.

Each check reference SHOULD correspond to a check that is within scope, i.e. it is
defined within the installable unit on which the requirement is specified; or within a
parent of that installable unit; or within the target of the installable unit. It SHOULD
NOT refer to a check in a sibling installable unit.

Multiple requirements can be defined within an IU or a target definition. The
following criteria determine whether a requirement should be declared in an IU or in
the target where the requirement needs to be satisfied:

• A dependency that originates from the IU should usually be declared in the IU
and not in the target. This approach implies that if the IU is not selected for
install, the requirement is not imposed, and a larger set of target instances is
potentially eligible to install the remaining selected IUs.

• A requirement that is not specifically associated to a software unit but is
needed for the target to act its role in the solution should be declared at the
target level. See 4.5.1 for a discussion of the different implications to declare a
requirement for target selection versus validation.

Each requirement element is an instance of siu:Requirement, the type illustrated in the
following diagram.

Each requirement defines one or more alternatives. At least one alternative MUST be
satisfied for the requirement to be met. The failure to meet any requirement that is
defined by an IU should cause the IU installation to fail before any action (with the
exception of actions implementing custom checks) is executed, unless the install
program provides some form of override policy. Both requirements and alternatives
have a description element that can be used to document the intent of the declaration.
See Section 17 for a general description of display elements and their localization.

Installable Unit Deployment Descriptor Version 1.0

 Page 68 of 219

Within each IUDefinition, requirements are specified against targets and installable
units using the schema described above. Further solution-level requirements may be
specified against referenced IUs, see ReferencedIU in Section 6.2.

A requirement element has the following attributes:

• name [type=ID]
This REQUIRED attribute provides an internal identifier of the requirement.

• operations [type=base:ListOfOperations]
This OPTIONAL attribute defines the list of lifecycle operations performed on
the IU for which the requirement should be evaluated. Each item in the list MUST
be one of the enumerated values defined in base:Operation, namely:

o Create

o Update

o InitialConfig

o Migrate

o Configure

o VerifyIU

o VerifyConfig

o Repair

o Delete

o Undo

The assumed default, if the attribute is not specified, is “Create”.

Each alternative element, within a requirement, is an instance of an anonymous type
with the following attributes:

• name [type=ID]
This REQUIRED attribute provides an internal identifier of the alternative. The
value MUST be unique within the root IU.

Each alternative has an associated boolean value. This boolean value is “true” for
an alternative that is selected (based on the results of the associated checks and its
priority). The value is “false” for an alternative that is not selected (either because
one of the associated checks is not met, or because there are other satisfied
alternatives with a higher priority.

References to the boolean value of an alternative can be made in variable
expressions. As an example, a token $(altName) appearing in a variable
expression is expanded to the value (“false” or “true”) that is associated to an
alternative identified by the “altName” name attribute.

Therefore, the boolean value of an alternative can be used in conditional

Installable Unit Deployment Descriptor Version 1.0

 Page 69 of 219

expressions to determine the selection of units, see Section 9, or to determine the
setting of a derived variable, see Section 8.1.2.

• priority [type=nonNegativeInteger]
This OPTIONAL attribute associates a non negative integer priority value to the
alternative. A requirement MAY define multiple, non-exclusive alternatives.
Multiple alternatives MAY be satisfied when the unit is able to deploy and
configure itself in different ways, depending on the environment conditions. In
order to determine the “use” relationships that the IU instance establishes with its
pre-requisites it is important to know which one of the possible configuration
alternatives is implemented during install.

The priority attribute SHOULD be specified when there are non-exclusive
alternatives in a requirement, more than one of which can be simultaneously
satisfied, unless these should be treated as having the same priority (see below).

Specifying the same or no priority value for multiple alternatives within the same
requirement is interpreted as a declaration that any one of the satisfied alternatives
in this priority group could be equivalently exploited. An implementation MAY
request further external input to select one or more of these alternatives, e.g.
during an interactive install.

Each alternative is defined as a sequence of elementary checks whose result should be
verified. An elementary check is either referred to by the checkItem element – a reference
to a predefined elementary check – or it can be defined inline by the inlineCheck element.

A checkItem element within an alternative has the following attributes:

• checkIdRef [type=IDREF]
This REQUIRED attribute is a reference to the corresponding check and,
implicitly, to the variable containing the boolean result of that elementary check.

• testValue [type=boolean]
This OPTIONAL attribute defines the value of the check result for which the
alternative is satisfied. When the attribute is not specified, the default value “true”
is assumed. Specifying a value of “false” means that the check result MUST be
the boolean “false” for the alternative to be satisfied. In the case of a software
check, this means that the specified software IU is an “ex-requisite”.

An inlineCheck element MAY be used instead of a checkItem element to specify a
check directly within an alternative element, that is, without making a reference to the
result of an elementary check that is performed before the user input phase. An inline
check is an instance of the group siu:CheckChoice, already illustrated in Section 7.

7.2.1 Uses relationships

Uses relationships are established during install between an installable unit and
other software instances that constitute a dependency for the IU being created. The

Installable Unit Deployment Descriptor Version 1.0

 Page 70 of 219

specific relationships being established are determined by the software
dependencies declared in the IU and, in case of requirements with multiple
alternatives, by the specific alternatives that were satisfied. The alternatives that are
satisfied at install time SHOULD continue to be met during the unit’s life-cycle.

7.2.2 Example – Install requirements

The following example assumes that an SIU, implementing a JAVA application
can be installed on an operating system hosting environment with the following
requirements:

• The SIU requires 0.2 Megabytes (200K) of free disk space.

• The SIU requires 30 Megabytes of temporary disk space during install.

• The OS must be Windows 2000, Windows XP or Red-Hat Linux.

• The required maintenance levels of Windows 2000 are SP3 or SP4.

• Only the versions of Red-Hat between 7.2 and 8.1 are supported

• The DB2 product is required.

• The SIU supported DB2 version on Linux is 7.1

• On Windows the SIU supports any version of DB2 between 7.2 and 8.1.

• The ACME Personal Firewall product (any version) must not be installed
on Windows.

• The SIU requires an IBM JRE.

• The SIU supported JRE version on Linux is 1.3.1.

• On Windows the SIU supports any JRE version between 1.3.1 and 1.4.1.

• On Windows the SIU requires the IBM GS Kit v 4.0.2.49.

Here, for the sake of explaining custom checks, it is assumed that the last
requirement cannot be checked by means of a standard software check. This
situation might occur when the pre-requisite software is deployed by a native
installer and signature information is not available to perform its discovery.

Let us assume that the following elementary checks, each one referred to by the
value of the checkId attribute, are defined within the checks section of the IU
definition.

• Permanent_Disk_Space_Check

• Temporary_Disk_Space_Check

• Windows_2000_Check

• Windows_XP_Check

Installable Unit Deployment Descriptor Version 1.0

 Page 71 of 219

• Linux_Check

• Windows_version_Check

• Linux_version_Check

• db2_for_Windows_Check

• db2_for_Linux_Check

• JRE_for_Windows_Check

• JRE_for_Linux_Check

• ACME_Personal_Firewall_Check

• GSK4_WinRegistry_Check

Each one of these checks is explained in detail in the following sections. With the
above assumptions, the SIU requirements can be expressed by the following XML
fragment.

<requirement name="Install_Common_Reqmt" operations="Create">
 <alternative name="isDiskSpaceAvailable">
 <checkItem checkIdRef="Permanent_Disk_Space_Check" />
 <checkItem checkIdRef="Temporary_Disk_Space_Check" />
 </alternative>
</requirement>
<requirement name="Install_Dependencies_Reqmt" operations="Create">
 <alternative name="isLinux_Alternative_Satisfied">
 <checkItem checkIdRef="Linux_Check" />
 <checkItem checkIdRef="Linux_version_Check" />
 <checkItem checkIdRef="db2_for_Linux_Check" />
 <checkItem checkIdRef="JRE_for_Linux_Check" />
 </alternative>
 <alternative name="isWin2K_Alternative_Satisfied">
 <checkItem checkIdRef="Windows_2000_Check" />
 <checkItem checkIdRef="Windows_version_Check" />
 <checkItem checkIdRef="db2_for_Windows_Check" />
 <checkItem checkIdRef="JRE_for_Windows_Check" />
 <checkItem checkIdRef="ACME_Personal_Firewall_Check" testValue="false" />
 </alternative>
 <alternative name="isWinXP_Alternative_Satisfied">
 <checkItem checkIdRef="Windows_XP_Check" />
 <checkItem checkIdRef="db2_for_Windows_Check" />
 <checkItem checkIdRef="JRE_for_Windows_Check" />
 <checkItem checkIdRef="ACME_Personal_Firewall_Check" testValue="false" />
 </alternative>
</requirement>

There are two requirements in the above example that are both declared to apply to
the “Create” operation. The first one factors the common requirements (permanent
and temporary space) that must be satisfied on any operating system platform.
There is a single alternative in this requirement, and it does not have an associated
name. The second requirement can be satisfied by any one of the listed alternatives
(three). Of the following checks

• Linux_Check,

• Windows_2000_Check and

• Windows_XP_Check

Installable Unit Deployment Descriptor Version 1.0

 Page 72 of 219

only one is expected to be possibly “true” on a given operating system hosting
environment. This fact makes the three alternatives mutually exclusive and it
therefore eliminates the need of assigning each alternative a priority.

7.2.3 Example – Adding Requirements for Configuration

Some installable units may not need to declare requirements for any operation other
than Create. This is the case if it can be assumed that the execution of other
operations like Configure or Delete should not require additional resources. In
general however, there may be extra consumption resources (such as temporary
disk space) that are needed during any of the successive operations (Configure,
Verify) that may be performed during the IU life-cycle.

Requirements can be added that list the checks that must be executed when
executing one or more operations. In the current example, let assume that there are
actions, within this unit of software, executing a configuration program during the
Configure operation. Also assume that this configuration program need some
temporary disk space to run. A second requirement can be added to the sequence
causing the following checks to be executed during Configure:

• Ensure there is enough temporary space for the configuration program to
execute. This requires to define a new check
(ConfigData_Temp_Space_Check)

The following XML fragment illustrates the added requirement.

<requirement name="Configure_Reqmt" operations="Configure">
 <alternative name="isDiskSpaceForConfigureAvailable">
 <checkItem checkIdRef="ConfigData_Temp_Space_Check" />
 </alternative>
</requirement>

7.2.4 Example – Declaring non exclusive alternatives

In this example, an SIU MAY initially configure itself to work with one or more
database systems: DB_X, DB_Y or DB_Z This situation might be expressed as a
requirement with three alternatives, respectively associated to the following
variables:

• isDBX_Installed,

• isDBY_Installed, and

• isDBZ_Installed.

Installable Unit Deployment Descriptor Version 1.0

 Page 73 of 219

DB_X and DB_Y are the preferred choice: there may be Create and InitialConfig
artifacts in the SIU that install and initially configure the IU to work with DB_X,
DB_Y or both DB_X and DB_Y. The SIU should only install and initially
configure the code for working with DB_Z if neither of the other databases are
installed.

Multiple artifact sets can be associated to the SIU, see Section 9.3, each one
through a different unit element. Each unit element is conditioned, so it is possible
to use the results of checks to determine which unit should be processed depending
on the environment. Assume now that there are three independent artifact sets
associated to the SIU, each one capable of deploying and configuring code to work
with one specific database. The units (artifact sets) associated to the above
databases are controlled by the following conditions:

• DB_X unit condition:
“isDBX_Installed”;

• DB_Y unit condition:
“isDBY_Installed”;

• DB_Z unit condition:
 “isDBZ_Installed AND NOT (isDBX_Installed OR isDBY_Installed)”.

Declaring a priority for each of the above alternatives is a means to make the
installer aware of the unit’s install and configuration intents without any need for
the installer to infer the same information from an analysis of the conditions which
depend on each alternative variable.

This is obtained by assigning the isDBZ_Installed alternative priority = 1 (the
lowest) and by assigning the same and higher priority value – 2 – to the other two
alternatives.

 <requirement name="ConfigureDatabases" operations="Install">
 <alternative name="isDBX_Installed" priority="2">
 <checkItem checkVarName="DBX_Check" />
 </alternative>
 <alternative name="isDBY_Installed" priority="2">
 <checkItem checkVarName="DBY_Check" />
 </alternative>
 <alternative name="isDBZ_Installed" priority="1">
 <checkItem checkVarName="DBZ_Check" />
 </alternative>
 </requirement>

As explained in Section 7.2.1 above, the Uses relationships of the installable unit
are determined by the alternatives that are satisfied at install time and that are part
of the set with the highest assigned priority value. The selected alternatives
SHOULD continue to be satisfied during the entire life-cycle of the installable unit.

Installable Unit Deployment Descriptor Version 1.0

 Page 74 of 219

7.2.5 Requirements in referenced installable units

A referenced installable unit definition, see Section 6.2, MAY include additional
requirements that need to be satisfied by one or more topology targets defined in
the aggregating root IU. In that case, both the requirements specified within the
referenced IU descriptor and in the aggregating root IU MUST be processed: these
additional specifications do NOT override any requirements stated in the referenced
IU descriptor. An implementation MAY choose to optimize the checks it performs,
e.g. it MAY only perform the most stringent version range check or capacity check;
it SHOULD check the total consumption requirement.

7.3 Built-in checks

Checks described in this Section can be performed without providing user code.

7.3.1 Capacity check

A capacity check is used to check the value of a named property defining some
capacity of the target hosting environment. Each hosting environment type should
define the set of capacity properties that it supports and the units in which these are
expressed.

A capacity check element has the following attributes and elements, in addition to
the ones inherited by base:Check.

• type [anonymous type]
This OPTIONAL attribute may assume one of the following enumerated
values:

o “minimum” (default)
The value of the named property MUST be equal or exceed the
value specified in the check definition.

o “maximum”
The value of the named property MUST NOT exceed the value
specified in the check definition.

Installable Unit Deployment Descriptor Version 1.0

 Page 75 of 219

• propertyName [type=base:PropertyName]
This REQUIRED element is used to specify the name of a hosting
environment capacity property.

• value [type=base:VariableExpression]
This REQUIRED element is used to specify the threshold value (maximum
or minimum) of the property. If there are two capacity checks for the same
property and type= “minimum” only the one with the highest value needs to
be considered. If there are two capacity checks for the same property and
type= “maximum” only the one with the lowest value needs to be
considered.

7.3.1.1 Example
In the following example, “Processor/CurrentClockSpeed” is assumed4 to be
the name of a property exposing the processor frequency in MegaHertz in the
operating system hosting environment, and the check is used to determine
whether the processor speed is at least 400Mhz.

<capacity checkId="ProcessorSpeed_Check" type="minimum">
 <propertyName>Processor/CurrentClockSpeed</propertyName>
 <value>400</value>
</capacity>

7.3.2 Consumption check

A consumption check is used to check the availability of resources to be consumed
on the hosting environment. Typical examples of consumption properties on the
operating system hosting environment are disk space and memory. The
consumption requirement can be temporary or permanent. Multiple consumption
requirements for the same property on the same container are automatically
cumulated. Each hosting environment type should define the set of consumption
properties that it supports and the units in which these are expressed.

4 In general, the names of properties used in the examples are purely indicative of a plausible name for the
property being checked. The actual names of properties exposed by a given manageable resource should be
obtained from the manageable resource documentation.

Installable Unit Deployment Descriptor Version 1.0

 Page 76 of 219

A consumption check element has the following attributes and elements, in
addition to the ones inherited by base:Check.

• temporary [type=boolean]
When this OPTIONAL attribute has a value of “true” the requested quantity
of the named property is only needed during installation. The default value
is “false”.

• propertyName [type=base:PropertyName]
This REQUIRED element is used to specify the name of a hosting
environment consumption property.

• value [type=base:VariableExpression]
This REQUIRED element is used to specify the consumed amount of the
property. The value of the named consumption property MUST be equal or
exceed the sum of the values specified for the same property over the
installable units being deployed to the same hosting environment..

7.3.2.1 Example
“TotalVisibleMemorySize” and “FileSystem/AvailableSpace” are assumed to
be the names, in the following example, of properties exposed by the operating
system hosting environment which respectively determine the core memory
available for applications, in bytes, and available disk space for file allocations.
The checks determine if 131072 bytes of memory can be allocated to the IU,
when in the running state, and if 30.3 megabytes of temporary disk space are
available during installation.

<consumption checkId="Memory_Check">
 <propertyName>TotalVisibleMemorySize</propertyName>
 <value>131072</value>
</consumption>

<consumption checkId="Temporary_Disk_Space_Check" temporary="true">
 <propertyName>FileSystem/AvailableSpace</propertyName>
 <value>30</value>
</consumption>

Note that there may be multiple filesystems in the operating system that can
satisfy the consumption requirement. The above diskspace check will be
satisfied if any of the filesystems can satisfy the requirement. Note, however,
that it is the cumulative amount of diskspace that must be satisfied by a single
filesystem. If checks may be satisfied by multiple filesystem instances, the
requirement should be expressed using the targetRef attribute on each check.
Each check would indicate the logical instance of a “Filesystem” resource
hosted by the operating system that is to satisfy the check.

Installable Unit Deployment Descriptor Version 1.0

 Page 77 of 219

7.3.3 Property check

A property check is used to check the value of a property defined for a manageable
resource. Each resource type should define the set of properties that it supports.

A property check has the following elements, in addition to the ones inherited by
base:Check.

• propertyName [type=base:PropertyName]
This REQUIRED element is used to specify the name of a property being
checked on a target resource.

The property check definition MUST include one of the three following elements
(members of a CHOICE)

• pattern [type=string]
This element provides a string value to be interpreted as a regular
expression. The string value MUST be a valid instance of an XML pattern
facet. The regular expression SHOULD match the property (string) value.

• value [type=base:VariableExpression]
The property value MUST be identical to the one provided by this element.

• rootOfPath [type=base:VariableExpression]
This element provides a value to be interpreted as the full path name of a
given resource (e.g. a file), in which case the property specified by the
propertyName element should provide the path name of a unique context
for that type of resource (e.g. a filesystem where files are stored). There is a
single target instance satisfying the check (see an example in the following
section). The name of properties that support this variant of the check must
be obtained from the documentation of each target resource.

7.3.3.1 Examples
In the following example, “OsType” is assumed to be the name of a property
exposing the operating system type according to the definition of the
“OperatingSystem” type in CIM 2.8, see [CIM2.8].

Installable Unit Deployment Descriptor Version 1.0

 Page 78 of 219

<property checkId="Windows_2000_Check">
 <propertyName>OsType</propertyName>
 <value>Windows 2000</value>
</property>

<property checkId="Windows_XP_Check">
 <propertyName>OsType</propertyName>
 <value>Windows XP</value>
</property>

<property checkId="Linux_Check">
 <propertyName>OsType</propertyName>
 <value>LINUX</value>
</property>

In the following example, “root” is assumed to be the property exposed by a
file system type of resource, representing the root of path names for all files
and directories stored in a file system instance. The following property check is
satisfied by the unique instance hosting the directory whose path name is
declared by the rootOfPath element.

<property checkId="FileSystem_Check" targetRef="FileSystem_Target">
 <propertyName>root</propertyName>
 <rootOfPath>$(InstallDirectory)</rootOfPath>
</property>

7.3.4 Version check

A version check is used to check the value of a property of a target resource that
has the characteristics of a version. The actual names of properties holding version
information should be obtained from the documentation of each specific resource.

Any version property associated to a generic resource or hosting environment
MUST have values in the range defined for the vsn:GenericVersionString type. The
format and comparison rules for version strings are defined in Section 19.

Installable Unit Deployment Descriptor Version 1.0

 Page 79 of 219

A version check element has the following elements in addition to the ones
inherited by base:Check.

• propertyName [type=base:PropertyName]
This REQUIRED element is used to specify the name of a property whose
values MUST be in the format defined by the vsn:GenericVersionString
type.

At least one of the following two elements MUST be specified.

• minVersion [type=vsn:GenericVersionString]
This is the minimum value that can pass the version check.

• maxVersion [type=vsn:GenericVersionString]
This is the maximum value that can pass the version check.

7.3.4.1 Example
In the following example, “version” is assumed to be the name of a property
exposing the Windows operating system version and service pack level in a
format compatible with vsn:GenericVersionString.

 <version checkVarName="Windows_version_Check">
 <propertyName>version</propertyName>
 <minVersion>5.0.2195.3</minVersion>
 <maxVersion>5.0.2195.4</maxVersion>
 </version>

It should be noted that for a property to qualify for version identification it
MUST be possible to determine which one of two possible values is an
antecedent of the other. This MAY be obtained by combining into the version
property information that may be associated to different “native” properties. In
the above example, information relative to the Windows 2000 release (5.0) and
version (2195+ServicePack_4) is arranged in four version parts. A definition
of the actual structure of the version property being checked should be
obtained from the documentation of each specific resource.

7.3.5 Software check

A software check is used to determine whether a software resource is hosted in the
target hosting environment. Software resources include software that has been
installed by means other than the descriptor defined in this specification. This
contrasts with the installable unit check described in the following section, which is
intended to determine the presence of a deployed installable unit in the hosting
environment.

Installable Unit Deployment Descriptor Version 1.0

 Page 80 of 219

A software check has the following attributes, in addition to the ones inherited by
base:Check.

• type [type=base:RequisiteType]
This OPTIONAL attribute can assume one of the following two values:

o “pre_requisite” (default)
A “pre_requisite” must be installed before the dependent IU is
installed.

o “requisite”
A “requisite” must be installed before the dependent IU is Usable.

• exactRange [type=boolean]
This OPTIONAL attribute determines whether the check may be satisfied
by a backwards-compatible version of the software resource. This attribute
SHOULD NOT be specified – it SHOULD be ignored if it is specified –
when the UUID element is NOT specified (see below). The value defaults
to “false”, which means that the check CAN be satisfied by a backwards-
compatible version: i.e. the check will be passed when a newer version than
maxVersion is found which declares itself to be backward compatible with
a version level comprised between minVersion and maxVersion.

A software check has the following elements, in addition to the check description
element inherited from base:Check. All the elements are OPTIONAL. However at
least one of UUID and name MUST be specified.

• UUID [type=base:UUID]
The UUID of an installable unit, if one exists, that defines the required unit
of software.

• name [type=base:PatternOrValue]
The type of this element has an OPTIONAL boolean attribute – pattern.

o pattern [type=boolean]

When the element does NOT specify this attribute, OR the element does
specify the pattern attribute with a value of “false” – “false” is the default –

Installable Unit Deployment Descriptor Version 1.0

 Page 81 of 219

the content string is used to perform an equality comparison test with the
name of a software resource hosted by the target.

When the element is specified with the pattern attribute value of “true” the
string content MUST be a valid instance of an XML pattern facet and it is
interpreted as a regular expression to match the name associated to an
installed unit of software hosted by the target.

• minVersion [type=vsn:GenericVersionString]
This is the minimum value that can pass the version check.

• maxVersion [type=vsn:GenericVersionString]
This is the maximum value that can pass the version check.

• canBeSatisfiedBy [type=IDREF]
Reference to the IUName of a bundled requisite in the root IU, see Section
5.7. The bundled requisite SHOULD be installed on the target instance if
needed to satisfy a requirement associated to this check.

A software check MAY specify only the name of the software unit to be checked,
OR it MAY specify both the UUID and name.

A software check MAY specify only the UUID of the software unit to be checked,
in which case the name of the software resource to be checked SHOULD be
retrieved from an IUDD descriptor associated to that resource. See also the
following Section 7.3.6 for a definition of installable unit checks.

A software check SHOULD be used when the required software resource MAY
NOT have an IUDD or it MAY have been deployed by means of a legacy installer,
not enabled to process and register IUDD information. Both UUID and name
SHOULD be provided when the IUDD for the software dependency is available, in
order to enable the use of a backward compatible hosted resource that MAY have a
different name (see below).

Different hosting environments may support different types of software resources
(e.g. installed programs in the operating system; J2EE applications in the J2EE
environment), or may not host any form of software resource5.

The software resource may be recorded in a legacy registry that also includes
version information. For that reason, the version elements in a software check are
instances of the type vsn:GenericVersionString, and NOT of the vsn:VersionString
type, which defines a strict V.R.M.L format (see Section 19).

A software check establishes a dependency to a hosted software resource and not to
an IU instance.

The UUID information, when specified, SHOULD be used to locate a matching IU
descriptor. If an IU descriptor matching the UUID is found whose version and
backward compatibility declarations make a corresponding IU instance a candidate

5 A generalized “hosted resource check” MAY be defined in a future specification.

Installable Unit Deployment Descriptor Version 1.0

 Page 82 of 219

to satisfy the software dependency, the name specified in that descriptor is used to
perform the search over the hosting environment hosted resources. An exact
version matching is required (a backward compatibility declaration is ignored, if
present) when the exact_range attribute is specified by the software check. Note
that the search on hosted resources would fail if the IU was installed and registered
with its UUID but it is not known to the hosting environment by the name specified
in the descriptor. The diagram of Figure 10 illustrates the UUID processing. In this
example, it causes the selection of a hosted resource with a later version and a
different name.

Figure 10: Use of UUID in a software check

7.3.5.1 Example
 <software checkVarName="db2_for_Linux_check">
 <UUID>12345678901234567890123456789012</UUID>
 <name pattern="true">(DB2|Universal Database)</name>
 <minVersion>7.1</minVersion>
 </software>
 <software checkVarName="db2_for_Windows_check">
 <UUID>22345678901234567890123456789012</UUID>
 <name pattern="true">(DB2|Universal Database)</name>
 <minVersion>7.2</minVersion>
 <maxVersion>8.1</maxVersion>
 </software>
 <software checkVarName="JRE_for_Linux_check">
 <UUID>13345678901234567890123456789012</UUID>
 <name pattern="true">(IBM+.*J2RE)</name>
 <minVersion>1.3.1</minVersion>
 <maxVersion>1.3.1</maxVersion>
 </software>
 <software checkVarName="JRE_for_Windows_check">
 <UUID>12445678901234567890123456789012</UUID>
 <name pattern="true">(IBM+.*J2RE)</name>
 <minVersion>1.3.1</minVersion>
 <maxVersion>1.4.1</maxVersion>
 </software>
 <software checkVarName="ACME_Personal_Firewall_Check">
 <name pattern="true">(ACME+.*Personal Firewall)</name>
 </software>

Installable Unit Deployment Descriptor Version 1.0

 Page 83 of 219

7.3.6 Installable Unit Check

The installable unit check differs from the software check (see above section 7.3.5)
in that it is intended to perform checks on installable units based on identity and
other information declared in their IU descriptor. This information SHOULD be
persisted for an IU instance that is created or modified. Ideally, this information
would be periodically verified against the actual resources held in hosting
environments.

The IU check tests that an instance of a named IU, feature or fix exists within a
given hosting environment. If the IU spans hosting environments, this check tests
for the existence of any subcomponent within the target hosting environment.

An IU check supports different ways to identify the IU whose availability needs to
be checked. In particular, when the IUNameRef OR the featureIdRef element is
specified, the IU check is intended to represent an internal dependency check. This
type of check does NOT require to be verified against a hosting environment during
Create. Note that an internal dependency does NOT cause an implicit selection of a
feature or an inline IU: the semantic is that the dependent IU must be selected – if
conditioned, the condition MUST be satisfied – for the IU check to be positively
verified.

An installable unit check has the same attributes as a software check, defined in the
previous Section 7.3.5.

• type [type=base:RequisiteType]
This OPTIONAL attribute can assume one of the following two values:

o “pre_requisite” (default)

Installable Unit Deployment Descriptor Version 1.0

 Page 84 of 219

o “requisite”

• exactRange [type=boolean]
This OPTIONAL attribute determines whether the check may be satisfied
by a backwards-compatible version of the IU.

An installable unit check inherits a description element from the base type
base:Check. The IU check consists of either a standard IU check, an internal IU
dependency check, or an internal feature dependency check. These three variants of
the check correspond each to an element of an XML schema choice construct, and
are separately described below, each in a separate sub-section.

7.3.6.1 Standard IU Check
A standard IU check has the following elements, in addition to the check
description element inherited from base:Check. All the elements are
OPTIONAL. However at least one of UUID and name MUST be specified.

• UUID [type=base:UUID]
This is the UUID of the installable unit, as defined in the IU identity.

• name [type=token]
This is the name of the installable unit, as defined in the IU identity.

• minVersion [type=vsn:VersionString]
This is the minimum V.R.M.L. value that can pass the version check.

• maxVersion [type=vsn:VersionString]
This is the maximum V.R.M.L. value that can pass the version check.

• temporaryFixes [type=base:ListOfIdentifiers]
This is a list of NCName type of items. Each item identifies a required
temporary fix by a value that MUST correspond to the fix name as
specified by the fixName element in the fix definition.
This element MUST list all the names of fixes that are REQUIRED to
be applied to the IU.

• features [anonymous type]
If specified, this element contains a sequence of one or more name
elements, each one identifying a required IU feature:

o name [type=token]
The value of this element MUST correspond to the name
element in the feature identity definition.

• canBeSatisfiedBy [type=IDREF]
Reference to the IUName of a bundled requisite in the root IU, see
Section 5.7. The bundled requisite SHOULD be installed on the target
instance if needed to satisfy a requirement associated to this check.

Installable Unit Deployment Descriptor Version 1.0

 Page 85 of 219

7.3.6.2 Internal IU Check
An internal IU check specifies the internal identifier of an IU, within the root
IU. The check is verified – i.e. the check result is “true” – if the identified IU is
also installed. The identified IU MAY be defined among the selectable
contents, in which case the result of the check depends on feature selections,
see Section 5.4. The identified IU MAY have an associated condition, in which
case the result of the check depends on variables – including parameters,
derived variables, check results and requirement alternative results – that MAY
be referenced by the condition.

• IUNameRef [type=IDREF]
This is a reference to the IU that MUST be installed for the check to be
verified. The value MUST match the IUName attribute of an IU within
the descriptor.

7.3.6.3 Internal Feature Check
An internal feature check specifies the internal identifier of a feature within the
root IU. The check is verified – i.e. the check result is “true” – if the identified
IU is already installed or is selected to be installed. The identified IU MAY be
defined among the selectable contents, in which case the result of the check
depends on feature selections, see Section 5.4. The identified IU MAY have an
associated condition, in which case the result of the check depends on variables
– including parameters, derived variables, check results and requirement
alternative results – that MAY be referenced by the condition.

• featureIDRef [type=IDREF]
This is a reference to a feature that MUST be installed for the check to
be verified. The value MUST match the featureID attribute of a feature
defined within the descriptor.

7.3.7 Relationship Check

Relationship checks describe a specific relationship that MUST exist between a
target and another manageable resource. The structure of the relationship check is
illustrated in the diagram below:

Installable Unit Deployment Descriptor Version 1.0

 Page 86 of 219

The relationship check inherits the checkId and targetRef attributes from the base
type base:Check. In particular, the targetRef attribute identifies the topology target
that MUST satisfy the relationship check. The check is specified in two parts.

1. The identifier of the related target participating in the relationship.
Exactly one of the following three elements MUST be specified depending
on whether the relationship has an implied direction (such as Hosts) or is a
peer relationship. The referenced target MUST be defined within the root
IU descriptor.

• source [type=IDREF]
This element indicates that the target identified by the targetRef
attribute of the relationship check is the source of a directional
relationship with a related target identified by this element.

• sink [type=IDREF]
This element indicates that the target identified by the targetRef
attribute of the relationship check is the sink of a directional
relationship with a related target identified by this element.

• peer [type=IDREF]
This element indicates that the target identified by the targetRef
attribute of the relationship check and the one identified by this element
are in a peer relationship.

2. The name of the required relationship type, specified by the following
element.

• type [type=rel:Relationship]
This element is an instance of rel:Relationship, a type which defines the
range of admissible relationship types. This type is a union of
rel:StandardRelationship – defining a set of standard association
stereotypes – and the Name XML type. An association stereotype
defines a category of associations (relationships) with a common
semantics.

Installable Unit Deployment Descriptor Version 1.0

 Page 87 of 219

For example, if target A is to be the host of another target B, then the relationship is
specified as:
<target id="A" …>
 …
 <relationship checkId=”AHostsB”>
 <sink>B</sink>
 <type>Hosts</type>
 </relationship>
 …
</target>

Conversely, if target A is to be hosted by target B, then the relationship is specified
as:
<target id="A" …>
 …
 <relationship checkId=”BHostsA”>
 <source>B</source>
 <type>Hosts</type>
 </relationship>
 …
</target>

7.3.8 Custom Check

A custom check defines the execution of a check artifact on a target.

Like any artifact (see Section 9.5) check artifacts may have their variables
initialized via a parameter map. The same check artifact could be referenced by
multiple custom checks testing different sets of conditions, each set of conditions
being associated to the values of variables passed into the artifact. The actual
definition of the custom check artifact to be executed is not included within each
individual check. Artifacts referenced by custom checks are defined within the root
IU element customCheckDefinitions introduced in Section 5.3, and illustrated in
the following diagram.

Custom check definitions in the rootIU element are OPTIONAL.

A customCheckArtifact element – instance of siu:CustomCheckArtifact, derived
from the siu:Artifact type described in Section 9.5 – includes the same elements
that are common to all artifact definitions, namely:

Installable Unit Deployment Descriptor Version 1.0

 Page 88 of 219

• fileIdRef [type=IDREF]
This REQUIRED attribute is a reference to a file element in the root IU
defining the bundled artifact descriptor file. It MUST be a valid reference to
a file element within the root IU files element.

• type [type=siu:ArtifactFormat]
This OPTIONAL attribute is used to declare whether the artifact defines
actions or resource property definitions. The supplied default value
(“ActionDefinition”) is appropriate for a custom check artifact and it
SHOULD NOT be overridden with a different value. This restriction
SHOULD be enforced by the implementation; although it is not enforced by
the schema.

• parameterMaps [type=base:Maps]
This OPTIONAL attribute is used to declare mappings between variables in
the IUDD and variables defined in the artifact. This is a sequence of map
elements, each one associating an IUDD variable (internalName) to an
artifact variable (externalName). Parameter maps are explained in Section
9.5 for SIU and CU artifacts. Each map element has a direction attribute.
SIU and CU artifacts only support the default value (“in”) meaning that the
IUDD variable is used to initialize the artifact variable. However, a map
associated to a check artifact can specify the direction attribute to be “out”
thus requiring that the value of the artifact variable MUST be obtained at
the end of the check artifact execution and used to set the corresponding
IUDD variable.

It is REQUIRED that a check artifact define a “checkResult” variable whose value
at the end of the check artifact execution MUST indicate the boolean result (“true”
or “false”) of the custom check. A parameter map for the “checkResult” artifact
variable SHOULD NOT be defined (the result boolean value is used to set the
variable implicitly associated to the check, see Section 7.1.1). As a “side-effect” of
executing a custom check with parameter maps specifying the “out” value of the
direction attribute, one or more IUDD variables may have their values changed.

While most of the semantic associated to a custom check depends on the above
custom check artifact definition, the behavior of the check also depends on the
values of IUDD variables that are passed (direction “in”) into the artifact variables.
As explained below, the custom check (invocation) allows to specify new values
for these IUDD variables, whose change MUST be effective prior to the mapping.

A custom check has the following attribute in addition to the ones inherited from
base:Check.

• artifactIdRef [type=IDREF]
This REQUIRED attribute is a reference to a custom check command
definition. It MUST be a valid reference to a CustomCheckArtifact element
within the root IU element customCheckdefinitions.

A custom check may include one or more instances of the following element

Installable Unit Deployment Descriptor Version 1.0

 Page 89 of 219

• parameter [anonymous type]
The type of this element is derived from base:VariableExpression. This
element is used to to specify a value for a variable which must be set with
the specified value before any parameter map with direction “in” is
processed in the corresponding check artifact definition. The element
includes the following attribute

o variableNameRef [type=IDREF]
This attribute is used to identify the variable for which a value if
provided.

Some IUDD variables appearing with direction “in” in the artifact definition
may not need to be set for each specific check, i.e they retain the same value
across different checks, in which case these variables do not need to be set
by a parameter element in the custom check.

Note that implementing software pre-requisite checking through custom checks
(external commands) makes it impossible for an implementation to record a
relationship between the unit being installed and the pre-requisite software
resources.

The following is an example custom check declaration:

<custom artifactIdRef="winRegCustomCheck" checkId="GSK4_Win_Registry_Check">
 <parameter variableNameRef="Win_Reg_Hive">HKEY_LOCAL_MACHINE</parameter>
 <parameter
 variableNameRef="Win_Reg_Key">SOFTWARE\IBM\GSK4\CurrentVersion\Version</parameter>
 <parameter variableNameRef="Win_Reg_Type">REG_SZ</parameter>
 <parameter variableNameRef="Win_Reg_Value">4.0.2.49</parameter>
</custom>

The above example assumes that “winRegCustomCheck” is the identifier of a
check artifact defined in the IU descriptor, checking the value of a specified
registry key for equality against a specified value. The check artifact definition
corresponding is given below:

<customCheckArtifact artifactId="winRegCustomCheck">
 <fileIdRef>WinRegistryCheckArtifact</fileIdRef>
 <parameterMaps>
 <map>
 <internalName>Win_Reg_Hive</internalName>
 <externalName>Reg_Hive</externalName>
 </map>
 <map>
 <internalName>Win_Reg_Key</internalName>
 <externalName>Reg_Key</externalName>
 </map>
 <map>
 <internalName>Win_Reg_Type</internalName>
 <externalName>Reg_Type</externalName>
 </map>
 <map>
 <internalName>Win_Reg_Value</internalName>
 <externalName>Reg_Value</externalName>
 </map>
 </parameterMaps>
</customCheckArtifact>

Installable Unit Deployment Descriptor Version 1.0

 Page 90 of 219

In this example, the parameter elements in the custom check (invocation) assign
values to the four parameter variables that are mapped to artifact variables within
the custom check artifact definition.

Installable Unit Deployment Descriptor Version 1.0

 Page 91 of 219

8 Variables, Expressions and Conditions

Variables support late binding of additional information to an IU descriptor. This
information may be obtained from user input, from a target property query or from other
sources. Variables can be referenced within a schema when defining the value of an
attribute or element that is an instance of base:VariableExpression. Symbolic references
to a variable are substituted by the variable value when the expression is evaluated.
Expressions producing a boolean result value are used in conditions. Conditions MAY be
associated to an installable unit definition. They MAY be also associated to expressions
within a derived variable definition.

8.1 Variables

A variable can be one of several types, as described below:

• It is a parameter, provided by user input, response file or from an
encapsulating installable unit (see Section 8.1.1).

• It is derived from a variable expression (see Section 8.1.2).

• It is defined as a query against a target (see Section 8.1.3).

• It is defined as a query against an IU instance, returning the IU instance
discriminant. This is the value that uniquely identifies an IU instance within
a hosting environment, for example, the install location for an IU installed
into the operating system (see Section 8.1.4).

• It is specified as a resolved target list (see Section 8.1.5).

• It is specified by an IU update as a variable inheriting its value from a
variable that was defined in a previous level of the same IU instance (see
Section 8.1.6).

In addition to the above variables, which are explicitly declared, a variable expression
MAY contain a reference to the boolean result of a check, see Section 7.1.1, or to the
boolean result of a requirement alternative, see Section 7.2.

One or more variables MAY be defined by the element variables within an IU. This is
a sequence of one or more variable elements, instances of base:Variable. Each one
identifies a named variable that is needed to deploy the installable unit. The variable
MAY have a locale-sensitive description.

The above six forms of a variable definition are all represented in the following
diagram for the schema type base:Variable

Installable Unit Deployment Descriptor Version 1.0

 Page 92 of 219

A variable MUST specify the following attribute

• name [type=ID]
This REQUIRED attribute is an identifier that can be used to refer to the
variable. The value MUST be unique within the descriptor.

A variable MAY specify the following element

• description [type=base:DisplayElement]
This OPTIONAL element allows to associate text labels and a description
with this variable. See Section 17 for a general description of display
elements and their localization.

A variable MUST specify one of the six elements defined by the XML schema choice
construct. These are defined in the sections below.

8.1.1 Parameter

The parameter element defines a parameter variable. The value MAY be provided
by user input, response file or from an encapsulating installable unit descriptor via
a parameter map.

• parameter [anonymous type]
 The following attributes MAY be specified for this element

o defaultValue [type=base:VariableExpression]
This OPTIONAL attribute provides a default initial value for the
parameter variable. If no default value is specified, and no value is
provided by user input, response file or parameter map from an
aggregating IU, the value of the parameter variable is undefined. An
error SHOULD be generated when trying to access a parameter with an
undefined value.

o transient [type=boolean]
This OPTIONAL attribute is used to indicate that this variable contains

Installable Unit Deployment Descriptor Version 1.0

 Page 93 of 219

information (e.g. a password) that SHOULD NOT be permanently
stored, either because it is transient – the current value may become
invalid – or because the current value represents sensitive user
information. If needed on successive life-cycle operations associated to
a deployed IU instance, the current value will have to be supplied.

8.1.1.1 Example
<variable name="installToAllUsers">
 <parameter defaultValue="true"/>
</variable>

In the absence of an overriding value, the above definition of a variable named
“installToAllUsers” causes the default value (“true”) to be retained.

8.1.2 Derived Variable

The derivedVariable element defines a derived variable.

• derivedVariable [anonymous type]
The element MUST include one or more instances of the following
elements, each one defining a candidate value for this variable:

o expression [anonymous type]
The type of this element is derived from base:VariableExpression, and
it includes the following OPTIONAL attributes:

 condition [type=base:VariableExpression]
This attribute is used to specify a condition for this expression.
If more than one variable expression is provided, each one
SHOULD be qualified using a condition. The value of this
expression should be assigned to the derived variable if this
condition is “true”. The variable expression for this attribute
may include references to the boolean result value of a check or
to the boolean result of a requirement alternative. A derived
variable depending on the outcome of checks and alternatives
may be made available within artifacts, through parameter
maps, to determine the appropriate behavior of actions.

 priority [type=nonNegativeInteger]
The attribute specifies a priority for this expression. A priority
MUST be specified when multiple expressions are defined. If
multiple expressions have their conditions satisfied, the variable
will be set to contain the value of the expression with the
highest priority value (where “5” is a higher priority than “1”).
Two expressions SHOULD NOT specify the same priority.

Installable Unit Deployment Descriptor Version 1.0

 Page 94 of 219

8.1.2.1 Example
<variable name="install_root">
 <derivedVariable>
 <expression condition="$(Windows_Check)">C:\Program Files</expression>
 <expression condition="$(Linux_Check)">/usr/opt</expression>
 </derivedVariable>
</variable>

In the above example, the variable named “install_root” is set to the value
“C:\ProgramFiles” or to the value “/us/opt” depending on alternative
conditions. In this example, it is assumed that the variable expression
associated to each condition is the boolean result (“true” or “false”) of an
elementary check. It is also assumed that the two checks cannot be
simultaneously satisfied on the same hosting environment, therefore there is no
need to specify a priority.

8.1.3 Property Query

The queryProperty element defines a variable whose value is the result of a query.
Queries MAY be specified against a target that resolves to multiple physical
instances, based on the scope value (“all” or “some”).

When the variable is defined within a single-target IU and the target T is identical
to the IU hosting environment, the IU instance being deployed to a physical
instance Ti of the IU target T SHOULD “see” the variable to contain the property
value obtained from the same instance.

A query property variable defined within a multi-target IU SHOULD result in a
comma-separated list of values when the target resolves to multiple physical
instances. All lists associated to different query property variables defined for the
same target SHOULD have the value associated to a given target instance in the
same position. The ordering of values in the list SHOULD be consistent with the
sequence of target identifiers associated to a resolvedTargetList variable defined for
the same target, see Section 8.1.5.

• queryProperty [anonymous type]
This element defines the name of a property to be queried, and optionally
the target on which the query SHOULD be performed.

o propertyName [type=base:PropertyName]
This REQUIRED attribute defines the name of the property to be
queried.

o targetRef [type=IDREF]
This OPTIONAL attribute may be used to specify the target on which
the query SHOULD be performed. A variable definition within a single
target IU is NOT REQUIRED to specify the target: if a target is not
specified, the query is performed on the IU target hosting environment.
This attribute SHOULD be specified if the variable definition is NOT
within a single target IU. If the attribute is specified, the value MUST
be a valid reference to a target of a deployed target within the root IU.

Installable Unit Deployment Descriptor Version 1.0

 Page 95 of 219

If targetRef is specified for a single target IU and it is different from the
IU target, then EITHER the target has a scope of “one” OR it
SHOULD be possible to navigate relationships connecting the IU target
to the query target so that one and only one instance of the query target
is reached from the IU target. In the first case, the single target instance
SHOULD be queried. In the second case, the instance of the single
target IU being deployed to an instance “X” of the IU target will “see”
the variable to contain the property value from the instance “Y” of the
query target that is reached by navigation of the existing relationships.

8.1.3.1 Example
<variable name="database_name">
 <queryProperty property="name" targetRef="tDatabase" />
</variable>

In the above example, a query variable is defined to obtain the name of a
database. The example assumes that the topology target “tDatabase” defines a
manageable resource that exposes the needed database name via the “name”
property.

8.1.4 IU Discriminant Query

The queryIUDiscriminant element defines a variable whose value is the IU
discriminant of an installed IU instance. The IU instance discriminant is the value
that uniquely identifies an IU instance within a hosting environment, for example,
the install location for an IU installed into the operating system.

• queryIUDiscriminant [anonymous type]
This element defines the IU instance to be queried by reference to an IU
check, see Section 7.3.6, within the scope of the IU.

Use of a discriminant variable requires that the specific instance of an IU
satisfying the IU check MUST be identified. When multiple IU instances
satisfy the check, the user or the install runtime MUST select one instance.
The returned discriminant value MUST be the one associated with the
instance that is used within the root IU to satisfy the check.

The check referenced by a variable defined at the root IU level MUST be
defined within a root IU topology target, as these are the only checks in
scope for a variable in the root IU. However, the variable MUST not be
referenced outside the scope of an IU that is aimed on that target.

o iuCheckRef [type=IDREF]
This REQUIRED attribute MUST correspond to the checkId of an IU

Installable Unit Deployment Descriptor Version 1.0

 Page 96 of 219

check defined in the descriptor: it SHOULD correspond to the checkId
of a check that is in scope, see Section 7.1.1.

8.1.4.1 Example
<variable name="Linux_JRE_Home">
 <queryIUDiscriminant iuCheckRef="JRE_for_Linux_check" />
</variable>

In the above example, the variable named “Linux_JRE_Home” is set to the
value of the install location of the installable unit instance satisfying the IU
check named “JRE_for_Linux_Check”.

8.1.5 Resolved Target List

A resolvedTargetList is a variable whose value consists of the manageable resource
IDs (handles) of the actual resource or resources corresponding to a specified
target. It is assumed that a manageable resource id can be represented by a string
that does NOT contain a comma character. Where a target resolves to more than
one actual resource, the result is a comma-separated list. In that case, the ordering
of identifiers in the list SHOULD be the same applied to the sequence of values of
any property query on the same target that produces a list result, see Section 8.1.3.

A typical usage scenario for this capability is when a deployment application
delegates some aspects of deployment or configuration. In this case, the hosting
environment to which deployment is delegated needs to be aware of the target
topology for the components within its domain. Example: an SIU represents a J2EE
application that is targeted at TDM – a topology target representing the domain
manager of a J2EE administrative domain. However, one of the deployment
parameters that needs to be specified for the SIU artifact is the list of servers within
the domain onto which the application needs to be deployed. Another topology
target TAS is defined in this example to represent the specific set of J2EE
application servers in the J2EE domain. A “Hosts” relationship is required between
TDM and TAS, and additional requirements may be defined for TAS. A
resolvedTargetList variable defined for TAS provides the needed list of servers that
the SIU can pass into the artifact using a parameter map, so that it can be processed
by the hosting environment TDM.

• resolvedTargetList [anonymous type]
The resolvedTargetList element defines a variable whose value is set to
contain a list of manageable resource IDs, one for each selected instance of
a topology target identified by the targetRef attribute.

o targetRef [type=IDREF]
This REQUIRED attribute is used to specify the target whose resolved
instances are identified by this variable. The value MUST be a valid
reference to a topology target or deployed target in the root IU.

Installable Unit Deployment Descriptor Version 1.0

 Page 97 of 219

8.1.5.1 Example
<variable name="Actual_Targets">
 <resolvedTargetList targetRef="Solution_Server" />
</variable>

8.1.6 Inherited Variable

The inheritedVariable element specifies a variable that SHOULD inherit its value
from a variable defined in a previous level of the same IU instance. An
inheritedVariable SHOULD only be defined within an IU update or within a
temporary fix.

• inheritedVariable [anonymous type]
This element does NOT specify any content. The name of this variable, as
defined by the corresponding attribute, SHOULD be used to locate the
corresponding persisted value associated with an existing IU instance.

8.1.6.1 Example

8.1.7 Scoping rules for variables

The following rules apply to variable scope and override.

1. Variable names MUST be unique within the descriptor.

2. The scope of a variable is the IU in which it is defined, and any inline IUs
and CUs that the IU contains.

3. Variables defined in the root IU have global scope within the descriptor. An
iuDiscriminant variable defined in the root IU can be referenced only within
IUs that are associated to the same target whose check definition is
referenced by the variable definition.

4. Referenced IUs have a separate namespace for variables. The only
interaction is via parameter maps. An IU aggregating referenced IUs MAY
use a parameter map to redefine a variable in the referenced IU.

<variable name="definedInBase">

 <inheritedVariable/>

</variable>

Installable Unit Deployment Descriptor Version 1.0

 Page 98 of 219

8.2 Variable Expressions

Some elements of the IUDD schema are instances of base:VariableExpression. The
latter is a simple XML type derived by restriction from the XML base string type:

<simpleType name="VariableExpression">
 <restriction base="token">
 <pattern value="([^$]*($[^(])*($\([a-zA-Z_]+[0-9a-zA-Z_]*\))*)*"/>
 </restriction>
</simpleType>

The restriction forces the substring “xxxx” contained within an enclosing substring
“$(xxxx)” to be a valid variable identifier, as defined by the type NCName.

The consumer of an element that is an instance of the base:VariableExpression type
MUST resolve the variables in the string and substitute each “$(xxxx)” token
appearing in the variable expression with the value of the corresponding variable.

8.3 Conditional Expressions

A conditional expression MAY appear as the value of a condition attribute in the
following schema elements within the IUDD:

• An expression element, defined within the derivedVariable element of a
variable definition, see Section 8.1.2;

• An installable unit definition within the base or selectable content of the
root IU, see Section 6;

• A unit element within an SIU or CU defining an artifact set, see Section 9.3.

Conditional expressions also appear in artifacts where they are used to condition
actions and action groups, see Section 14.

Check variables, property queries and derived variables based on property queries
MAY be used in conditions. The use of parameters is permitted but discouraged, as a
condition is intended to represent an environmental constraint and not a user selection.
Resolved target lists and IU discriminant variables SHOULD NOT be used in
conditions.

A condition element is an instance of base:VariableExpression, see Section 8.2. Once
variable substitution has occurred in a condition, the resulting conditional expression
MUST be a (constant) XPath boolean expression, with the following restrictions:

1. When all the variable substitutions have been completed, the string value of a
condition element must be a valid XPath boolean expression. The format of
the XPath expressions is defined by the XML Path Language (XPath) Version
1.0 (http://www.w3.org/TR/xpath).

2. The boolean expression to which the condition element reduces after variable
substitutions SHOULD NOT contain any of the following:

• Variables References

Installable Unit Deployment Descriptor Version 1.0

 Page 99 of 219

• Node Sets Expressions, including functions returning a node set.

• Function calls.

These constraints SHOULD be enforced by the tooling and validated by the installer.

8.3.1 Example
condition="('$(win_drive)' != 'C:') and ('$(win_drive)' != 'Z:')"

Note that string literals can appear within single quotes if the conditional
expression attribute is enclosed within double quotes, and vice versa. Note that
operators like “<” and “>” cannot be directly typed within the conditional
expression and MUST be escaped by, for example using < and > respectively.
Syntax details are described at http://www.w3.org/TR/xpath.

8.4 Evaluation of variables, checks and conditions

Any variable that is declared in an installable unit and which is first used in the Create
or InitialConfig operations, see Section 4.2, SHOULD have its value set during the
operation in which it is first used. The value SHOULD then be saved and restored on
successive lifecycle operations.

A variable declared in a configuration unit or that is declared in an installable unit and
first used in the Configure operation SHOULD be re-evaluated during each Configure
operation. The value MAY be saved for use on successive VerifyConfig operations.

Conditions on IUs SHOULD be evaluated during the Create or Update operation, in
order to determine which IUs should be installed. Subsequent life cycle operations
SHOULD NOT add or remove an installable unit based on the current evaluation of a
condition.

Conditions on configuration units SHOULD be re-evaluated during each Configure
and VerifyConfig operation.

All checks SHOULD be re-evaluated in any operation for which their value is needed
to evaluate a requirement.

Installable Unit Deployment Descriptor Version 1.0

 Page 100 of 219

9 Software Smallest Installable Unit

This section defines the Smallest Installable Unit (SIU) of software. This is specified in
the schema file siu.xsd. The aggregation of such elementary units into larger aggregates
is described in Section 6.

An SIU instance is defined by the siu:SmallestInstallableUnit schema type illustrated in
the following diagram.

The SIU definition is an instance of the above type. It includes the following attributes:

• IUName [type=ID]
This REQUIRED attribute is an identifier of the IU element in the instance
document. It SHOULD NOT be confused with the IU identity name, see
Section 5.1. This attribute MAY be used to refer to the IU from other
elements within the descriptor.

• hostingEnvType [type=siu:AnyResourceType].
This OPTIONAL attribute specifies the type of the SIU hosting
environment. When specified, the value of this attribute SHOULD be equal
to the one specified by the type attribute of the target onto which the SIU is
installed, see Section 5.6.1. The latter is identified by the targetRef attribute
of the installableUnit element defining this SIU. The IU hosting
environment type may be specified to exploit tooling support for the
prevention of incorrect targeting. The type of this attribute is defined as a
union of the XML type QName and rtype:Rtype. Therefore, a user defined
hosting environment resource type can be specified as a QName value.
Standard enumerated values for resource types are defined in rtype:Rtype.
Tooling MAY constrain this attribute to known valid hosting environment
types (NOT all resources are hosting environments).

Installable Unit Deployment Descriptor Version 1.0

 Page 101 of 219

The schema constructs IUorFixDefinition, SingleTargetIUDefinition and Variables are
common to an SIU as well as to other installable unit types defined in Section 6:

• IUorFixDefinition
This element contains information about the identity, constraints, obsoletedIUs
and supersededFixes of the installable unit. This information is relevant to both
single- and multi-target installable units. See Section 9.1.

• SingleTargetIUDefinition
This element contains information specific to single-target installable units, such
as signatures, checks and requirements. Signatures are described in Section 13,
while the latter two elements – checks and requirements – are described in
Section 7.

• Variables
This element contains information about variables, defined within the context of
the SIU. See Section 8 for a definition of variables and variable expressions. Any
variable that is referenced by a variable expression within an SIU MUST be
declared within the SIU. See Section 8.1.7 for a definition of variable scope. The
most important use of variables, in an SIU, is in artifact parameter maps, which
associate variables defined in the SIU with variables defined within the artifacts.
See 9.5.

The SIU definition includes the following element in addition to the above constructs:

• unit [type=siu:InstallArtifactSet]
At least one instance of this element MUST be specified. The content of this
element defines one set of artifacts – artifacts are separately bundled descriptors
for actions OR resource property definitions – associated to this SIU. Artifact sets
are described in Section 9.3.
The unit element may specify the following condition attribute:

 condition [type=base:variableExpression]
This OPTIONAL attribute defines a condition that, controls the selection
of the artifact set associated to the unit element. At most one artifact set
will be selected. This attribute SHOULD NOT be specified when a
single unit element is defined. The attribute MUST be specified when
multiple unit elements are specified, in which case the conditions defined
for each of them SHOULD be constructed so that they are mutually
exclusive: if they are not, then an arbitrary selection between qualified
artifact sets MAY be made.

9.1 Installable Unit Definition

The main elements of an IU definition are grouped by the siu:IUorFixDefinition XML
group. The latter contains information which is applicable to both single-target and

Installable Unit Deployment Descriptor Version 1.0

 Page 102 of 219

multi-target installable units: part of the elements apply to an ordinary IU while other
apply to a temporary fix. The following diagram illustrates the part that applies to an
ordinary IU (the part of the diagram related to a temporary fix definition is not
expanded: it contains only the element fixIdentity, already defined in Section 5.2).

The identity element is defined in Section 5.1. This section describes the other
elements that can be specified as part of an IU definition, namely constraints,
obsoletedIUs and supersededFixes. Superseded fixes can be specified both in the
context of an IU definition and in the context of a fix definition.

• constraints [anonymous type]
This OPTIONAL element may be specified to include one or both of the
following two elements:

o maximumInstances [type=nonNegativeInteger]
This OPTIONAL element is the limit to the number of instances of the IU
that can be simultaneously present onto the same instance of a target hosting
environment. The number is unbounded when this element is NOT specified.

o maximumSharing [anonymous type]
This OPTIONAL element is an instance of a complex anonymous type,
extending the XML nonNegativeInteger type. The numeric value of this
element is the maximum number of IU instances that MAY have a
dependency on one instance of this IU. Containment and software
dependencies by other IUs in the same IUDD MUST NOT be considered.
Dependencies from outside of the root IU MUST be considered. These
include simple “Uses” relationships (when this IU satisfies a software
dependency) as well as “Federates” relationships (when this IU satisfies a
federated IU definition).
The following attribute MAY be used to further restrict the use of this IU
only by instances of an identified set of IUs.

 sharedBy_List [type=base:ListOfUUIDs]
This OPTIONAL attribute is a list of UUID values corresponding to
IUs whose instances are allowed to make shared use of this IU
(within the sharing limits set by the numeric value of the element).

Installable Unit Deployment Descriptor Version 1.0

 Page 103 of 219

• obsoletedIUs [anonymous type]
This OPTIONAL element of the IU definition consists of a sequence of one or
more elements, each one defining one IUs that is made obsolete by this installable
unit. When installed in the context of an Update operation, this IU deletes the
obsoleted IUs that are part of the same root IU instance. An IU SHOULD NOT
declare itself obsoleted (e.g. to have an instance of a previous version removed).

o obsoletedIU [anonymous type]
This element is used to specify the IU to be obsoleted. An obsoleted IU
SHOULD be physically deleted after installing the IU which contains the
obsoletedIU declaration. Deleting obsoleted IUs at the end of the update
process makes it possible to migrate configuration data that the IU may hold.
However, this implies that there should be no intersection between resources
(files, objects, etc.) deployed by the obsoleted IUs and content deployed by
the updating IU, otherwise some of the new content would be uninstalled
when the obsoleted IU is deleted. If multiple instances of the obsoleted IU
exists within the root IU instance being updated, these SHOULD be all
deleted. This elements contains an XML choice construct to select one OR
the other among the following two elements:

 UUID [type=base:UUID]
The UUID to be used to locate the obsoleted IU instances.

 name [type=token]
The identity name of the obsoleted IU instances.

• supersededFixes [type=base:ListOfIdentifiers]
This OPTIONAL element can be specified for both an IU and a fix definition.
The type of this element is defined as an XML list of NCName typed items. Each
item in the list is used to specify a value matching the name of the fix that is
superseded. The fixName element is part of a fix identity and it is described in
Section 5.2.

Updates and temporary fixes, see Section 11, MAY consolidate the contents of a
previously applied fix into their content. This information MAY be used by the
change management system to determine the appropriate action to take regarding
the currently installed fixes. If a fix or an update is applied that supersedes
another fix, then a check for the superseded fix may be satisfied by the
superseding fix. If an upgrade is applied and there are fixes on the previous level
that are not superseded by the upgrade, it may be necessary to reapply those fixes.

Declaring a fix as superseded SHOULD NOT require an implementation to take
any action other than eliminating the IU-Fix association after the superseding IU
(or Fix) has been applied to the target IU instance. That is, fixes declared as
superseded by a Fix or by an IU update are NOT REQUIRED to be rolled-back
when the fix or update is installed. The assumption is that a fix (or IU update) B
that supersedes a fix A must be robust enough to handle both the case in which fix
A is installed and the case in which it is not installed. The system SHOULD be

Installable Unit Deployment Descriptor Version 1.0

 Page 104 of 219

left in a consistent state in both cases. See Section 11.3 for a discussion of
updates to an instance with non superseded fixes.

9.1.1 IU Constraints Example
<constraints>
 <maximumInstances>1</maximumInstances>
 <maximumSharing sharedBy_List="1234567890...123456789012">100</maximumSharing>
</constraints>

The above sample XML fragment defines constraints for an IU of which there
MUST be no more than one instance. It also specifies that there could be a
maximum of 100 dependent instances sharing the same instance of the IU. All of
these dependent IUs are instances with the specified UUID (the sharedBy_List
attribute has only one element).

9.1.2 Obsoleted IUs
<obsoletedIUs>
 <obsoletedIU>
 <UUID>12345678901234567890123456789000</UUID>
 </obsoletedIU>
 <obsoletedIU>
 <UUID>12345678901234567890123456789001</UUID>
 </obsoletedIU>
 <obsoletedIU>
 <name>ThisIUname</name>
 </obsoletedIU>
</obsoletedIUs>

The above sample XML fragment defines three obsoleted IUs. The first two are
identified by their respective UUID. The last one is identified by its name.

9.1.3 Superseded Fixes
<supersededFixes>PTF012345 PTF123456 PTF234567</supersededFixes>

The above sample XML fragment contains a declaration that three temporary fixes
are superseded by the IU or fix whose definition contains the declaration.

9.2 Temporary Fix Definition

A temporary fix is an installable unit that is not part of the normal sequence of
released versions. A temporary fix MAY be a root IU, or an SIU, or any other type of
installable unit that MAY be defined as part of a root IU. What makes it possible to
distinguish a temporary fix from an ordinary IU is the identity. The identity of
temporary fixes is described in Section 5.2.

Any IU aggregate, including root IUs, that defines a temporary fix SHOULD only
aggregate IUs that are themselves temporary fixes.

When performing an installable unit check that includes checks on temporary fixes,
the check MUST list all of the required fix names. See Section 7.3.6. Although one fix

Installable Unit Deployment Descriptor Version 1.0

 Page 105 of 219

may explicitly supersede another fix, there is no concept of the “latest” fix superseding
all previous fixes.

A fix MAY consolidate one or more of the current temporary fixes. These are listed by
the supersededFixes element, which is described in the context of an IU definition in
Section 9.1.3.

Fixes MAY be categorized, by specifying the fixType element in the fix identity.

• fixType [anonymous type]
This OPTIONAL element may be used to specify one of the following
enumerated values:

o “InterimFix”
Tested and verified fix available to customers. It may contain fixes for
one or several product defects and fixes for internally discovered
defects. It is typically made available to the registered users.

o “TestFix”
A temporary or uncertified fix with limited testing that is supplied to
one or several customers for testing, but is typically not available for
the general public. Typically, this type of fix has little or no packaging,
i.e. may be file replacements.

o “ProgramTemporaryFix”
An individual fix that is typically made available to all customers. A
PTF resolves one customer reported problem.

9.2.1 Fix Dependencies

Two temporary fixes applying to the same single-target IU instance MAY be
subject to the following relationships, which pose constraints on their installation:

• ex-requisite
An instance SHOULD NOT have the two fixes simultaneously applied;

• co-requisite
An instance SHOULD have the two fixes simultaneously applied OR none
applied;

• pre-requisite
This is a directional relationship. The fix declaring another fix as a pre-
requisite SHOULD NOT be applied if the latter is NOT applied first.

In principle, it is possible to express the above relationships using IU checks, see
Section 7.3.6. In practice, this results in complex descriptors. For this reason the fix
definition includes the fixDependencies element. This element is expanded at the
bottom of the following diagram, whose other elements have been described in
Section 5.2.

Installable Unit Deployment Descriptor Version 1.0

 Page 106 of 219

• fixDependencies [anonymous type]
This OPTIONAL element may be specified to include one or more of the
following elements:

o pre-requisite_fixes [type=base:ListOfIdentifiers]
This OPTIONAL element is used to specify a space separated list of fix
names. Every one of the listed fixes SHOULD be applied before this
temporary fix can be applied.

o co-requisite_fixes [type=base:ListOfIdentifiers]
This OPTIONAL element is used to specify a space separated list of fix
names. Every one of the listed fixes SHOULD be available to be applied
with this temporary fix. The order in which the fixes are physically applied
is NOT specified and it SHOULD be irrelevant. This fix and all the ones
listed by this element SHOULD be applied before the updated IU achieve
the usable state.

o ex-requisite_fixes [type=base:ListOfIdentifiers]
This OPTIONAL element is used to specify a space separated list of fix
names. This temporary fix SHOULD NOT be applied if any of the listed
fixes is already applied to the IU being updated.

9.2.2 Fix Definition Example
 <installableUnit>
 <SIU IUName="PTF_1" hostingEnvType="OSCT:Operating_System">
 <fixIdentity>
 <name>MyPDF Reader</name>
 <UUID>12345678901234567890123456789012</UUID>
 <incremental>
 <requiredBase>
 <minVersion>5.0.1</minVersion>
 <maxVersion>5.0.4</maxVersion>
 </requiredBase>
 </incremental>

Installable Unit Deployment Descriptor Version 1.0

 Page 107 of 219

 <fixName>PTF123456</fixName>
 <fixDependencies>
 <pre-requisite_fixes>PTF001234 PTF012345</pre-requisite_fixes>
 </fixDependencies>
 </fixIdentity>
 <unit>
 <installArtifacts>
 <installArtifact>
 <fileIdRef>PTF_1Actions</fileIdRef>
 </installArtifact>
 </installArtifacts>
 </unit>
 </SIU>
 </installableUnit>

The above sample XML fragment contains a complete definition of a temporary fix
SIU. The identity element defines the name and UUID of the IU to which the fix
can be applied. The fix name is “PTF123456” and it has fixes “PTF001234” and
“PTF012345” as pre-requisites. The unit element describes artifacts associated to
this temporary fix SIU.

9.3 Unit - Artifact Sets

The unit element in an SIU defines the artifacts to be used when performing life cycle
operations on the installable unit, see Section 4.2. An artifact is a descriptor containing
the definition of actions to be performed on the hosting environment, or a definition of
a set of resource properties to be configured. The separation of the action definition
from the declarative IU dependency information permits a supporting implementation
where the IU descriptor is interpreted by a generic change management component,
whereas the actions are interpreted by a hosting-environment specific component.

Installable Unit Deployment Descriptor Version 1.0

 Page 108 of 219

InstallArtifactSet

ConfigurationArtifactSet

Config
VerifyConfig

Install
InitConfig
VerifyInstall
Migrate
Delete

Target HE

Created
Resource

The above diagram illustrates the artifact sets. There are two defined sets of artifacts.
The first set handles the lifecycle operations that are performed to install an IU. The
second set of artifacts handles the operations to configure or reconfigure the IU.

An SIU contains one or more artifacts, each one intended for use with a specific life
cycle operation. As an example, an Install artifact is needed for the Create and Update
operations, while an Uninstall artifact is needed for Delete. The artifact is REQUIRED
to be an XML document, but its exact content beyond that is constrained only by the
hosting environment, although this specification does provide recommended formats –
the Action Definition and Resource property Definition – that may be extended, see
Sections 14 and 15. The intended implementation is that the appropriate artifact is
passed to the hosting environment, which then uses the artifact to performing the life
cycle operation.

As SIU unit is an instance of siu:InstallArtifactSet, and it describes the artifacts related
to the installation of software. Units are also defined for configuration units (CU) units
that are instances of siu:ConfigurationArtifactSet, describing artifacts related to
configuration. This section describes the artifacts related to installation. Those related
to configuration are described in Section 10.

The type siu:InstallArtifactSet is illustrated in the following diagram.

Installable Unit Deployment Descriptor Version 1.0

 Page 109 of 219

The following OPTIONAL elements are instances of siu:UndoableArtifact – which is
an extension of the base type siu:Artifact, defined in Section 9.5, including the
following attribute:

o undoable [type=boolean]
This OPTIONAL attribute – default is “false” – is used to identify whether the
associated life cycle operation can be performed in an “Undo” mode. Where
supported, an undoable operation supports a rollback operation, where the
installable unit is rolled-back to its state prior to applying the operation. An
implementation SHOULD support at least the Update operation in “Undo” mode
An implementation MAY support only a single level of undoable Update, in
which case it MAY automatically commit a previous level.
The artifact types described by each one of the elements illustrated in the above
diagram are described in the Section 9.4 below.

• installArtifact [type=siu:UndoableArtifact].
This OPTIONAL element SHOULD define an Install artifact.

• initialConfigArtifact [type=siu:UndoableArtifact]
This OPTIONAL element SHOULD define an InitialConfig artifact.

• migrateArtifact [type=siu: UndoableArtifact]
This OPTIONAL element SHOULD define a Migrate artifact.

The following OPTIONAL elements are instances of the siu:Artifact type, described
in Section 9.5

• verifyInstallArtifact [type=siu:InstallArtifact]
This OPTIONAL element SHOULD define a VerifyInstall artifact.

• uninstallArtifact [type=siu:InstallArtifact]
This OPTIONAL element SHOULD define an Uninstall artifact.

Installable Unit Deployment Descriptor Version 1.0

 Page 110 of 219

9.4 Install Artifacts and IU Lifecycle Operations

Artifacts are either applied to a hosting environment to implement a software life-
cycle operation; or they are applied to a manageable resource to set or to verify a
specified configuration. Artifacts of the first type will be generally referred to as
“install artifacts”, while artifacts of the second type will be referred to as
“configuration artifacts”.

Install artifacts are part of the definition of a Smallest Installable Units (SIU) while
configuration artifacts are part of the definition of a Configuration Unit (CU). Note
that there are no artifacts associated with an IU aggregate.

Artifact type Description

Install If the install artifact is associated to a base SIU (or a full update
SIU, see Section 11.1) it can be used by the Create operation to
create an instance of the SIU.

If the artifact is associated to an update (full or incremental) or
to a fix, it can be used by the Update operation to install the
update (or the fix) to an existing instance of the required base
SIU.

A software instance is initially created and then it is possibly
modified by successive update operations, each one applying the
install artifact associated to an update or fix SIU.

Actions defined in the install artifact MAY refer to bundled files
provided with the packaged solution. Access to the bundled files
referenced by the install artifact is only supported by the Create,
Update and Repair operations. Other operations that MAY
access the install artifact (Delete, Undo, VerifyIU) do NOT have
access to the referenced bundled files. Other artifacts MUST
NOT contain references to bundled files.

InitialConfig The initialConfig artifact is used only for a base or a full update
SIU, see Section 11.1.

A fix or an SIU defining an incremental update MUST NOT
specify an initialConfig artifact.

The artifact defines actions that are needed to bring a newly
created IU instance in the Usable state. When this artifact is
specified, the Create operation leaves a newly created instance
in the “Created” state, to indicate that a successive InitialConfig
operation is needed to bring the instance to the Usable state.
Otherwise, the newly created instance transitions directly to the
Usable state.

Installable Unit Deployment Descriptor Version 1.0

 Page 111 of 219

Artifact type Description

Actions defined in the initialConfig artifact MUST NOT contain
references to bundled files.

Migrate The artifact defines actions that are needed to configure an
updated IU instance.

The migrate artifact is used only for a full update or an
incremental update.

A fix or an SIU that cannot be used to upgrade a base instance
MUST NOT specify a migrate artifact.

When this artifact is specified, the Update operation leaves a
modified instance in the “Updated” state, to indicate that a
successive Migrate operation is needed to bring the instance to
the Usable state. Otherwise, the updated instance transitions
directly to the Usable state.

Actions defined in the migrate artifact MUST NOT contain
references to bundled files.

VerifyInstall The verifyInstall artifact is used by the VerifyIU operation to
perform integrity checking of an SIU instance.

On some hosting environments the VerifyIU operation MAY
process the install artifacts successively applied to the instance
by updates and fixes.

Access to the actions defined by the install artifact for creating
or updating the SIU instance may be exploited to identify
resources, created as part of the SIU instance, that need to be
verified. As the SIU instance may have passed through multiple
updates, the VerifyIU MAY need to examine multiple install
artifacts.

Some hosting environments MAY allow the SIU definition of
the verifyInstall artifact to be a reference to the SIU install
artifact. In that case, the VerifyIU operation SHOULD use the
install artifact to identify the resources (e.g. files) created as part
of the install that need to be verified.

Actions defined in the verifyInstall artifact MUST NOT contain
references to bundled files.

Uninstall The uninstall artifact is used by the Delete operation to perform
the removal of an SIU or fix.

An update or fix that does not introduce new resources as part of

Installable Unit Deployment Descriptor Version 1.0

 Page 112 of 219

Artifact type Description
an existing instance (only modifies pre-existing resources)
SHOULD NOT specify an uninstall artifact.

On some hosting environments the Delete operation MAY
process the install artifacts successively applied to the instance
by updates and fixes.

Access to the actions defined by the install artifact for creating
or updating the SIU instance may be exploited to identify
resources, created as part of the SIU instance, that needs to be
removed. As the SIU instance may have passed through multiple
updates, the Delete MAY require to examine multiple install
artifacts in reverse order.

Some hosting environments, MAY allow the SIU definition of
the uninstall artifact to be actually a reference to the SIU install
artifact. In that case, the Delete operation SHOULD use the
install artifact to identify the resources (e.g. files) created as part
of the install that need to be removed.

Actions defined in the uninstall artifact MUST NOT contain
references to bundled files.

As illustrated in the above table, a single artifact can be accessed in the context of
different IU lifecycle operations. The following table lists the primary artifact
accessed by each operation.

Lifecycle Operation Artifact Type

Create Install artifact

InitialConfig InitialConfig artifact

Update Install artifact

Migrate Migrate artifact

Delete [Uninstall artifact] [Install artifact]

VerifyIU [VerifyInstall artifact] [Install artifact]

Repair [Install artifact]

Undo [Install artifact]

Note that the Undo operation MAY need to access the install artifact to roll-back the
last update applied to an instance, but that MAY NOT be required on all hosting
environments. Analogously, the Repair operation MAY NOT need to access the install

Installable Unit Deployment Descriptor Version 1.0

 Page 113 of 219

artifacts of the IU instance being repaired. An artifact type between square brackets, in
the above table, MAY NOT be accessed by the corresponding operation.

9.5 Artifact

The type siu:Artifact, illustrated by the following diagram, is the base type for all
artifacts defined within an artifact set.

The only REQUIRED content of an artifact definition, within the IUDD, is a reference
to a bundled file containing the actual artifact. The latter is itself a descriptor of
variables and actions or properties that MAY contain references to other bundled files.

An artifact definition has the following attributes:

• HE_restart_required [type=boolean]
This OPTIONAL attribute – default is “false” – specifies whether a hosting
environment restart (in case of an operating system hosting environment this
would correspond to a reboot) is REQUIRED after processing the actions in
the artifact. See Section 9.5.1.

An artifact definition has the following elements:

• fileIdRef [type=IDREF]
This REQUIRED element is used to identify the bundled file containing the
artifact (XML descriptor). The value MUST be a valid reference to a bundled
file, see Section 5.8.

• type [type=siu:ArtifactFormat]
This element is OPTIONAL. The assumed value, if the element is NOT
specified, is “ActionDefinition”. The type of this element is a union of
siu:StandardArtifact Format and NCName, where the former enumerates the
names of two standard artifact formats. Any value in the range of NCName
MAY be assigned to the element to specify a user-defined artifact format.
The standard enumerated values are:

o “ActionDefinition”.
See Section 14 for a definition of the proposed format for artifacts of
this type.

Installable Unit Deployment Descriptor Version 1.0

 Page 114 of 219

o “ResourcePropertiesDefinition”.
See Section 15 for a definition of the proposed format for artifacts of
this type.

• parameterMaps [type=base:Maps]
This OPTIONAL elements maps variable names in the descriptor to variable
names that are meaningful in the context of the hosting environment. The use
of these variables is hosting-environment specific. These MAY be used to
initialize variables defined within the artifact, see Section 14, OR they MAY
be used directly by the hosting environment. In particular, some of the
external variable names, in these maps, MAY identify variables that have a
special meaning to the hosting environment (e.g. install path). Each map
element can be used to specify the following elements:

o internalName [type=IDREF]
This REQUIRED element is a reference to a variable defined within the
IUDD whose value is used to initialize a corresponding artifact variable
identified by the externalName element.

o externalName [type=NCName]
This REQUIRED element is used as a reference to avariable defined
within the artifact that MUST be initialized with the value of the IUDD
variable identified by the internalName element.

The map element also includes an attribute – direction – that can be used to
specify a reverse mapping where the value of an artifact variable is used to
set an IUDD variable. The default value of this attribute (“in”) is
appropriate for an SIU or CU artifact, as it corresponds to the above stated
semantic of the internalName and externalName mapping. A different
value (“out”) can be only specified for a check artifact (see Section 7.3.8).
In other terms, there is no provision for variables to be set as a result of
executing a SIU or CU artifact.

9.5.1 Declarative Hosting Environment Restart

A restart of the hosting environment runtime, e.g. an operating system reboot,
SHOULD NOT be directly invoked by actions in the artifact. The need for a restart
of the hosting environment MAY be indicated using the HE_restart_required
attribute (default “false”) in the artifact definition. If this attribute is set to “true”,
the hosting environment SHOULD be restarted after processing of the artifact has
been completed.

The restart is NOT conditioned to the occurrence of specific conditions (e.g. the
presence of locked files on an operating system hosting environment). However,
the restart MAY be postponed until after further IUs within the same life cycle
operation have also been processed within the same hosting environment, provided
that none of the IUs with a pending restart are required as pre-requisites.

A pre-requisite IU MUST be brought to the Usable state by performing the pending
restart before other dependent installable units can be installed.

Installable Unit Deployment Descriptor Version 1.0

 Page 115 of 219

In some cases it is possible and preferable to determine the need for a restart while
the target hosting environment is processing the artifact. In order to support this
capability, a hosting environment MAY provide interfaces – that actions supported
within an artifact MAY leverage – to notify the need if a restart. After notification,
the restart would be properly sequenced with other pending operations. In that case
the requirement for restart SHOULD NOT be normally declared in the artifact
definition.

Installable Unit Deployment Descriptor Version 1.0

 Page 116 of 219

10 Configuration Unit

A configuration unit (CU) is an atomic unit of configuration. Like an SIU, a CU can be
specified as part of an aggregated installable unit. The following differences exist
between a configuration unit and an SIU:

• A CU does NOT have a unique identity and does not represent a distinct entity
with a defined lifecycle (e.g. that might be recorded in a registry).

• Configuration units can be targeted NOT only to hosting environments, but
also to any type of managed resource.

• The life cycle operations applying configuration units to the target managed
resources are described in Section 4.3.

A configuration unit is an instance of siu:ConfigurationUnit, the type illustrated in the
following diagram.

A configuration unit has the following attributes:

• CUName [type=ID]
This REQUIRED attribute is an identifier of the CU definition within the IUDD.
This attribute MAY be used to refer to the CU from other elements within the
descriptor. It does NOT provide a persistent global identifier.

• resourceType [type=siu:AnyResourceType]
This REQUIRED attribute is used to specify the resource type of the CU target
managed resource. The type of this attribute is defined as a union of the XML
type QName and rtype:RType. Therefore, a user defined resource type can be
specified as a QName value. Standard enumerated values for this field are defined
in rtype:Rtype.

Installable Unit Deployment Descriptor Version 1.0

 Page 117 of 219

A configuration unit has the following elements:

• displayName [type=base:DisplayElement]
This OPTIONAL element allows to associate text labels and a description with
the corresponding CU. See Section 17 for a general description of display
elements and their localization.

• manufacturer [type=base:DisplayElement]
This OPTIONAL element allows to specify the name and description of the CU
manufacturer. See Section 17 for a general description of display elements and
their localization.

• checks [type=siu:CheckSequence]
This OPTIONAL element includes a sequence of checks, see Section 7.1.

• requirements [anonymous type]
This OPTIONAL element includes a sequence of requirements, see Section 7.2.

• variables [anonymous type]
This OPTIONAL element includes a sequence of variables, see Section 8.1.

• unit
This REQUIRED element defined the configuration artifact set for the CU.
Artifact sets are introduced in Section 9.3. This element is an instance of
siu:ConfigurationArtifactSet, described in Section 10.1 below.

10.1 Configuration Artifact Set

The type siu:ConfigurationArtifactSet is illustrated in the following diagram.

The following OPTIONAL elements are instances of the type siu:Artifact, defined in
Section 9.5. The artifacts described by each one of the elements illustrated in the
above diagram are described in the Section 10.2 below.

• configArtifact [type=siu:Artifact].
This OPTIONAL element SHOULD define a Configure artifact.

• verifyConfigArtifact [type=siu:Artifact]
This OPTIONAL element SHOULD define a VerifyConfig artifact.

Installable Unit Deployment Descriptor Version 1.0

 Page 118 of 219

Each one of the above artifact declarations MAY include information on its format
through the OPTIONAL type element. Standard enumerated values, see Section 9.5,
are:

• “ActionDefinition”
The artifact defines actions to be executed on a target hosting environment.
This format MAY be appropriate for a CU that configures an IU instance
through its hosting environment.
See Section 14 for a definition of the proposed format for artifacts of this type.

• “ResourcePropertiesDefinition”
The artifact defines property values. This is the preferred format to define the
configuration of a manageable resource.
See Section 15 for a definition of the proposed format for artifacts of this type.

10.2 Configuration Artifacts and IU life cycle

The artifacts described in the following table are applied to a manageable resource to
set or to verify a specified configuration.

Artifact type Description

Configure The configure artifact is associated to a CU and it defines
actions to configure a resource. The artifact is processed by
the Configure operation acting on a manageable resource.
Actions defined in the configure artifact MUST NOT
contain references to bundled files.

VerifyConfig The verifyConfig artifact is used by the VerifyConfig
operation to verify the configuration of a manageable
resource. Actions defined in the verifyConfig artifact
MUST NOT contain references to bundled files.

Installable Unit Deployment Descriptor Version 1.0

 Page 119 of 219

11 Temporary Fixes and Updates

Both fixes and updates are considered to be a form of installable unit, which can occur at
any level of aggregation, including as a root IU. Fixes and updates follow a hierarchy that
must match the hierarchy of the original root IU, so that a consistent set of rules applies
to both fixes and updates.

Only one fix can be defined within an update or fix root IU for each inline IU in the
base. Specifically, only one fix per SIU can be defined. The fixName element (see
Section 5.2) identifying a fix aggregate IU logically represents all fixes applied to any of
the aggregated children IUs6.

A fix aggregate IU applying to an aggregate in the base that included a referenced or
federated IU, may include multiple fixes7 for that referenced or federated IU. The order
of applying multiple fixes to the same referenced IU is determined by sequence numbers
or by fix dependencies.

6 It is possible to use the same fixName value for all the inline fixes defined within a top-level IU.
7 A fix (or update) to a referenced IU in the base MUST be defined as a referenced IU, i.e. it is not possible
to use an inline IU to update a referenced IU.

Installable Unit Deployment Descriptor Version 1.0

 Page 120 of 219

X Offering
5.0.0

B CC
5.0.0

A CC
5.0.0

Federates
Contains
(HasComponent)

X Offering
5.0.1

A CC
5.0.1

A CC
5.0.1 Fix 1

B CC
5.0.1

B CC
5.0.1 Fix A

B CC
5.0.1 Fix B

Contains

Federates

Required base

Required base

Required base

Figure 11: Fixes and updates in an aggregated IU

Figure 11 illustrates the use of fixes and updates. An offering X, consisting of two
components A and B, is shipped at Version 5.0.0 and deployed as a fresh install. A
subsequent update to X is shipped at version 5.0.1. It contains an incremental update to
both A and B, and fixes which apply to those incremental updates.

If an aggregating IU contains an update to a child IU, then that aggregating IU must also
be updated. However, a root IU MAY be independently installed and it MAY be
federated by multiple aggregating IUs. Fixes and updates applied to the federated IU
outside of the context of an aggregating IU would NOT be reflected as an update (version
change) of the aggregating IU. This process, MAY cause the dependencies of the
aggregating IU to be invalidated, if the dependencies specify a maximum version for the
federated IU: an implementation of the deployment system may warn if this is the case. A
similar situation MAY occur when a federated IU is updated as part of an aggregated IU,
and is also shared by another aggregated IU.

Installable Unit Deployment Descriptor Version 1.0

 Page 121 of 219

Installable units are categorized as "Full" or "Incremental". A full IU always has a unique
version number, and MAY either be a base install, which installs a new version of a
product; or an upgrade, which MAY either install a new version, or upgrade an existing a
version to a new version. The remainder of this section considers only incremental IUs,
and Full IUs that can be applied as updates.

An incremental update IU MAY contain only the subtrees of its original content
containing the modified SIUs. An incremental update MAY also introduce new IUs and
fixes. It MAY specify that certain IUs have been “obsoleted” and are no longer needed.

A full update MAY totally replace the previous version of the installable unit. Since a full
IU MAY be installed independently of an existing base, it MUST include all the content
that is part of the required base and that is NOT being obsoleted.

A full IU MUST aggregate only full IUs, or full IUs plus updates and fixes to those IUs.
It MUST NOT aggregate an update or fix on its own. However, it MAY contain fixes and
updates as bundled requisites.

An incremental update IU MAY aggregate full IUs, update IUs and fixes. However, for
each one of the aggregated updates or fixes, the IUs to which these are applied MUST be
defined in the IUDD of the base root IU. Each one of these updates or fixes is applied to a
corresponding IU instance within the root IU instance being updated. In particular, the
update process relies on the restriction stated in Section 6 that an aggregate IU cannot
have two children with the same UUID, to associate each IU update to a single instance
of its required base that is located within the corresponding aggregation level within the
updated root IU, see Section 12.5.1.

A fix is a form of incremental update, but SHOULD only aggregate other fixes.

Characteristics of the fix/update support include:

• It is possible to place requirements on a fix at the SIU or CIU level.

• Fixes and updates are applied in a given context (within their aggregating IU).

• A set of fixes for a solution can be provided, that are to be installed together.

• In-line IUs within a solution cannot be updated by fixes for the same IU in
another solution8.

Elements of the identity definition for installable units are described in Section 5.1. In
particular, one of the two elements illustrated in the following diagram MAY be specified
to indicate whether the IU is an update to another base IU. When no elements are
specified, the IU is assumed by default to be a “full” IU with no upgrade base.

8 Fixes applied to an IU within a root IU may require corresponding fixes to other IUs in the root IU. They
may not be generally applicable to the same IU within a different root IU.

Installable Unit Deployment Descriptor Version 1.0

 Page 122 of 219

• full [anonymous type]
When specified, this element declares the IU to be a full IU, which requires no
pre-existing upgrade base to be installed. The following elements further qualify
the nature of the full IU.

o upgradeBase [type=base:requiredBase]
This OPTIONAL element indicates that the full IU MAY be applied as an
upgrade to an existing base. It also defines the range of prior versions to
which this IU MAY be applied as an update. The following elements
define the version range:

 minVersion [type=vsn:VersionString]
This OPTIONAL element defines the minimum required version.

 maxVersion [type=vsn:VersionString]
This OPTIONAL element defines the maximum required version.

o type [anonymous type]
This OPTIONAL element can be use to categorize full IUs. The value can
assume one of the following enumerated values:

 “BaseInstall”
A deliverable that contains the initial release of a product.

 “ManufacturingRefresh”
A deliverable that is a product replacement, containing all
previously delivered maintenance plus, optionally, new fixes not
delivered previously. This type of update may be provided as new
media, and may be packaged to install as an upgrade or as a new
install. It may apply to one or multiple products but can only apply
to one release of a product or bundle of products. It optionally may
not contain fixes previously shipped that have been found to be in
error and have not yet been fixed by available maintenance. If it
contains new function, other than any small new function (such as
a new device driver) already contained in a previously shipped fix
that is included in this Manufacturing Refresh, then "M" in V.R.M
SHOULD be incremented

 “RecommendedServiceUpgrade”
Cross product tested recommended service upgrade (RSU). A
cross product/component consolidated, tested, and recommended

Installable Unit Deployment Descriptor Version 1.0

 Page 123 of 219

set of service to a platform (or multi-platforms for distributed).
Contains all latest product/component interim fixes (distributed),
fix packs, PTFs, and refresh packs. Any previously shipped fixes
may not be included in an RSU if they have been found in error
and a correcting fix is not yet available when the RSU is built. If
new function is included in a RSU, then "M" in V.R.M SHOULD
be incremented.

• incremental [anonymous type]
When specified, this element declares the IU to be an “incremental” update, that
MAY only be applied to an existing update base. The following elements further
qualify the nature of the full IU.

o updateBase [type=base:requiredBase]
This REQUIRED element defines the range of prior versions to which this
IU can be applied as an update. This element is an instance of the same
type – base:RequiredBase – discussed above for the upgradeBase element
of a full IU.

o type [anonymous type]
This OPTIONAL element can be use to categorize incremental updates.
The value can assume one of the following enumerated values:

 “FixPack”
A fix pack is cumulative, i.e. contains all the fixes shipped in
previous maintenance to the release including previous fix packs.
Contains all fixes made to the original V.R.M. (i.e. 5.0.0) delivery
or to the most recent manufacturing refresh/refresh pack
(cumulative deliverable applying to one V.R.M., i.e. 5.0.1). MAY
be applied on top of any previously shipped maintenance to bring
the system up to the current fix pack level. It MAY include
additional fixes not previously shipped. It MAY span multiple
products or components.

 “RefreshPack”
Same definition as fix pack, but a refresh pack also contains new
function. The deliverable SHOULD increment the "M" of V.R.M.

 “CriticalFixPack”
Similar to fix pack except that this deliverable consists of a
collection of selected fixes (test fixes, interim fixes, etc.) which are
usually fixes of defects with high severity.

 “DeltaFixPack”
Similar to fix pack except this deliverable is not cumulative since
GA, refresh pack, or manufacturing refresh.

 “CriticalDeltaFixPack”
Similar to a delta fix pack except that this deliverable consists of a

Installable Unit Deployment Descriptor Version 1.0

 Page 124 of 219

collection of selected fixes (test fixes, interim fixes, etc) which are
usually fixes of defects with high severity.

Elements of the identity definition for temporary fixes are defined in Section 5.2. In
particular, the element incremental/requiredBase is an instance of base:RequiredBase and
it defines the admissible version range for the IU to which the fix can be applied.

11.1 Full update use for Create and Update

A full IU can be used to create a new instance (fresh install) or to upgrade an instance
of the associated upgrade base. Therefore, the descriptor of a full update IU can be
used by the Create and the Update operations. During the Update operation it MUST
be possible to identify IUs, including aggregates, that are already defined in the base
descriptor and that SHOULD NOT be installed as part of the update.

A full IU specifying an upgrade base SHOULD declare obsoleted all IUs in the base
that are not represented in the full IU descriptor9. When used as an update, the full IU
establishes a new base, i.e. the history of previous updates applied to an existing IU
instance in the upgrade base that is not obsoleted SHOULD be ignored. The IUDD of
the full IU and its associated artifacts are used for the life cycle management of any IU
instance that is part of the updated root IU after the update.

It is recommended that an update descriptor use the same IUName internal identifier
for IUs that are also defined in the base descriptor. If the same IUName internal
identifier is used in an update, it SHOULD apply to the corresponding IU in the base.
However, there is no requirement to be able to associate the IUName internal
identifier with an installed IU instance. As a result, identification of the IU instances
MUST be based on UUID.

The following constraint MUST be imposed on IUDD documents to support the above
identification method:

An aggregate IU CANNOT include two sibling IUs that have the same UUID.

With the above restriction, identification can proceed top-down from the root IU.
When corresponding aggregates have the same version no update is required.
Otherwise, for any IU definition in the current aggregate level, the following
alternatives may occur:

• An IU found in the update descriptor does not have a UUID match with an IU
instance in the corresponding level within the root IU instance being updated.
The IU represents new content that MUST be deployed as part of the update,
either because:

9 Otherwise, an instance created by the full IU via fresh install would be structurally different from an
instance created by applying the full IU as an update to an instance of the upgrade base.

Installable Unit Deployment Descriptor Version 1.0

 Page 125 of 219

o although defined in the base IUDD, the IU was not selected in the base
due to different feature selections or conditions; OR

o this is a new IU introduced in the update IUDD.

The Create operation is performed to create an instance of the new child IU.

• For the IUs that have a UUID match, the version must be compared:

o A matching version means that an IU was already deployed as part of
the base, hence nothing needs to be done.

o When an instance with a lower version is found, the corresponding IU
in the update MAY be an update (or fix) to the base instance OR it
MAY be a new base that obsoletes the current instance. An Update, or
a Delete followed by a Create is performed, depending on which one of
the above occurs.

o An instance with an equal or higher version may be found when this is
a federated IU that has been updated outside of the context of this
aggregating IU. In that case, no update is required.

The IU descriptor of a full update may include CUs within aggregates that are also
part of the upgrade base, as well as CUs that belong to new aggregates. When the full
IU is applied as an update to an existing instance, it causes CU definitions to be reset,
i.e. the CUs that are associated in the full IU to an aggregate that already exists in the
base SHOULD replace the old ones and constitute a new base for CUs in that
aggregate.

By contrast, CUs defined within an incremental update are simply added to the ones
already defined for a corresponding aggregate of the base. An aggregate IU that is an
incremental update SHOULD NOT contain a CU with the same CUName internal
identifier of a CU defined in the corresponding base IU. If one such CU is defined, the
definition SHOULD be ignored – it SHOULD NOT be interpreted as a definition
superseding the CU definition in the base.

11.2 Requirements checking on updates

The sub-set of topology targets specified for the base root IU that are targeted by
updates MUST be defined in the topology element of the update root IU. The target
“id” attribute, see Section 5.6.1, is used to associate targets in the update with targets
in the base. The topology in the update IU MAY include also additional targets,
associated to new features. Any IU within the update root IU that defines an update to
a base IU must be associated to the same target.

Selection requirements of a target declared in the topology section of the base
SHOULD be omitted in the descriptor of an incremental update. If specified, they
SHOULD be ignored.

Installable Unit Deployment Descriptor Version 1.0

 Page 126 of 219

11.2.1 Target instances selected for the update

An update is deployed onto the target instances that were selected during install of
the base: a candidate target instance that was not selected when the base IU was
deployed SHOULD not be targeted by the update. Different implementations may
have different methods to determine the range of target instances where the base IU
was installed and onto which the update can be applied.

An updated IU – or a new IU that is part of the update – MAY introduce new
requirements to be satisfied on a topology target. For example, a new service pack
needs to be installed on an operating system target. However, it SHOULD be
possible to satisfy the new requirements on all instances of the target that were
selected when the base instance was created. This can be achieved for new software
requirements by specifying the canBeSatisfiedBy clause in the check.

Requirements on the target that are introduced by a new or updated IU MAY be
declared in that IU OR they MAY be defined as additional validation requirements
on the corresponding target.

11.2.2 Reference to variables in the base IU descriptor

The value of a variable defined within the descriptor of the base IU may have been
passed through a parameter map for use by actions defined in the install artifact.
The actions in the install artifact of an update IU MAY need this information in
order to implement the update in a consistent manner. Therefore, it SHOULD be
possible to access the value of a variable defined in a previous level.

Variables defined by an IU and used during install SHOULD retain their value
across operations (see 8.4). Moreover, variables defined within multiple updates of
the same IU MUST share the same namespace:

• a specific variable declaration – inheritedVariable – can be used within an
update to create a reference to a variable declared in some previous level,
including the base level (see Section 8.1.6).

• a variable name SHOULD NOT be reused in a new level other than via
inheritedVariable. The behavior is undefined if the variable name is re-used,
although some implementations MAY detect the error.

11.2.3 Updating dependencies

An update or fix SHOULD contain a complete definition of its requirements.

Therefore it is expected that some requirements would duplicate the same already
expressed in the IU descriptor of the update base. While it is a good practice to use
the same internal identifiers for checks, requirements and alternatives that have a
correspondence with the ones declared in the update base, this is NOT required.

An update or fix MAY have more stringent requirements on a software dependency
(i.e. a dependency associated to a software or an IU check) that was also declared

Installable Unit Deployment Descriptor Version 1.0

 Page 127 of 219

in the base IU. In that case the update MAY include bundled requisite IUs to satisfy
those requirements.

An example is as follows. An update is required to IU “B” because of an update
being applied to another IU “A”, on which “B” depends. It is desired to ship both
updates in a single root IU, in order to apply updates to both IUs at the same time.
The synchronized update of an IU and its dependencies can be specified as follows:

• the check specified by IU “BUPD” (update to B) identifies the software
dependency by the same UUID (and/or name) and a newer version;

• a bundled requisite IU containing “AUPD” (update to A) is specified by the
canBeSatisfiedBy element of the check.

When installing the update, the requisite SHOULD only be applied to upgrade an
instance that is already in use by the base IU.

<iu checkId="A_check_in_Bupdate">
 <UUID>12345678901234567890123456789012</UUID>
 <minVersion>8.1.1</minVersion>
 <canBeSatisfiedBy>bundled_A_FixPack</canBeSatisfiedBy>
</iu>

11.2.4 Requirements with multiple alternatives

An implementation of the Update operation needs to ensure that, in presence of
software dependencies declared in multiple alternatives of a requirement, the same
instance of an external software dependency is selected that is already in use by the
base. See Section 7.2 for a definition of requirements with alternatives.

To facilitate this, the following assertion is made:

One IU MUST NOT have a dependency on more than one IU instance with a given
UUID or name.

If an IU update declares a software dependency to an IU with the same UUID (or
name) as a dependency already satisfied in the base, the same instance already in
use SHOULD be selected. Because of the above assumptions, the following
process can be applied to the evaluation of alternatives for each requirement
declared in the IU update:

• Software dependencies that are in use by the IU instance being updated are
identified;

• Any software dependency within an alternative that matches a dependency
already in use – by UUID or name, not necessarily version – is restricted to
be satisfied by the same instance, possibly after applying an update if the
corresponding check specifies a newer level – or temporary fixes – and a
bundled requisite. See Section 11.4 below;

• If a software dependency in a selected alternative in the base appears in
more than one alternative in an update, then this needs to be resolved to one
alternative in the update. This resolution MAY be performed automatically,

Installable Unit Deployment Descriptor Version 1.0

 Page 128 of 219

based on criteria such as the number of satisfied dependencies in the
alternative, or priority. The resolution MAY also be made by an external
decision, e.g. by a user selection.

11.2.4.1 Example
One application requires one database for its internal use and another one for
customer data, and there are separate requirements for each one: the customer
data could be on database IUs “dbXX” or “dbYY”, while the private
application data should be on “dbZZ” or “dbXX”. When the application is first
created, “dbXX” is selected for both customer data and for private data (e.g.
because “dbYY” and “dbZZ” were not available or were lower priority
alternatives). Where the two requirements are declared in the same IU, the rule
stated in the previous section prevents the application to be installed having the
same CIU or SIU dependent on two different instances of “dbXX”. Therefore
it can assumed that in this case the base IU instance will have two software
dependencies satisfied by the same instance of “dbXX”.

The following XML fragments illustrates how the requirements may be
defined in the base IU:

<requirements>
 <requirement name="customer_data_database" operations="Create">
 <alternative name="dbXX_found" priority="2">
 <checkItem checkIdRef="db2_check"/>
 </alternative>
 <alternative name="dbYY_found" priority="1">
 <checkItem checkIdRef="oracle_check"/>
 </alternative>
 </requirement>
 <requirement name="private_data_database" operations="Create">
 <alternative name="dbZZ_found" priority="2">
 <checkItem checkIdRef="db2_check"/>
 </alternative>
 <alternative name="dbXX_found" priority="1">
 <checkItem checkIdRef="oracle_check"/>
 </alternative>
 </requirement>
</requirements>

An update for the above IU could specify the same requirements for the above
databases, apart from a new update level that is required on “dbXX”. At the
time when the update is applied, “dbZZ” is found to exist in the system and
that is the preferred choice for the application private data. However, the
process illustrated in the previous section will still select the “dbXX”
alternative on both requirements, because there is one instance of “dbXX”
already in use by the required base.

Installable Unit Deployment Descriptor Version 1.0

 Page 129 of 219

11.3 Update to an instance with non superseded fixes

As explained in Section 9.1 for the supersededFixes element of an IU definition,
updates and fixes MUST be able to handle superseded fixes. However, nothing can be
assumed about the compatibility of an update or a temporary fix with fixes that are
already applied to the IU instance being updated, when

• these fixes are NOT listed as being superseded by the update or fix; e.g.
because these fixes were released after the update was manufactured

• fixes already applied are NOT listed among fix dependencies, see Section
9.2.1, of a new fix that is being applied.

The following SHOULD apply to fixes identified by the above conditions:

• A fix “B” MAY be applied without rolling-back an applied fix “A” that is not
superseded by “B”. However, “B” SHOULD NOT be applied if “A”
supersedes “B”.

• When installing an update, full or incremental, all fixes that are NOT listed as
superseded by the IU SHOULD be rolled back before processing the update.

• In the previous situation, if there are fixes NOT superseded by the update that
cannot be rolled back, the update SHOULD NOT be installed. A new level
update will be required, that includes the installed fix among superseded fixes,
OR that declares updated fix dependency information.

11.4 Bundling updates to a federated IU

A federated IU may be defined in an update with the intent to apply maintenance to an
IU instance federated by the base IU. The following conditions MUST be met for the
update to be possible:

• The federated IU definition appears in the update descriptor in the same
relative location with respect to the root IU where the corresponding federated
IU appears in the base.

• for each alternative in the base federated IU definition that requires an update,
there is an alternative in the update definition whose IU check specifies the
same UUID; see Section 6.3 for a definition of federated IUs;

• the canBeSatisfiedBy element of each IU check in the federated IU definition
refers to a bundled requisite that can be installed as an update on top of the
corresponding IU in the base declaration.

Installable Unit Deployment Descriptor Version 1.0

 Page 130 of 219

11.5 Configuration units and the update process

Updates and fixes applied to a root IU instance may introduce new configuration units,
which are processed initially during the Migrate process. See Section 4.3. After the
Update is applied, CUs associated to obsoleted IUs and superseded fixes are not
applicable any more. However, when a Configure operation is re-applied in full mode,
see Section 4.2.5, to an IU instance that was subject to one or more incremental
updates or fixes, all the configuration units defined in the IU descriptor of the base and
the ones defined in the IU descriptors of the updates/fixes are re-applied.

The order in which CUs are applied is determined by depth-first rule and sequence
numbers, as discussed in Section 12. As an example, a CU defined with the highest
sequence number in a top-level IU will be the last to be applied within that context.

All CU definitions introduced by an incremental update are intended to be
incremental. In order to cope with the problem of CUs possibly causing undesired
effects, an implementation MAY support selecting CUs that should not be applied
during the InitialConfig, Migrate and Configure operations.

As explained in see Section 11.1, applying a full IU update to an existing base has the
effect of establishing a new base for configuration units, thus effectively replacing any
CUs associated to a non obsoleted IU instance.

Installable Unit Deployment Descriptor Version 1.0

 Page 131 of 219

12 Evaluation Order

The following guidelines illustrate the expected order of evaluation for targets,
dependencies and variables. The guidelines are intended to facilitate a consistent
interpretation of IUDDs by different management applications.

This section also defines how to determine the order of installation of IUs.

12.1 Variable evaluation

Variables MAY be evaluated on-demand. Variables MUST be evaluated before they
are used.

The return from a query MAY be affected by the installation of other IUs. The
“nominal” value of a query is its value when the query is performed immediately
before the installation of the IU in which it is defined: a query SHOULD NOT be
evaluated prior to this point, although it MAY be evaluated any time before first use.
To avoid unexpected differences in behavior, its value SHOULD NOT be modified by
any installation actions before its first use. Once evaluated, the value of a query
SHOULD NOT be re-evaluated.

Variables that are NOT used, e.g. because they are used inside a condition which
evalutes to “false”, MAY NOT be evaluated.

12.2 Target evaluation

The candidates for a given logical target SHOULD satisfy all of the selection
dependencies specified in the root IU and in all referenced IUs, recursively, that have
a target map for that target. The members of the resolved target list SHOULD satisfy
all of the selection and validation dependencies in the root IU and in all referenced
IUs, recursively, that have a target map for that target. See Section 5.6.1.

Targets SHOULD only be evaluated if they correspond to hosting environments for
selected IUs, to the targets of checks for selected IUs; OR to resources whose
existence is required by required relationships of other targets.

12.3 IU dependency evaluation

Custom checks SHOULD NOT be used in topology requirements, because to evaluate
them would typically require installation and execution of code on the candidate
targets, and an implementation is not REQUIRED to support this. If an
implementation does support this, then variable expressions involving variables based

Installable Unit Deployment Descriptor Version 1.0

 Page 132 of 219

on queries SHOULD NOT be used within the custom check, as the queries may be
against targets that have not yet been resolved.

Evaluation of IU checks and software checks SHOULD take into account the list of
IUs that are selected for install, as well as the list of IUs that are already installed.

All of the requirements on child IUs and referenced IUs SHOULD be evaluated before
installing a given IU.

12.4 Order of installation

Order of installation is defined to be depth-first. The schema supports specifying a
sequence number on installable units and configuration units. This sequence number
can be used to control ordering of immediate children within a parent: child IUs are
ordered by increasing sequence number. If an explicit sequence number is not
specified, the IU MUST be installed after any IU with a specified sequence number.
Where two siblings have the same sequence number, the dependency checker MAY
choose to order them as best meets any dependencies, or can install them in parallel.

For the top level of IUs and CUs in a root IU, the sequence numbers span both
required content and selectable content. Sequence numbers associated to configuration
units are processed during the Configure operation.

4 21

IU B

IU DIU CCU 1CU 2

IU FIU E

1

CU 3IU G

Figure 12: Sequencing of install

Installable Unit Deployment Descriptor Version 1.0

 Page 133 of 219

In the above example, one possible order for completion of install would be: IUG,
IUD, IUE, IUF, IUC, IUB. During configuration, the order of configuration would be:
CU3, CU1, CU2. Note that IUB completes install after all of its children, although it
effectively starts its install prior to its first child (IUD).

The use of sequence numbers is primarily intended for situations where the aggregate
consists of a set of tightly coupled inline IUs, where the details of actual dependencies
may not be fully understood or may be very numerous. For relatively loosely coupled
IUs, the preferred mechanism is to specify internal dependencies within the root IU. In
particular, if there are dependencies between different selectable content IUs, these
should be expressed using IU checks, because this will allow checking of the
consistency of selections and the order of install. However, note that the existence of
an internal dependency between the IUs does not cause the implicit selection of a
feature containing dependent IUs.

These internal dependencies should be expressed using an IU Check, specifying the
internal IU name of the IU that must be installed first, see Section 7.3.6.

The presence of a dependency between two installable units MUST be consistent with
the sequencing of their install as determined by their position in the aggregate tree and,
if siblings, by their sequence numbers.

An IU “Y” – base install, update or fix – MAY have a pre-requisite (default) or
requisite dependency on another IU “X”. That dependency is expressed by an IU
check or by a software check. A pre-requisite dependency must be satisfied before
install, while a requisite dependency must be satisfied before install is completed. This
information may be used by the install runtime in determining the appropriate install
order, not only within a root IU, but also between requisites and prerequisites.

12.5 IU lifecycle operations and prerequisites

The lifecycle operations for an installable unit are described in Section 4.2. This
section describes how these lifecycle operations apply to aggregated IUs.

When performing a change management operation on an aggregated IU, the lifecycle
operation for each child IU will depend on:

• The lifecycle operation being performed by the root IU.

• Whether the child IU already exists.

• The existence of any prerequisite dependencies.

In particular, a pre-requisite IU “X” that is being created (new instance) MUST be in
the Usable state, thus requiring the Create and InitialConfigure operations to be
applied, before a dependent IU “Y” can be installed. Analogously, a pre-requisite IU
“X” that is being updated MUST be in the Usable state, thus requiring the Update and
Migrate operations to be applied, before a dependent IU “Y” can be installed.

Installable Unit Deployment Descriptor Version 1.0

 Page 134 of 219

For example, consider the update A’ illustrated in the following figure.

4 21

IU A’
(Update)

IU C
(New)

IU B’
(Update)CU 1CU 2

IU E’
(Update)

IU D’
(Update)

1

CU 3IU F
(New)

InitCfg

MigrateInstall Install

Install

Config Config

Config

sequence numbers

artifacts

artifacts

artifacts

4 21

IU A’
(Update)

IU C
(New)

IU B’
(Update)CU 1CU 2

IU E’
(Update)

IU D’
(Update)

1

CU 3IU F
(New)

InitCfg

MigrateInstall Install

Install

Config Config

Config

sequence numbers

artifacts

artifacts

artifacts
Figure 13: Update with new content

In this case all IUs are updates other than IUC and IUF, which are new IUs. This IU
can be installed in the context of an Update operation to an existing instance of IU A,
the required base onto which IU A’ can be applied. Installing this IU will cause the
Update lifecycle operation on IUA, IUB, IUD and IUE; and a Create lifecycle
operation on IUC and IUF.

The following principles determine the sequence of operations when installing an
update:

• each IU instance to which an update/fix is applied MUST be in the Usable
state;

• both new and updated IU instances SHOULD be left in the Usable state at the
end of the update process (error conditions are NOT discussed here).

If there are no pre-requisite relationships specified between resources, a lifecycle
operation on an aggregated IU will cause its child IUs to perform the same lifecycle
operation. In this case, all of the IUs will be brought to the “Created” or “Updated”
state, and then to the “Usable” state. The initial creation or update lifecycle operations
are initiated from the child IUs according to the sequencing rules described in the
previous section. The sequence of lifecycle operations for the above example will be
(IU state changes listed at each step between square brackets):

1. IUF.Create [IUF Created, IUC Created]

Installable Unit Deployment Descriptor Version 1.0

 Page 135 of 219

2. IUD.Update [IUD Updated]

3. IUE.Update [IUE.Usable, IUB Updated]

4. IUF.InitialConfig [F Usable]

5. IUD.Migrate [IUD Usable, B Usable]

6. CU3.Configure [IUC Usable]

7. CU1.Configure
8. CU2.Configure [IUA Usable]

In the above sequence, step 4 does NOT cause IUC to become Usable, because there is
a new configuration unit that needs to be applied. As explained in Section 4.3,
configuration units define the repeatable part of the initial configuration, and the new
CUs introduced by the update are automatically applied at the end of the update
process. This is represented by steps 6-8 in the above sequence.

When there are pre-requisite relationships, the prerequisite IU must be in the “Usable”
state before a dependent IU can be installed. As an example, let assume that a pre-
requisite dependency exists between IUE and IUD. This means that IUD must be fully
configured before IUC can be installed. Steps 1-5 in the above sequence would change
as follows:

1. IUF.Create [IUF Created, IUC Created]

2. IUD.Update [IUD Updated]

3. IUD.Migrate [IUD Usable]

4. IUE.Update [IUE.Usable, IUB Usable]

5. IUF.InitialConfig [F Usable]

12.5.1 Multiple updates with pre-requisites

The diagram in Figure 14 illustrates in more detail the case of an aggregate (IU A’)
including updates (E’, F’ and F”) to installable units (E and F) within the base IU
A.

In this example, the dashed boxes represent a target IU that is being updated when
the aggregate update A’ is installed on an existing instance of A.

Multiple incremental updates to the same base can be chained together, as shown in
the example for F, F’ and F”. In this example, F” is applied to the instance that is
created by applying F’ to F. As a general rule, the presence of a sibling update X’
satisfying the required base definition for an update X” is always restricted to apply
to the same instance of X which X’ is applied to. This is consistent with the general
rule stated in Section 6 that an IU aggregate cannot have two children with the
same UUID.

Installable Unit Deployment Descriptor Version 1.0

 Page 136 of 219

Figure 14: Multiple updates within the same aggregate

The following general applies to the update process:

The required base specified in update and fix definitions MUST be treated as a pre-
requisite type of dependency.

A pre-requisite type of dependency implies that the required resource MUST be in
the Usable state before a dependent IU can be installed.

In the above example, F” has a pre-requisite dependency on F’. As a consequence,
update and migrate operations (if migration is required) are required to bring F’ to
the Usable state before F” can be installed.

A slightly different example is one where the aggregate E is a new IU, itself part of
the update. In that case, F should be installed and initially configured before F’ can
be applied.

The case in which E and F are IU aggregates containing configuration units can be
treated similarly because of the general rule stated in Section 4.3, namely that it
SHOULD be possible to apply configuration units after all InitConfig and Migrate
artifacts for the whole root IU have been processed. In the above example: it would
be possible to install F” on top of the updated instance where F’ has been installed,
that is after the F’ Install and Migrate artifacts have been processed, but before any
configuration unit that MAY be contained in F’ are applied.

IU A’
(Update)

IU F’
(Update)

IU F ’’
(Update)

IU E’
(Update)

reqdbase

reqdbase reqdbase
prereq

IU F

IU A
reqdbase IU A ’

(Update)

IU F ’
(Update)

IU F ’’
(Update)

IU E ’
(Update)

reqdbase

reqdbase reqdbase

IU F

IU A
reqdbase

IU E

Installable Unit Deployment Descriptor Version 1.0

 Page 137 of 219

12.5.2 Updates to an IU federated by an aggregate

The diagram shown in Figure 15 illustrates the case in which F is a federated IU in
the base aggregate (E). In that case, also the updated aggregate (E’) specifies the
new required level of the IU (F’) as a federated IU. In this case, the new desired
level of the federatedIU for the update is identified by the IU checks in the
federated IU definition.

Figure 15: Bundling updates to a federated IU

In order to ship updates to a federated IU within the same update aggregate, the IU
check defining the federated IU must contain the canBeSatisfiedBy declaration
pointing to a bundled requisite, see Section 7.3.6 for a definition of IU checks.

The following logic SHOULD be applied to deploy bundled updates to an IU
instance federated by the base root IU.

• Federated IU instances are located within an aggregation level of the base
root IU, corresponding to the one where the updated federated IU definition
is located. In the above example, in order to target the federated IU update
F’, federated instances associated to the E aggregate will be located.

IU A’
(Update)

IU E’
(Update)

reqdbaseIU E

IU F’
(Update)

IU F’’
(Update)

IU F

IU A reqdbase

Fed IU
(Federated)

Fed IU
(Federated)

canBeSatisfiedBy

Fed IU
(Federated)

IU A ’
(Update)

IU E ’
(Update)

reqdbase

IU E

IU F ’
(Update)

IU F ’’
(Update)

IU F

IU A
reqdbase

Fed IU
(Federated)

Fed IU
(Federated)

canBeSatisfiedBy

Fed IU
(Federated)

Installable Unit Deployment Descriptor Version 1.0

 Page 138 of 219

• The IU check specifed in the update MAY be already satisfied in case the
federated IU F has been independently updated, e.g. as part of another root
IU in which it is contained. In that case, there is no need to apply any
update.

• Where there is one partial match (UUID and name only) and there is a
bundled update (canBeSatisfiedBy element in the IU check), the update is
applied to the instance, after positive checking that the required base
declaration in the bundled update are satisfied by that instance. In the above
example: the required base declaration in the bundled update F’ is verified
against the federated IU instance F in E. A single matching instance
SHOULD be found, consistently with the general rule stated in Section 6
that an IU aggregate cannot have two children with the same UUID.

• Multiple incremental updates to the same federated IU can be also chained
together. In the above example, the bundled updates F’ and F” can be
applied in sequence to F. As a general rule, the presence within an update
(E’) of sibling federated IUs F” and F’ whose IU checks have matching
identity is interpreted as the intent to apply the corresponding bundled
requisites (F” and F’) to the same instance (F). The order in which the
bundled updates are applied is determined by the required-base declarations
in their descriptors. Similarly to the case discussed in Section 12.5.1, the
required base MUST be usable before the update can be applied.

Installable Unit Deployment Descriptor Version 1.0

 Page 139 of 219

13 Installable Unit Signatures

Installable unit instances may be identified by their identity fields (UUID, version,
name). Therefore, the IU identity should be considered as the primary signature of an
installable unit. However, an IU instance could also be detected by the presence of
specific signatures (files, registry entries, etc.). IU developers are the most reliable source
of accurate signature information for an IU, so there is an advantage to have this
information readily available from the IU descriptor, instead of having to create this
information a-posteriori.

The signature information provided within an IU definition serves the following
purposes:

• A third party Inventory or License Management application that does not rely on
the installable unit registry MAY use the IUDD as a reliable source of signatures.

• Tools to provide a signature software catalog for consumption by third party
applications or by the installation runtime can assemble signatures from multiple
descriptors.

• An IU descriptor could be defined for a software component that is also
distributed as a legacy package. The installation runtime may use a signature
software catalog to discover instances that are not known to the runtime, for
example because they were not installed as an IU via the runtime.

A hosting environment MAY use the IU name, see Section 5.1, and detect an IU instance
by the presence of a matching entry in a platform registry, e.g. an operating system
registry of installed software products. When the signature information is available, using
a specified signature SHOULD be considered the preferred method for reliably detecting
an instance.

The signatures element is an OPTIONAL element of an IU Definition, see Section 9.1.
This element includes an unbounded sequence of signature elements whose type –
sigt:Signature – is abstract. This abstract type defines only one OPTIONAL attribute that
is common to all signatures:

• keySignature [type=boolean]
A value of “true” – this is the default – indicates that the presence of the signature
is a necessary condition for an instance of the IU to be considered installed.
Specifying more than one signature element with this attribute as “true” implies
that all of them must be detected for the IU to be considered installed.
When this attribute is specified with a value of “false” the signature indicate an
additional element, e.g. a file, whose existence MAY be checked for other
purposes, e.g. license management or integrity checking.

Installable Unit Deployment Descriptor Version 1.0

 Page 140 of 219

Being an instance of an abstract type, each signature element MUST specify a concrete
derived type. Different signature types MAY be appropriate on different hosting
environments, and could be defined by one or more concrete signature types derived from
sigt:Signature. The following signature types are defined for support on an operating
system hosting environment:

• FileSignature [type=sigt:FileSignature]
• WindowsRegistrySignature [type=sigt:WindowsRegistrySignature]
• OsRegistrySignature [type=sigt:OsRegistrySignature]

13.1 File Signatures

The type sigt:FileSignature is illustrated in the following diagram.

File signatures have the following attributes, in addition to the keySignature attribute
inherited from the base abstract type:

• platform [type=sigt:PlatformType]
This OPTIONAL attribute is used to specify the operating system platform.
Different characteristics may need to be specified for a file on different platforms.
This attribute restricts the use of the associated file signature to a specific
platform. The type of this attribute is defined as a union of the XML type QName
and rtype:OS_RT. Therefore, a user defined operating system type MAY be
specified as a QName value. Standard enumerated values for the operating system
are defined in rtype:OS_RT.

• keyExecutable [type=boolean]
This OPTIONAL attribute is used to identify a file as a key executable of the
application for license management purposes.

File signatures have the following elements:

• fileName [type=string]
This element is REQUIRED. It specifies the name of the file.

• fileSize [type=nonNegativeInteger]
This element is OPTIONAL. It specifies the size of the file in bytes. The size of

Installable Unit Deployment Descriptor Version 1.0

 Page 141 of 219

the signature file is not a mandatory element of the signature, because there MAY
be products whose key files are actually built during install using object-code and
libraries available in the underlying hosting environment and whose size cannot
be pre-determined in advance. In this case, one SHOULD specify multiple key
files in order to increase the reliability of a matching based only on file names.

• relativePath [type=base:RelativePath]
This element is OPTIONAL. It is used to specify the file location with respect to
the installable unit’s install location. When this attribute is specified it is possible
to compare the file actual location with the relative path and determine the IU
install location. The value “.” indicates that the file is located immediately below
the install location directory.

• checksum [type=base:CheckSum]
This element is OPTIONAL. If specified, the value can be used to verify the file
integrity or to improve the safety of matching. The element defines the digest of
the file in a string format. The content can be interpreted knowing the hash
algorithm type used to compute the digest. The algorithm is specified by the
following attribute

o type [anonymous type]
This attribute is OPTIONAL. The default, if the checksum is specified
without a type, is “CRC32”. The decimal representation is used for a
CRC32 checksum. Other possible enumerated values are:

 “MD2”

 “MD5”

 “SHA-1”

 “SHA-256”

 “SHA-584”

 “SHA-512”

13.1.1 File Signatures Example
 <signature xsi:type="sig:FileSignature" keySignature="true"
 platform="OSCT:Windows">
 <fileName>myAppLibrary.dll</fileName>
 <fileSize>123456789</fileSize>
 <relativePath>lib</relativePath>
 <checksum type="CRC32">4010203041</checksum>
 </signature>
 <signature xsi:type="sig:FileSignature" keySignature="true"
 platform="OSCT:Linux">
 <fileName>myAppLibrary.so</fileName>
 <fileSize>121111111</fileSize>
 <relativePath>lib</relativePath>
 <checksum type="CRC32">4010203042</checksum>
 </signature>
 <signature xsi:type="sig:FileSignature" keySignature="false"
 platform="OSCT:Windows" keyExecutable="true">
 <fileName>myAppExecutable.exe</fileName>
 <fileSize>234567890</fileSize>
 <relativePath>bin</relativePath>

Installable Unit Deployment Descriptor Version 1.0

 Page 142 of 219

 <checksum type="CRC32">4010203043</checksum>
 </signature>
 <signature xsi:type="sig:FileSignature" keySignature="false"
 platform="OSCT:Linux" keyExecutable="true">
 <fileName>myAppExecutable</fileName>
 <fileSize>234567890</fileSize>
 <relativePath>bin</relativePath>
 <checksum type="CRC32">4010203044</checksum>
 </signature>

The above example illustrates the elements and attributes of a file signature. In
particular, a scanner detecting a match for the key file in the first signature with the
“C:\MyCompany\MyApplication\lib\myAppLibrary.dll” file, can determine that
the file belongs to an instance of that IU. The scanner would be also able to
determine, based on the signature relativePath declaration, that
“C:\MyCompany\MyApplication” is the IU instance install location.

13.2 Windows Registry Signatures

The type sigt:WindowsRegistrySignature is illustrated in the following diagram.

This type of signature detects entries in the registry of a Microsoft Windows operating
system. The only attribute of this type – keySignature – is inherited from the base type
sigt:Signature.

The elements are all instances of the string type and define a key to be found in the
Windows registry:

• hive [type = sigt:WinRegHive]
This element is REQUIRED. It is used to specify the name of the hive to
which the signature key belongs. One of the following enumerated values
MUST be specified

Installable Unit Deployment Descriptor Version 1.0

 Page 143 of 219

o “HKEY_CLASSES_ROOT”

o “HKEY_CURRENT_USER”

o “HKEY_LOCAL_MACHINE”

o “HKEY_USERS”

o “HKEY_CURRENT_CONFIG”

• parentKey [type=string]
This REQUIRED element is used to specify the parent key of the signature
key.

• key [type=string]
This REQUIRED element is used to specify a key whose existence is part of
the signature.

• valueName [type=string]
This OPTIONAL element is used to specify the name of the entry. If omitted,
the signature is assumed to refer to the default entry.

• data [anonymous type]
This elements is used to specify the value data content. The element MUST be
specified if the valueName element is specified. Content is specified by one of
the following nested data elements:

o regDword [type=int]

o regString [type=string]

o regMultistring
This is a sequence of one or more of the following elements.

 regString [type=string]

o regBinary [type=hexBinary]

o regExpandString [type=string]

13.2.1 Windows Registry signatures examples

The following XML fragments illustrate Windows registry signatures.

<signature xsi:type="sig:WindowsRegistrySignature" keySignature="true">
 <hive>HKEY_LOCAL_MACHINE</hive>
 <parentKey>SOFTWARE</parentKey>
 <key>Adobe/Acrobat Reader/5.0</key>
</signature>

<signature xsi:type="sig:WindowsRegistrySignature" keySignature="true">
 <hive>HKEY_LOCAL_MACHINE</hive>
 <parentKey>SOFTWARE</parentKey>
 <key>IBM/GSK4/CurrentVersion</key>
 <valueName>Version</valueName>

<data>
 <regString>4.0.2.49</regString>

</data>
</signature>

Installable Unit Deployment Descriptor Version 1.0

 Page 144 of 219

13.3 Os Registry Signatures

This type is similar in structure to the Windows Registry signature type. However the
intent is to be able to define the registry information for generic operating system
registries. The primary use of this registry based signature is to be able to identify
installed legacy software without having to perform a full file-system scan, which can
take a considerable amount of time.

OS generic registry signatures have the following attribute, in addition to the
keySignature attribute inherited from the base abstract type:

• platform [type=sigt:PlatformType]
This OPTIONAL attribute is used to specify the operating system platform.
See Section 13.1 above, for a description of the same attribute in a file
signature.

The elements are all instances of the XML string type.
The following list includes, for the specified operating systems, the platform type
(between square brackets), the source of this information (e.g. “rpm” on Linux) and
the names of the supported key values:

• IBM AIX [OSRT:IBMAIX] (lslpp)
o FileSet
o Description

• SUN Solaris [OSRT:SunSolaris] (pkginfo)

o NAME
o PKGINST

• HP HPUX [OSRT:HPUX] (swlist)

o tag
o product

• Linux [OSRT:Linux] (rpm)

o package_name
o NAME

Installable Unit Deployment Descriptor Version 1.0

 Page 145 of 219

13.3.1 Example of generic OS Registry signature
<signature xsi:type="sig:OsRegistrySignature" keySignature="true"
platform="OSRT:Linux">
 <key>package_name</key>
 <data>abiword-2.0.99.0.20031031-1.i386</data>
</signature>

13.4 Signature definitions in a temporary fix

A temporary fix MAY include a declaration of signatures for the following purposes:

• Applying the fix MAY cause a signature (e.g. a file signature) that had been
declared for the fixed IU to become out of date. A software scanner using the
original signature would fail to detect an IU instance after the fix has been
applied. A signature declared in the temporary fix definition that provides
updated values for a corresponding signature item (file, registry entry, etc.) in
the fixed IU can be used to detect both the base IU and the fix.

• A temporary fix that does not modify any key signature of the base IU MAY
define one or more signatures for itself, by which a software scanner could
detect the presence of the fix. In case of a file signature, the scanner MAY be
able to determine the install location of the IU to which the fix has been
applied.

Installable Unit Deployment Descriptor Version 1.0

 Page 146 of 219

14 Action Definition

This section proposes a standard format for an artifact containing action definitions. A
standard format has advantages in terms of consistency and potential reuse across
different hosting environments, both of the artifacts defined using the standard format,
and of the implementation code that processes the artifacts and implements the action.
Further, for certain categories of hosting environment (e.g. operating system, J2EE,
RDBMS), it is proposed that a set of standard actions should be defined. These actions
will differ by hosting environment category. It is also expected that there will be
additional actions that are either specific to a particular product, or that are provided by
different install product vendors, and so it is recommended that an implementation
support the pluggability of different action sets.

The schema for the action definition format – action.xsd, see Appendix L – is
independent from the main schema files. A complete schema for actions supported by a
hosting environment, e.g. the operating system, would be provided as a further schema
file. This would provide concrete types for each of the abstract schema types defined in
action.xsd.

The content of an action definition artifact is a single element, of type action:Artifact.
The content of this element is illustrated below:

Installable Unit Deployment Descriptor Version 1.0

 Page 147 of 219

An Artifact may contain a set of Variables, see Section 14.1 and BuiltInVariables, see
Section 0. The other elements of an Artifact are as follows.

Element Description/Use
artifactType type = base:ArtifactType – use=optional

The artifact type is one of: Install, InitialConfig, Update, Migrate, VerifyInstall,
Uninstall, Configure, VerifyConfig, and CustomCheck. It defaults to Install.
The artifact type is used to determine how to process the artifact. For example, an
Install artifact may be used to uninstall an IU, by undoing each of the actions in the
definition. It may also be used to verify an IU, by checking that the relevant actions
have been applied.

hostingEnv type=siu:AnyResourceType – use=optional
This element specifies the type of hosting environment to which the artifact can be
applied.

artifactSchemaVersion Type=vsn:VersionString
This element specifies the version of the schema, which is fixed.

requiredActionSet Type=action:RequiredActionSet – use=optional
This element specifies an action set from which the actions in this artifact derive. See
Section 14.3.

actionGroup Type=action:UnitActionGroup (abstract)
This element specifies a set of actions to be performed, see Section 14.4

14.1 Variables

Variables of the following types can be defined within artifacts:

• parameter

• derivedVariable

• result (no variable content is specified in its definition).

Installable Unit Deployment Descriptor Version 1.0

 Page 148 of 219

The first two are as described in Section 8.1.1 and in Section 8.1.2, respectively. The
result type is used to hold the result of an action, which can then be used in subsequent
actions. Variables defined within an artifact cannot be used to modify variables
defined in the IUDD where the artifact is referenced, or in a different artifact.

In actions that consume variable values, the action definition must provide a means to
specify how these variables are used within the action. Similarly, in actions that
provide result variables, the action definition must provide a means to specify how
variables can be set from the action results.

14.2 Built-In Variables

Built-in variable types may be defined for a given hosting environment action set.
These variable types allow the definition of a variable instance in an artifact that takes
a value returned from a “function like” expression, to be evaluated by the hosting
environment.

The builtInVariables element defines an OPTIONAL set of variables of abstract type
BuiltInVariable. Each variable has a required name attribute of type NCName.

Concrete derived types for a buil-in variable need to be defined for each hosting
environment.

14.2.1 Example

The following schema fragment illustrates how a concrete built-in variable may be
defined.

 <complexType name="OsBuiltInVariable">
 <complexContent>
 <extension base="action:BuiltInVariable">
 <choice>
 <element name="systemVariableValue">
 <complexType>
 <attribute name="sysVarName" type="base:VariableExpression"/>
 </complexType>
 </element>
 …
 </extension>
 </complexContent>
 </complexType>

The schema defines OSBuiltInVariable, which extends action:BuiltInVariable.

Installable Unit Deployment Descriptor Version 1.0

 Page 149 of 219

The semantic of the built-in variable is to return the value of the specified system
environment variable. The following XML fragment illustrates how the above
built-in variable may be used.

 <builtInVariables>
 <variable xsi:type="osac:OsBuiltInVariable" name="ProgramFilesDir">
 <systemVariableValue sysVarName="ProgramFiles" />
 </variable>
 </builtInVariables>

As illustrated in the above example, the non abstract type of the action group must
be specified for the unit element via the xsi:type attribute. In this example, the
variable is chosen to be an instance of osac:OsBuiltInVariable. The example
defines a variable named ProgramFilesDir, which is set to the value of the
ProgramFiles system variable.

14.3 Required Action Set

The requiredActionSet element of the artifact supports pluggability of action sets for
any hosting environment. The requiredActionSet may be used to declare the action
sets that are required by a specific artifact, for the artifact to be deployable. An
implementation MAY perform a check to determine if the artifact can be handled by a
hosting environment, before invoking the associated change management operation to
apply the artifact to the hosting environment.

Two action sets may 'overlap' and define a common subset of actions. Therefore, in
order to unambiguously associate an action to a definition of the required action set
implementation, all action instances derived from action:BaseAction contain a
reference to the implementing action set through the actionSetIdRef attribute.

The elements of the RequiredActionSet are defined in the following table:

Element Description/Use
UUID type = base:UUID – use=required

This element is a globally unique UUID that identifies the action set.

name type=token– use=optional
This element is used to specify the name of the action set.

Attribute Description/Use
actionSetId Type=ID – use=required

This attribute is used to associate an action in the artifact to a defined action set.

Installable Unit Deployment Descriptor Version 1.0

 Page 150 of 219

14.4 UnitActionGroup

An action artifact MAY include multiple action groups. Each group is a container for
actions that is controlled by a condition. The element actionGroup is an instance of the
abstract type action:UnitActionGroup. This type only defines the following condition
attribute:

Attribute Description/Use
condition type = base:ConditionalExpression – use=optional – default=”true”

This attribute, inherited from the base type, is used to specify a conditional
expression. The action group is ignored when the result that is obtained by
evaluating the condition is “false”.

14.4.1 BaseAction

All actions defined in an artifact SHOULD be derived from the base type
action:baseAction.

The following attributes are inherited by all actions:

Attribute Description/Use
Condition type = base:ConditionalExpression – use=optional – default=”true”

This attribute is used to specify a conditional expression. The action is ignored when
the result that is obtained by evaluating the condition is “false”.

actionSetIdRef type=NCName – use=optional

This optional attribute is used to qualify the action set from which this action is
derived. If it is not specified, a hosting-environment specific mechanism for resolving
the appropriate action set MAY be applied. This mechanism SHOULD by default
select actions from the standard set defined for the hosting environment.

The following element is inherited by all actions:

Installable Unit Deployment Descriptor Version 1.0

 Page 151 of 219

Element Description/Use
displayName type=base:DisplayElement – optional

Description of the action. Example of usage: the short_default_text element for the
current locale may be used as a label of the corresponding object in an IDE GUI.
See Section 17 for a general description of display elements and their localization.

14.4.2 Concrete Action Set Example

The following schema fragment illustrates how a concrete action set may be
defined.

 <complexType name="OsActionGroup">
 <complexContent>
 <extension base="action:UnitActionGroup">
 <sequence>
 <element name="actions">
 <complexType>
 <choice maxOccurs="unbounded">
 <group ref="osac:OsActionChoice" />
 </choice>
 </complexType>
 </element>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

A type is defined which extends the UnitActionGroup abstract type. It specifies that
an OSActionGroup contains a set of actions defined in OSActionChoice.

 <complexType name="OsActionChoice">
 <choice maxOccurs="unbounded">
 <element name="addDirectory" type="osac:AddDirectoryAction"/>
 …
 </choice>
 </complexType>
 <complexType name="AddDirectoryAction">
 <complexContent>
 <extension base="action:BaseAction">
 <sequence>
 <element name="directory" type="command:DirectoryDefinition"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

AddDirectoryAction is one of the actions defined in OSActionChoice. This action
extends the action:BaseAction abstract type. It contains a definition of the directory
to be added.

Installable Unit Deployment Descriptor Version 1.0

 Page 152 of 219

14.4.3 Artifact Example

The following XML document illustrates what an artifact conforming to the SI
action definition format may look like.

<?xml version="1.0" encoding="UTF-8"?>
<action:artifact
xmlns:action="http://www.ibm.com/namespaces/autonomic/solutioninstall/action"
xmlns:OSRT="http://www.ibm.com/namespaces/autonomic/OS_RT"
xmlns:osac="http://www.ibm.com/namespaces/autonomic/solutioninstall/OsActions"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ibm.com/namespaces/autonomic/solutioninstall/OsActio
ns osActions.xsd">

The namespace of the concrete action definition schema (osac) and the namespace
for the relevant resource types are defined.

 <artifactType>Install</artifactType>

This is an Install artifact. It may be used to drive the following IU lifecycle
operations: Create, VerifyIU, Delete, Repair.

 <artifactSchemaVersion>1.2.0</artifactSchemaVersion>
 <requiredActionSet actionSetId="osIBMBase">
 <UUID>12345678901234567890123456789012</UUID>
 <name>com.ibm.solutioninstall.ostp.BaseActionSet</name>
 </requiredActionSet>

Information is provided to allow implementations to identify the action set from
which the actions derive.

 <actionGroup xsi:type="osac:OsActionGroup">
 <actions>
 …
 <addDirectory actionSetIdRef="osIBMBase">
 <directory create="true" delta_compressed="true">
 <location>/usr/local</location>
 <name>MyProduct</name>
 <source descend_dirs="true">
 <source_archive format="jar">
 <fileIdRef>file_00097</fileIdRef>
 </source_archive>
 </source>
 <directory create="true">
 <name>Docs</name>
 <file>
 <name>Readme.First</name>
 <source>
 <fileIdRef>file_0099</fileIdRef>
 </source>
 </file>
 </directory>
 </directory>
 </addDirectory>
 </actions>
 </actionGroup>
</action:artifact>

Installable Unit Deployment Descriptor Version 1.0

 Page 153 of 219

As illustrated in the above example, the non abstract type of the action group must
be specified for the unit element via the xsi:type attribute. In this example, the
group is chosen to be an instance of osac:OsActionGroup.

Installable Unit Deployment Descriptor Version 1.0

 Page 154 of 219

15 Resource Properties Definition

The format of the resource properties definition artifact is shown below. This artifact
format SHOULD be supported for both Config and VerifyConfig operations. Other
artifact formats MAY be supported.

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.ibm.com/namespaces/autonomic/solutioninstall/config"
xmlns:config="http://www.ibm.com/namespaces/autonomic/solutioninstall/config">

 <element name="configArtifact" type="config:ConfigArtifact"></element>
 <complexType name="ConfigArtifact">
 <sequence>
 <element name="propertyValues">
 <complexType>
 <sequence>
 <any maxOccurs="unbounded" minOccurs="0" processContents="skip" namespace="##any"></any>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
</schema>

The resource properties definition artifact consists of an outermost delimiting element –
propertyValues – followed by an unbounded sequence of any element. The elements
MUST correspond to properties exposed by the target resource, with the element values
specifying the values that are to be set or verified.

For example, a resource properties definition artifact might contain the following:

<?xml version="1.0" encoding="UTF-8"?>
<config:configArtifact
xmlns:config="http://www.ibm.com/namespaces/autonomic/solutioninstall/config"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ibm.com/namespaces/autonomic/solutioninstall/config
config.xsd ">
 <propertyValues>
 <NumberOfLicensedUsers>5</NumberOfLicensedUsers>
 </propertyValues>
</config:configArtifact>

This would set the number of licensed users to 5, or validate this value. Multiple property
values MAY be specified, and these properties MAY be structured.

For properties which may have multiple instances, if any instance of that property is
specified, all instances of that property are replaced with the set of instances specified in
the resource properties definition artifact.

Variable substitutions SHOULD be supported. Any expression of the form $(varName),
where “varName” matches the “externalName” element of a parameter map entry,

Installable Unit Deployment Descriptor Version 1.0

 Page 155 of 219

SHOULD be substituted with the corresponding “internalName” element value in the
parameter map. See Section 9.5.Variable substitution SHOULD be performed before the
artifact is applied to the managed resource being configured.

Installable Unit Deployment Descriptor Version 1.0

 Page 156 of 219

16 Multi-Artifact

An SIU defines sets (units) of install artifacts, each one potentially including references
to five bundled artifact descriptor files (see Section 14). Analogously, each unit in a CU
may reference two bundled artifact descriptor files. In some cases, it may be desirable to
reduce the number of individual (small) files that are bundled in a package. In order to
address this requirement without changing the current definition of SIU and CIU units, a
general format is introduced to support the definition of multiple artifact descriptors in
the same XML instance document (single file). This format is defined by an independent
XML schema describing the aggregation of multiple artifacts.

The element artifactSchemaVersion is used to specify the version of the schema being
used. One instance document may contain any number of the following elements:

• iu
This element contains one inline definition for each SIU artifact type (Install,
InitialConfig, Migrate, VerifyInstall and Uninstall). An artifact can be retrieved
by knowing its type and the UUID and version of the referencing IU.

• fix
This element contains one inline definition for each SIU artifact type. An artifact
can be retrieved by knowing its type and the name of the fix in which it is
referenced.

• cu
This element contains one inline definition for each CU artifact type (Configure
and VerifyConfig). An artifact can be retrieved by knowing its type and the
CUName internal identifier of the CU.

• check
This element contains the inline definition of one custom check artifact. A check
artifact can be retrieved by knowing the artifact identifier (artifactId) specified in
the corresponding customCheckArtifact definition in the root IU.

Installable Unit Deployment Descriptor Version 1.0

 Page 157 of 219

An iu element is an instance of the anonymous type illustrated in the following diagram.

A fix element is an instance of the anonymous type illustrated in the following diagram.

A cu element is an instance of the anonymous type illustrated in the following diagram.

A check element is an instance of the anonymous type illustrated in the following
diagram.

Installable Unit Deployment Descriptor Version 1.0

 Page 158 of 219

Each one of the OPTIONAL elements under iu, fix, cu and check illustrated in the above
diagrams are instances of the type ma:ArtifactDefinition. This type defines a choice
among two elements – ActionDefinition and ResourceProperties Definition – as
illustrated in the following diagram:

The first element is an instance of action:Artifact, described in Section 14. The second
element is an instance of config:ConfigArtifact, described in Section 15.

For artifacts defining actions – instances of action:Artifact – the artifactType element
(instance of action:Artifact) SHOULD match the value of the type element that is
specified by the referencing artifact element – instance of siu:Artifact – within the SIU or
CU unit element, see Section 9.

Installable Unit Deployment Descriptor Version 1.0

 Page 159 of 219

17 Display Elements

Textual information may be associated to several types defined in the schema. This is
possible because those types include one or more elements that are instances of the
base:DisplayElement type. This type is illustrated by the following diagram.

The element provides the ability to specify the following text elements

• defaultLineText [type=string]
This element MUST be specified. It should provide text suitable for display in a
single row, e.g. in a table. 200 characters is the maximum length of the text string
that can be specified.

• defaultText [type=string]
This element is OPTIONAL and has no restriction of length with respect to the
base XML string type. It should provide text suitable for display as one or more
paragraphs.

• defaultTooltip [type=string]
This element is OPTIONAL and has a length limit of 60 characters. It should
provide text suitable for display as a short line or a UI tooltip.

The text specified in the above elements is the default text and it is always available
through the descriptor. Translated text MAY be available in a resource bundle. Therefore,
each of the above elements MUST specify the following attribute for binding to the text
in the resource bundle:

• key [type=NCName]
This element is required. The value can be used to retrieve the corresponding
translated text from the resource bundle.

The resource bundle, if present, is defined by the language_bundle attribute of the rootIU
element, see Section 5.3. When the language_bundle element is not specified, the default
“iudd_bundle” is used. The value of this attribute provides the base name for the bundle
files, one for each language. These are text files in the Java property file format, as
described by the java.util.PropertyResourceBundle class in the JAVA SDK
documentation.

Installable Unit Deployment Descriptor Version 1.0

 Page 160 of 219

18 Root IU Descriptor Validation

This section summarizes the validation rules within the schema.

The following identifiers must be unique within the descriptor:

• IUName in all IUs and CUName in all configuration units

• featureID in all features

• name in all variables and checkId in all checks

• customCheckId in all custom check definitions

• name in all alternatives (if specified)

• name in all requirements

• id in all files

• id attribute in all targets and deployed targets

• groupName attribute in all installation groups

• constraintName in all identity constraints

The following constraints must be respected on references to identifiers within the
descriptor:

• fileIdRef throughout the schema must reference a file id

• featureIDRef in groups and IU checks must reference a featureID

• customCheckIdRef in custom checks must reference a customCheckId

• IUNameRef in deployedTarget must reference an IUName

• IUNameRef in IU checks must reference an IUName

• CUNameRef in configuration checks must reference a CUName

• IUNameRef in a target map must reference an IUName for a referenced IU. This
may be a contained or federated referenced IU, or a bundled requisite.

• targetRefs throughout the schema must reference a target id. The targetRef
attribute must be specified if the aggregating IU is a multi-target IU and the
aggregated IU is a single-target IU (e.g. a CIU or a referenced IU with a
targetRef attribute on the root IU). If the aggregating IU is a single-target IU
then the targetRef attribute may not be specified: if it is specified, it must have
the same value as the aggregating IU’s target.

• source, sink and peer in relationship checks must reference a target id.

Installable Unit Deployment Descriptor Version 1.0

 Page 161 of 219

• IUNameRef in a referenced feature must reference an IUName for a referenced
IU. This may be a contained or federated referenced IU. It must not be a bundled
requisite.

• IUNameRef in a feature must reference the IUName of a top-level IU in the
selectableContent.

• The list of identifiers in an identity constraint must reference checkId.

• softwareCheckRef in an IU discriminant query refers to the checkId of an
IU check.

• IUCheck and SoftwareCheck should contain at least one of the name or UUID.

• canBeSatisfiedBy in any check or federated IU must reference the IUName of
a bundled requisite IU.

The key uniqueness and key reference constraints described in this section are not all
represented in the schema. An implementor of tooling for the IU descriptor may provide
additional validation to enforce these constraints.

Installable Unit Deployment Descriptor Version 1.0

 Page 162 of 219

19 Version comparison

Version information is defined in the IUDD schema in one of the two following string
formats:

• vsn:GenericVersionString
This type is used for interpreting existing version information that does not
conform to the VRML representation, e.g. in software checks (see Section 7.3.5).

• vsn:VersionString
This type supports the version/release/modification/level (VRML) representation,
the preferred method used for specifying new version information. This type is
used to specify the IU version (see Section 5.1) and version information in IU
checks (see Section 7.3.6).

The above types are defined in the schema file version.xsd reproduced in Appendix H.

The vsn:GenericVersionString representation is designed to accommodate multi-part,
multi-type version representations (for example, version 5.0 Build 2195 service pack 3
and version 6.0.2600.0000CO). This representation accomplishes the “interpret liberally”
design guideline. The VRML representation accommodates numeric major/minor version
representation (for example, version 1.3). The VRML representation accomplishes the
“generate strictly” design guideline.

To compare versions, each version part (a version part is the version substring between
separators, which are ignored for version comparison) is evaluated from left to right using
either numeric or alphabetic comparison (alphabetic comparison MUST use a non-
Unicode, locale-insensitive, case-insensitive collating sequence). For version parts that
consist of a number followed by a letter, the numeric part is compared first: a version part
“4a” is greater than a version part “4”. Comparison stops when the version parts are
different (in this case, the greater version is the one with the greater version part), when
no corresponding version part exists in one of the versions being compared (in this case,
the greater version is the one with remaining version part(s)) or when the versions are
equal.

Installable Unit Deployment Descriptor Version 1.0

 Page 163 of 219

20 References

[RFC2119] Key words for use in RFCs to Indicate Requirement Levels.

Network Working Group – Request for Comments: 2119 –

S. Bradner - Harvard University – March 1997

http://www.ietf.org/rfc/rfc2119.txt

[IUPACK] Installable Unit Package Format.

IBM Autonomic Computing – ACAB.SD.0403

[CIM2.8] CIM Schema: Version 2.8.1

http://www.dmtf.org/standards/cim/cim_schema_v28

Installable Unit Deployment Descriptor Version 1.0

 Page 164 of 219

A. Solution Module IUDD example

This is a sample IUDD where root IU content is a solution module aggregate.
<?xml version="1.0" encoding="UTF-8"?>
<iudd:rootIU
xmlns:iudd="http://www.ibm.com/namespaces/autonomic/solutioninstall/IUDD"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:OSRT="http://www.ibm.com/namespaces/autonomic/OS_RT"
xmlns:J2EERT="http://www.ibm.com/namespaces/autonomic/J2EE_RT"
xmlns:RDBRT="http://www.ibm.com/namespaces/autonomic/RDB_RT"
xsi:schemaLocation="http://www.ibm.com/namespaces/autonomic/solutioninstall/IUDD
iudd.xsd"
IUName="MySoln">
 <identity>
 <name>My Solution</name>
 <UUID>11111123456789012345678901234567</UUID>
 <displayName>
 <defaultLineText key="ST_01">My Solution</defaultLineText>
 </displayName>
 <manufacturer>
 <defaultLineText key="ST_02">IBM</defaultLineText>
 </manufacturer>
 <buildID>MyApp_5.1.abc</buildID>
 <buildDate>2001-12-31T12:00:00</buildDate>
 <version>1.0.1</version>
 </identity>

The root IU identity information includes a name, UUID and version.
 <variables>
 <variable name="BusinessServers">
 <resolvedTargetList>
 <targetRef>tBusinessSvr</targetRef>
 </resolvedTargetList>
 </variable>
 </variables>

The root IU has one variable, which is set to the list of resolved targets for the business
servers. The value of this variable is a comma-separated list of the manageable resource
IDs.
 <installableUnit>
 <containedIU IUName="myApp">
 <fileIdRef>MyAppDescriptor</fileIdRef>
 <parameterMaps>
 <map>
 <internalName>BusinessServers</internalName>
 <externalName>TargetServerList</externalName>
 </map>
 </parameterMaps>
 </containedIU>
 </installableUnit>

The root IU contains two IUs. The first is a J2EE application, which is packaged in a
referenced IU. The list of application servers within the cell onto which the application is
to be deployed is passed into the IU as a parameter. The targeting of this referenced IU
will be handled through target maps, see the tCell target.
 <installableUnit targetRef="tDatabase">
 <SIU IUName="myAppTable">
 <identity>
 <name>My App Table</name>

Installable Unit Deployment Descriptor Version 1.0

 Page 165 of 219

 <UUID>0F000F000F000F000F000F000F000F00</UUID>
 <version>1.0.1</version>
 </identity>
 <unit>
 <installArtifacts>
 <installArtifact>
 <fileIdRef>MyAppTableArtifact</fileIdRef>
 </installArtifact>
 <uninstallArtifact>
 <fileIdRef>MyAppTableArtifact</fileIdRef>
 </uninstallArtifact>
 </installArtifacts>
 </unit>
 </SIU>
 </installableUnit>

The second is an inline SIU, which will install a database table. The SIU is targeted at the
tDatabase target.
 <rootInfo>
 <schemaVersion>1.2.0</schemaVersion>
 <build>157</build>
 <size>0</size>
 </rootInfo>

Addional root IU information is provided.
 <topology>
 <target id="tCell" type="J2EERT:J2EE_Domain">
 <selectionRequirements>
 <requirement name="dr1">
 <alternative name="alt_1">
 <inlineCheck>
 <property checkId="IsWebSphereCell">
 <propertyName>productName</propertyName>
 <value>IBM WebSphere Application Server</value>
 </property>
 </inlineCheck>
 </alternative>
 </requirement>
 </selectionRequirements>
 <targetMap IUNameRef="myApp">
 <externalName>J2EEDomain</externalName>
 </targetMap>
 </target>

The topology is described. The first target is a WebSphere cell. A target map is specified,
to map this target into the target named “J2EEDomain” within the referenced IU. The
EAR file will be installed into this target.
 <target id="tBusinessSvr" type="J2EERT:J2EE_Server">
 <scope>one</scope>

 <selectionRequirements>
 <requirement name="dr_3">
 <alternative name="alt_3" priority="0">
 <inlineCheck>
 <property checkId="IsWASServer">
 <propertyName>productName</propertyName>
 <value>IBM WebSphere Application Server</value>
 </property>
 </inlineCheck>
 <inlineCheck>
 <version checkId="WASVersion">
 <propertyName>version</propertyName>
 <minVersion>5.1</minVersion>
 </version>
 </inlineCheck>
 <inlineCheck>
 <relationship checkId="IsComponentOfCell">

Installable Unit Deployment Descriptor Version 1.0

 Page 166 of 219

 <source>tCell</source>
 <type>HasComponent</type>
 </relationship>
 </inlineCheck>
 </alternative>
 </requirement>
 </selectionRequirements>
 </target>

The second target is a subset of the servers in the cell. The relationship check specifies
that they must be components of the cell; the scope of some indicates that a selection
may be made from the candidates, for example by the user. These servers must be at
least WAS Version 5.1.

When specifying a relationship check, care needs to be paid to the target with which it is
associated. The target should be the one that is being selected based on the relationship
check. In this example, the requirement is to select application servers that are
components of the selected cell. The intent is not to select a set of application servers and
then validate whether they are in the same cell.
 <target id="tOperatingSys" type=" OSRT:Operating_System">
 <selectionRequirements>
 <requirement name="dr_6">
 <alternative name="alt_6" priority="0">
 <inlineCheck>
 <relationship checkId="IsServerOS">
 <sink>tBusinessSvr</sink>
 <type>Hosts</type>
 </relationship>
 </inlineCheck>
 </alternative>
 </requirement>
 </selectionRequirements>
 <validationRequirements>
 <requirement name="dr_5">
 <alternative name="alt_5" priority="0">
 <inlineCheck>
 <software checkId="OracleDriverInstalled">
 <UUID>11111123456789012345678901234567</UUID>
 <minVersion>7.2</minVersion>
 <canBeSatisfiedBy>OracleDriver</canBeSatisfiedBy>
 </software>
 </inlineCheck>
 </alternative>
 </requirement>
 </validationRequirements>
 <targetMap IUNameRef="OracleDriver">
 <externalName>OS</externalName>
 </targetMap>
 </target>

The fourth target is the operating systems that the application servers in the third target
are running on. The validation requirement tests whether an Oracle driver is installed. If
the driver is not installed, the canBeSatisfiedBy reference identifies an IU that will
satisfy the dependency, if installed on the operating system, as indicated by the
targetMap.
 <target id="tDatabase" type="RDBRT:Database">
 <scope>one</scope>
 <selectionRequirements>
 <requirement name="dr_7">
 <alternative name="alt_7">
 <inlineCheck>
 <relationship checkId="UsedByCell">
 <source>tCell</source>

Installable Unit Deployment Descriptor Version 1.0

 Page 167 of 219

 <type>Uses</type>
 </relationship>
 </inlineCheck>
 </alternative>
 </requirement>
 </selectionRequirements>
 </target>
 </topology>

The fourth target is a database that is being used by the cell.
 <requisites>
 <referencedIU IUName="OracleDriver">
 <fileIdRef>OracleDriverIUDD</fileIdRef>
 </referencedIU>
 </requisites>

The root IU ships with the Oracle driver that is one of its bundled requisites.
 <files>
 <file id="MyAppDescriptor">
 <pathname>solution/referenced/myApp/IUDD.xml</pathname>
 <length>5011</length>
 <checksum type="MD5">1234567890azsxqwedcrfvtgnyhbuij123</checksum>
 </file>
 <file id="MyAppTableDDL">
 <pathname>solution/artifact/myAppTable/myAppTable.ddl</pathname>
 <length>5249</length>
 <checksum type="MD5">5555567890azsxqwedcrfvtgnyhbuij123</checksum>
 </file>
 <file id="MyAppTableArtifact">
 <pathname>solution/artifacts/myAppTable/Artifact.xml</pathname>
 <length>5432</length>
 <checksum type="MD5">5555567890azsxqwedcrfvtgnyhbuij123</checksum>
 </file>
 <file id="OracleDriverIUDD">
 <pathname>solution/requisites/oracle8.1.1.0/driver/IUDD.xml</pathname>
 <length>5249</length>
 <checksum type="MD5">5555567890azsxqwedcrfvtgnyhbuij123</checksum>
 </file>
 </files>
</iudd:rootIU>

The root IU defines the following files:

• The IUDD for the J2EE application

• The DDL file containing the table definition

• The artifact descriptor for the table

• The IUDD for the Oracle Driver

Installable Unit Deployment Descriptor Version 1.0

 Page 168 of 219

B. Example of a container installable unit

This is a sample IUDD where root IU content is a CIU aggregate.

<?xml version="1.0" encoding="UTF-8"?>
<iudd:rootIU
xmlns:iudd="http://www.ibm.com/namespaces/autonomic/solutioninstall/IUDD"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:OSRT="http://www.ibm.com/namespaces/autonomic/OS_RT"
xsi:schemaLocation="http://www.ibm.com/namespaces/autonomic/solutioninstall/IUDD iudd.xsd
"
IUName="MyAggregatedCIU" targetRef="os" >
 <identity>
 <name>My Aggregated CIU</name>
 <UUID>41111111111111111111111111111110</UUID>
 <version>1.0</version>
 </identity>

This example is a root container installable unit, targeted at the operating system.
 <installableUnit sequenceNumber="1">
 <containedCIU IUName="xxx">
 <fileIdRef>xxx_iudd</fileIdRef>
 </containedCIU>
 </installableUnit>

The base content of the CIU is a referenced CIU “xxx”. This IU has a sequence number
of “1”, which means it must be installed before any of the other top-level IUs (which do
not have a sequence number).

 <selectableContent>
 <installableUnit>
 <containedCIU IUName="yyy">
 <fileIdRef>yyy_iudd</fileIdRef>
 </containedCIU>
 </installableUnit>
 <installableUnit>
 <containedCIU IUName="zzz">
 <fileIdRef>zzz_iudd</fileIdRef>
 </containedCIU>
 </installableUnit>
 <installableUnit>

The selectable content of the CIU includes two referenced CIUs, “yyy” and “zzz”.

The selectable content of the CIU also includes an inline CIU, which contains two
referenced CIUs, “ttt” and “vvv”.
 <CIU IUName="tttvvv">
 <identity>
 <name>token</name>
 <UUID>0F000F000F000F000F000F000F000F00</UUID>
 <version>1.0</version>
 </identity>
 <installableUnit sequenceNumber="2">
 <containedCIU IUName="ttt">
 <fileIdRef>ttt_iudd</fileIdRef>
 <additionalRequirements>
 <target>
 <requirements>
 <requirement name="ttt_additionalReqt">

Installable Unit Deployment Descriptor Version 1.0

 Page 169 of 219

 <alternative name="isDiskSpaceAvailable">
 <inlineCheck>
 <consumption checkId="tttDiskSpace">

<propertyName>Filesystem/availableSpace</propertyName>
 <value>10</value>
 </consumption>
 </inlineCheck>
 </alternative>
 </requirement>
 </requirements>
 </target>
 </additionalRequirements>
 </containedCIU>
 </installableUnit>

Additional requirements are specified for “ttt”; specifically, that an additional 10MB of
diskspace is required.
 <installableUnit sequenceNumber="1">
 <federatedCIU IUName="fedvvv">
 <alternative name="alt_55">
 <iu checkId="isVVVInstalled">
 <name>Component VVV</name>
 <minVersion>1.1.3</minVersion>
 <canBeSatisfiedBy>vvv</canBeSatisfiedBy>
 </iu>
 </alternative>
 </federatedCIU>
 </installableUnit>
 </CIU>
 </installableUnit>

“vvv” is a federated CIU, meaning that an existing instance may be reused, providing it
satisfies the specified requirements. If not, the bundled requisite IU should be installed.

CIU “vvv” must be installed before CIU “ttt”. This use of sequence numbers should not
bypass the use of expressed dependencies – i.e. if “ttt” has a prereq on “vvv”, that should
be expressed within the “ttt” descriptor and that information should be used to determine
sequence information. However, if this dependency is not identified, at the aggregate
level it may be necessary to use sequence numbers to force installation to occur in an
order that is known to lead to a reliable install.
 <installableUnit>
 <containedCIU IUName="www">
 <fileIdRef>www_iudd</fileIdRef>
 </containedCIU>
 </installableUnit>
 </selectableContent>

The selectable content of the CIU includes a third referenced CIU, “www”.
 <features>
 …
 </features>

See Section C for a description of the use of features in this example.
 <rootInfo>
 <schemaVersion>1.2.0</schemaVersion>
 <build>1</build>
 </rootInfo>

Additional information is provided for the root IU.
 <topology>
 <target type="OSRT:Operating_System" id="os"></target>
 </topology>

Installable Unit Deployment Descriptor Version 1.0

 Page 170 of 219

A single target is defined. The author of the IU has not constrained it beyond it being an
operating system. Further constraints on this target would be defined within the
referenced CIUs that are part of this CIU.
 <groups>
 …
 </groups>

See Section C for a description of the use of groups in this example.
 <requisites>
 <referencedIU IUName="vvv">
 <fileIdRef>vvv_iudd</fileIdRef>
 </referencedIU>
 </requisites>

A bundled requisite IU is defined to satisfy the need for the federated IU above. Note that
this IU must be a CIU, and will be targeted at the same OS target as all of the other
contained IUs.
 <files>
 <file id="ttt_iudd">
 <pathname>myciu/referenced/TTT/IUDD.xml</pathname>
 <length>0</length>
 <checksum>checksum</checksum>
 </file>
 <file id="vvv_iudd">
 <pathname>myciu/referenced/VVV/IUDD.xml</pathname>
 <length>0</length>
 <checksum>checksum</checksum>
 </file>
 <file id="www_iudd">
 <pathname>myciu/referenced/WWW/IUDD.xml</pathname>
 <length>0</length>
 <checksum>checksum</checksum>
 </file>
 <file id="xxx_iudd">
 <pathname>myciu/referenced/XXX/IUDD.xml</pathname>
 <length>0</length>
 <checksum>checksum</checksum>
 </file>
 <file id="yyy_iudd">
 <pathname>myciu/referenced/YYY/IUDD.xml</pathname>
 <length>0</length>
 <checksum>checksum</checksum>
 </file>
 <file id="zzz_iudd">
 <pathname>myciu/referenced/ZZZ/IUDD.xml</pathname>
 <length>0</length>
 <checksum>checksum</checksum>
 </file>
 </files>
</iudd:rootIU>

Files are defined for all of the descriptors of all of the referenced IUs within this CIU.

Installable Unit Deployment Descriptor Version 1.0

 Page 171 of 219

C. Example of features and installation groups

This section builds on the example described in Section B.

The example CIU defines four top-level features, Feature A, Feature B, Feature B Plus
and Samples.
 <features>
 <feature featureID="AFeature">
 <identity>
 <name>Feature A</name>
 </identity>
 <feature featureID="A1Feature">
 <identity>
 <name>Feature A1</name>
 </identity>
 <feature featureID="A11Feature" required="true">
 <identity>
 <name>Feature A1.1</name>
 </identity>
 <IUNameRef>yyy</IUNameRef>
 <IUNameRef>tttvvv</IUNameRef>
 </feature>
 <feature featureID="A12Feature">
 <identity>
 <name>Feature A1.2</name>
 </identity>
 <IUNameRef>zzz</IUNameRef>
 </feature>
 </feature>
 </feature>

Feature A has two levels of nested features. Feature A1.1 contains CIUs “yyy” and
“tttvvv”. Feature A1.2 contains CIU “zzz”. Note that the contents of the features must be
top-level IUs within the selectable content, so it would be invalid if a feature contained
“xxx” or “ttt”.

Feature A1.1 is required, i.e. it must be selected if Feature A1 is selected.
 <feature featureID="BFeature">
 <identity>
 <name>Feature B</name>
 </identity>
 <IUNameRef>www</IUNameRef>
 <selectionRules>
 <deselectIfSelected>BFeaturePlus</deselectIfSelected>
 </selectionRules>
 </feature>
 <feature featureID="BFeaturePlus">
 <identity>
 <name>Feature B Plus</name>
 </identity>
 <IUNameRef>www</IUNameRef>
 <IUNameRef>tttvvv</IUNameRef>
 <selectionRules>
 <deselectIfSelected>BFeature</deselectIfSelected>
 </selectionRules>
 </feature>

Features B and B Plus has two levels of nested features. Feature A1.1 contains CIUs
“yyy” and “tttvvv”. These two features are mutually exclusive, so if one is selected, the
other is deselected.

Installable Unit Deployment Descriptor Version 1.0

 Page 172 of 219

 <feature featureID="Samples">
 <identity>
 <name>Samples</name>
 </identity>
 <referencedFeature>
 <IUNameRef>xxx</IUNameRef>
 <externalName>Samples</externalName>
 </referencedFeature>
 <referencedFeature>
 <ifReq>
 <featureIDRef>A11Feature</featureIDRef>
 </ifReq>
 <IUNameRef>yyy</IUNameRef>
 <externalName>Samples</externalName>
 </referencedFeature>
 </feature>
 </features>

The Samples feature contains the “Samples” feature of the “xxx” CIU. It also contains
the “Samples” feature of the “yyy” feature, but only if Feature A1.1 is selected. Note the
following scenarios:

If a user installs A1.1 but not Samples, and then subsequently installs Samples, then yyy
Samples should be installed.

If a user installs Samples but not A1.1, and then subsequently installs A1.1, then yyy
samples should be installed.

If a user installs Samples and A1.1, and then uninstalls A1.1, then yyy samples should be
uninstalled.

The example CIU has two installation groups, Typical and Custom. The default
installation group is Typical.
 <groups>
 <group>
 <groupName>Typical</groupName>
 <feature featureIDRef="A1Feature" selectionChangeable="false"
selection="selected" />
 </group>
 <group>

The Typical group selects Feature A1, which causes Feature A1.1 to be selected, because
it is marked as “required”. The user cannot change the selection of Feature A1.1, but does
have the option of selecting Feature A1.2.
 <groupName>Custom</groupName>
 <feature featureIDRef="AFeature" selection="selected" />
 <feature featureIDRef="BFeature" selection="selected" />
 <feature featureIDRef="BFeaturePlus" selection="not_selected" />
 <feature featureIDRef="Samples" selection="not_selected" />
 </group>
 <default>Typical</default>
 </groups>

The Custom group allows the user to select from Features A, B, B Plus and Samples.
Features A and B are by initially selected, and Features B Plus and Samples are not. The
user can change any of the selections of these features, or their subfeatures, subject to
selection rules.

Installable Unit Deployment Descriptor Version 1.0

 Page 173 of 219

D. Example of update installable unit

This is a sample IUDD where root IU content is a CIU aggregate defining an update.

This section describes an incremental update IU that updates the CIU in Section Bxml
version="1.0" encoding="UTF-8"?>
<iudd:rootIU
xmlns:iudd="http://www.ibm.com/namespaces/autonomic/solutioninstall/IUDD"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:OSRT="http://www.ibm.com/namespaces/autonomic/OS_RT"
xsi:schemaLocation="http://www.ibm.com/namespaces/autonomic/solutioninstall/IUDD iudd.xsd
"
IUName="MyAggregatedCIU" targetRef="os">
 <identity>
 <name>My Aggregated CIU</name>
 <UUID>41111111111111111111111111111110</UUID>
 <incremental>
 <requiredBase>
 <minVersion>1.0.0</minVersion>
 </requiredBase>
 <type>FixPack</type>
 </incremental>
 <version>1.0.2</version>
 </identity>

This is an incremental update IU which can update versions 1.0.0 and 1.0.1.
 <obsoletedIUs>
 <obsoletedIU>
 <!-- www should be uninstalled -->
 <name>WWW Component</name>
 <version>1.0</version>
 </obsoletedIU>
 </obsoletedIUs>

Any existing 1.0 “www” IU instance within the IU to be updated should be uninstalled,
because it is obsoleted.
 <installableUnit sequenceNumber="1">
 <!-- this must be an update -->
 <containedCIU IUName="xxx">
 <fileIdRef>xxx_iudd</fileIdRef>
 </containedCIU>
 </installableUnit>

The existing IU “xxx” is updated.

 <selectableContent>
 <installableUnit>
 <CIU IUName="tttvvv">
 <identity>
 <name>token</name>
 <UUID>0F000F000F000F000F000F000F000F00</UUID>
 <version>1.0.3</version>
 </identity>
 <installableUnit>
 <federatedCIU IUName="fedvvv">
 <alternative name=" alt_77">
 <iu checkId="isVVVInstalled">
 <name>Component VVV</name>
 <minVersion>1.1.3</minVersion>
 <canBeSatisfiedBy>vvv</canBeSatisfiedBy>
 </iu>

Installable Unit Deployment Descriptor Version 1.0

 Page 174 of 219

 </alternative>
 </federatedCIU>
 </installableUnit>
 </CIU>
 </installableUnit>

The existing IU “vvv” is updated, and so its parent “tttvvv” is also updated. IU “ttt” is not
updated.
 <installableUnit>
 <containedCIU IUName="aaa">
 <!-- This must be a full IU -->
 <fileIdRef>aaa_iudd</fileIdRef>
 </containedCIU>
 </installableUnit>
 </selectableContent>

A new “aaa” IU is defined.

 <features>
 <feature featureID="BFeature">
 <identity>
 <name>Feature B</name>
 </identity>
 <IUNameRef>aaa</IUNameRef>
 <selectionRules>
 <deselectIfSelected>BFeaturePlus</deselectIfSelected>
 </selectionRules>
 </feature>
 <feature featureID="BFeaturePlus">
 <identity>
 <name>Feature B Plus</name>
 </identity>
 <IUNameRef>aaa</IUNameRef>
 <IUNameRef>tttvvv</IUNameRef>
 <selectionRules>
 <deselectIfSelected>BFeature</deselectIfSelected>
 </selectionRules>
 </feature>
 </features>

The “aaa” IU replaces “www” in both Feature B and B Plus. If either of these features are
installed, then “aaa” should be installed and linked to the features.
 <rootInfo>
 <schemaVersion>1.2.0</schemaVersion>
 <build>1</build>
 </rootInfo>
 <topology>
 <target type="OSRT:Operating_System" id="os"></target>
 </topology>

 <requisites>
 <referencedIU IUName="vvv">
 <fileIdRef>vvv_iudd</fileIdRef>
 </referencedIU>
 </requisites>

The update for the “vvv” IU is contained in a referenced descriptor.
 <files>
 <file id="aaa_iudd">
 <pathname>myciu/referenced/AAA/IUDD.xml</pathname>
 <length>0</length>
 <checksum>checksum</checksum>
 </file>
 <file id="vvv_iudd">
 <pathname>myciu/referenced/VVV/IUDD.xml</pathname>
 <length>0</length>
 <checksum>checksum</checksum>

Installable Unit Deployment Descriptor Version 1.0

 Page 175 of 219

 </file>
 <file id="xxx_iudd">
 <pathname>myciu/referenced/XXX/IUDD.xml</pathname>
 <length>0</length>
 <checksum>checksum</checksum>
 </file>
 </files>
</iudd:rootIU>

Installable Unit Deployment Descriptor Version 1.0

 Page 176 of 219

E. iudd.xsd

<?xml version="1.0" encoding="UTF-8"?>
<schema targetNamespace="http://www.ibm.com/namespaces/autonomic/solutioninstall/IUDD"
xmlns:base="http://www.ibm.com/namespaces/autonomic/solutioninstall/BASE" xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:siu="http://www.ibm.com/namespaces/autonomic/solutioninstall/SIU" xmlns:command="http://www.ibm.com/namespaces/autonomic/solutioninstall/command"
xmlns:rtype="http://www.ibm.com/namespaces/autonomic/solutioninstall/ResourceTypes" xmlns:vsn="http://www.ibm.com/namespaces/autonomic/common/version"
xmlns:iudd="http://www.ibm.com/namespaces/autonomic/solutioninstall/IUDD" elementFormDefault="unqualified" attributeFormDefault="unqualified" version="1.2.1">
 <annotation>
 <documentation>ACAB.SD0402 - Installable Unit Deployment Descriptor (IUDD) - Copyright (C) 2003,2004 IBM Corporation. All rights reserved</documentation>
 </annotation>
 <import namespace="http://www.ibm.com/namespaces/autonomic/solutioninstall/BASE" schemaLocation="base.xsd"/>
 <import namespace="http://www.ibm.com/namespaces/autonomic/solutioninstall/SIU" schemaLocation="siu.xsd"/>
 <import namespace="http://www.ibm.com/namespaces/autonomic/solutioninstall/ResourceTypes" schemaLocation="resourceTypes.xsd"/>
 <import namespace="http://www.ibm.com/namespaces/autonomic/common/version" schemaLocation="version.xsd"/>
 <!--##### Root IU #############-->
 <element name="rootIU" type="iudd:RootIU">
 <key name="fileKey">
 <selector xpath="files/file"/>
 <field xpath="@id"/>
 </key>
 <keyref name="fileIdRef" refer="iudd:fileKey">
 <selector xpath=".//fileIdRef"/>
 <field xpath="."/>
 </keyref>
 <keyref name="bigIconFileIdRef" refer="iudd:fileKey">
 <selector xpath="rootInfo/bigIcon"/>
 <field xpath="@fileIdRef"/>
 </keyref>
 <keyref name="smallIconFileIdRef" refer="iudd:fileKey">
 <selector xpath="rootInfo/smallIcon"/>
 <field xpath="@fileIdRef"/>
 </keyref>
 <key name="customCheckArtifactKey">
 <selector xpath="customCheckDefinitions/*"/>
 <field xpath="@artifactId"/>
 </key>
 <keyref name="customCheckIdRef" refer="iudd:customCheckArtifactKey">

Installable Unit Deployment Descriptor Version 1.0

 Page 177 of 219

 <selector xpath=".//custom"/>
 <field xpath="@artifactIdRef"/>
 </keyref>
 <key name="AllButRootIUNameKey">
 <selector xpath=" .//referencedIU | .//SIU | .//containedCIU | .//federatedCIU | .//containedIU | .//federatedIU | .//solutionModule | .//CIU | .//configurationUnit "/>
 <field xpath="@IUName | @CUName"/>
 </key>
 <key name="AllCUNameKey">
 <selector xpath=".//configurationUnit "/>
 <field xpath="@CUName"/>
 </key>
 <keyref name="AllCUNameKeyRef" refer="iudd:AllCUNameKey">
 <selector xpath=".//config"/>
 <field xpath="CUNameRef"/>
 </keyref>
 <key name="referencedIUNameKey">
 <selector xpath=".//referencedIU | .//containedCIU | .//containedIU "/>
 <field xpath="@IUName"/>
 </key>
 <key name="referencedAggregatedIUNameKey">
 <selector xpath=".//containedCIU | .//containedIU | .//federatedCIU | .//federatedIU | .//referencedIU"/>
 <field xpath="@IUName"/>
 </key>
 <keyref name="referencedIUAttrNameKeyRef" refer="iudd:referencedIUNameKey">
 <selector xpath=".//targetMap "/>
 <field xpath="@IUNameRef"/>
 </keyref>
 <keyref name="referencedAggregatedIUNameKeyRef" refer="iudd:referencedAggregatedIUNameKey">
 <selector xpath=" .//referencedFeature "/>
 <field xpath="IUNameRef"/>
 </keyref>
 <key name="requisiteIUNameKey">
 <selector xpath=".//referencedIU"/>
 <field xpath="@IUName"/>
 </key>
 <keyref name="iuRequisiteIUNameKeyRef" refer="iudd:requisiteIUNameKey">
 <selector xpath=".//canBeSatisfiedBy"/>
 <field xpath="."/>
 </keyref>
 <key name="selectableIUNameKey">
 <selector xpath="selectableContent/installableUnit/*"/>
 <field xpath="@IUName"/>
 </key>
 <keyref name="selectableIUElementNameKeyRef" refer="iudd:selectableIUNameKey">

Installable Unit Deployment Descriptor Version 1.0

 Page 178 of 219

 <selector xpath=" .//feature/IUNameRef "/>
 <field xpath="."/>
 </keyref>
 <key name="AllVariableNameKey">
 <selector xpath=".//variables/variable | .//checks/* | .//inlineCheck/* | .//alternative/iu "/>
 <field xpath="@name | @checkId"/>
 </key>
 <key name="targetKey">
 <selector xpath=".//topology/target | .//topology/deployedTarget "/>
 <field xpath="@id"/>
 </key>
 <keyref name="targetRef" refer="iudd:targetKey">
 <selector xpath=".//targetRef "/>
 <field xpath="."/>
 </keyref>
 <keyref name="relnSourceRef" refer="iudd:targetKey">
 <selector xpath=".//relationship/source "/>
 <field xpath="."/>
 </keyref>
 <keyref name="relnSinkRef" refer="iudd:targetKey">
 <selector xpath=".//relationship/sink "/>
 <field xpath="."/>
 </keyref>
 <keyref name="relnPeerRef" refer="iudd:targetKey">
 <selector xpath=".//relationship/peer "/>
 <field xpath="."/>
 </keyref>
 <key name="groupKey">
 <selector xpath="groups/group "/>
 <field xpath="groupName"/>
 </key>
 <keyref name="groupRef" refer="iudd:groupKey">
 <selector xpath="groups/default"/>
 <field xpath="."/>
 </keyref>
 <key name="reqtKey">
 <selector xpath=".//requirement"/>
 <field xpath="@name"/>
 </key>
 <key name="altKey">
 <selector xpath=".//requirement/alternative"/>
 <field xpath="@name"/>
 </key>
 </element>

Installable Unit Deployment Descriptor Version 1.0

 Page 179 of 219

 <complexType name="RootIU">
 <complexContent>
 <extension base="iudd:AggregatedInstallableUnit">
 <sequence>
 <element name="selectableContent" minOccurs="0">
 <complexType>
 <sequence>
 <element name="installableUnit" type="iudd:ConditionedIU" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 <element name="features" minOccurs="0">
 <complexType>
 <sequence>
 <element name="feature" type="iudd:Feature" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 <element name="rootInfo">
 <complexType>
 <sequence>
 <element name="schemaVersion">
 <simpleType>
 <restriction base="vsn:VersionString">
 <enumeration value="1.2.1"/>
 </restriction>
 </simpleType>
 </element>
 <element name="build" type="nonNegativeInteger"/>
 <element name="size" type="integer" minOccurs="0"/>
 <element name="bigIcon" minOccurs="0">
 <complexType>
 <attribute name="fileIdRef" type="IDREF"/>
 </complexType>
 </element>
 <element name="smallIcon" minOccurs="0">
 <complexType>
 <attribute name="fileIdRef" type="IDREF"/>
 </complexType>
 </element>
 <element name="type" minOccurs="0">
 <simpleType>
 <restriction base="NCName">
 <enumeration value="Offering"/>

Installable Unit Deployment Descriptor Version 1.0

 Page 180 of 219

 <enumeration value="Assembly"/>
 <enumeration value="CommonComponent"/>
 </restriction>
 </simpleType>
 </element>
 </sequence>
 </complexType>
 </element>
 <element name="customCheckDefinitions" minOccurs="0" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="customCheckArtifact" type="siu:CustomCheckArtifact" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 <element name="topology">
 <complexType>
 <sequence>
 <element name="target" type="iudd:Target" maxOccurs="unbounded"/>
 <element name="deployedTarget" type="iudd:DeployedTarget" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 <element name="groups" minOccurs="0">
 <complexType>
 <sequence>
 <element name="group" type="iudd:InstallationGroup" maxOccurs="unbounded"/>
 <element name="default" type="token" minOccurs="0"/>
 </sequence>
 </complexType>
 </element>
 <element name="requisites" minOccurs="0">
 <complexType>
 <sequence>
 <element name="referencedIU" type="iudd:ReferencedIU" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 <element name="files">
 <complexType>
 <sequence>
 <element name="file" type="iudd:File" maxOccurs="unbounded"/>
 </sequence>
 </complexType>

Installable Unit Deployment Descriptor Version 1.0

 Page 181 of 219

 </element>
 </sequence>
 <attribute name="targetRef" type="IDREF" use="optional"/>
 <attribute name="language_bundle" type="token" use="optional" default="iudd_bundle"/>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="ReferencedIU">
 <sequence>
 <element name="fileIdRef" type="IDREF"/>
 <element name="parameterMaps" type="base:Maps" minOccurs="0"/>
 <element name="featureSelections" minOccurs="0">
 <complexType>
 <sequence>
 <element name="externalInstallGroup" type="token" minOccurs="0"/>
 <element name="featureSelection" minOccurs="0" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="externalName" type="token"/>
 <element name="selection" type="iudd:Selection"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 <element name="additionalRequirements" minOccurs="0">
 <complexType>
 <sequence>
 <element name="target" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="checks" type="siu:CheckSequence" minOccurs="0"/>
 <element name="requirements" minOccurs="0">
 <complexType>
 <sequence>
 <element name="requirement" type="siu:Requirement" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 <attribute name="targetRef" type="IDREF"/>
 </complexType>
 </element>

Installable Unit Deployment Descriptor Version 1.0

 Page 182 of 219

 </sequence>
 </complexType>
 </element>
 </sequence>
 <attribute name="IUName" type="ID" use="required"/>
 </complexType>
 <complexType name="ReferencedFeature">
 <sequence>
 <element name="ifReq" minOccurs="0">
 <complexType>
 <sequence>
 <element name="featureIDRef" type="IDREF" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 <element name="IUNameRef" type="IDREF"/>
 <element name="externalName" type="token"/>
 </sequence>
 </complexType>
 <complexType name="FederatedIU">
 <sequence>
 <element name="alternative" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="iu" type="base:IUCheck"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 <attribute name="IUName" type="ID" use="required"/>
 </complexType>
 <!--##### Aggregated Installable Units - base types #####-->
 <group name="SingleTargetIU">
 <choice>
 <element name="SIU" type="siu:SmallestInstallableUnit"/>
 <element name="CIU" type="iudd:ContainerInstallableUnit"/>
 <element name="containedCIU" type="iudd:ReferencedIU"/>
 <element name="federatedCIU" type="iudd:FederatedIU"/>
 <element name="configurationUnit" type="siu:ConfigurationUnit"/>
 </choice>
 </group>
 <complexType name="ConditionedIU">
 <choice>
 <group ref="iudd:SingleTargetIU"/>

Installable Unit Deployment Descriptor Version 1.0

 Page 183 of 219

 <element name="solutionModule" type="iudd:SolutionModule"/>
 <element name="containedIU" type="iudd:ReferencedIU"/>
 <element name="federatedIU" type="iudd:FederatedIU"/>
 </choice>
 <attribute name="targetRef" type="IDREF" use="optional"/>
 <attribute name="condition" type="base:VariableExpression" use="optional"/>
 <attribute name="sequenceNumber" type="nonNegativeInteger"/>
 </complexType>
 <complexType name="AggregatedInstallableUnit" abstract="true">
 <complexContent>
 <extension base="siu:InstallableUnit">
 <sequence>
 <element name="installableUnit" type="iudd:ConditionedIU" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <!--##### Solution Module Installable Unit #####-->
 <complexType name="SolutionModule">
 <complexContent>
 <extension base="iudd:AggregatedInstallableUnit"/>
 </complexContent>
 </complexType>
 <!--##### Container Installable Unit #####################-->
 <complexType name="ContainerInstallableUnit">
 <complexContent>
 <extension base="iudd:AggregatedInstallableUnit">
 <sequence>
 <group ref="siu:SingleTargetIUDefinition"/>
 </sequence>
 <attribute name="hostingEnvType" type="siu:AnyResourceType"/>
 </extension>
 </complexContent>
 </complexType>
 <!--##### TARGET #####################-->
 <complexType name="Target">
 <sequence>
 <element name="description" type="base:DisplayElement" minOccurs="0"/>
 <element name="scope" default="one" minOccurs="0">
 <simpleType>
 <restriction base="NCName">
 <enumeration value="one"/>
 <enumeration value="some"/>
 <enumeration value="all"/>

Installable Unit Deployment Descriptor Version 1.0

 Page 184 of 219

 </restriction>
 </simpleType>
 </element>
 <element name="members" minOccurs="0">
 <complexType>
 <sequence>
 <element name="member" type="IDREF" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 <element name="checks" type="siu:CheckSequence" minOccurs="0"/>
 <element name="selectionRequirements" minOccurs="0">
 <complexType>
 <sequence>
 <element name="requirement" type="siu:Requirement" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 <element name="validationRequirements" minOccurs="0">
 <complexType>
 <sequence>
 <element name="requirement" type="siu:Requirement" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 <element name="targetMap" type="iudd:TargetMap" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="id" type="ID" use="required"/>
 <attribute name="type" type="siu:AnyResourceType" use="required"/>
 </complexType>
 <complexType name="DeployedTarget">
 <sequence>
 <element name="description" type="base:DisplayElement" minOccurs="0"/>
 <choice>
 <element name="IUNameRef" type="IDREF"/>
 <element name="targetMap" type="iudd:TargetMap"/>
 </choice>
 </sequence>
 <attribute name="id" type="ID" use="required"/>
 <attribute name="type" type="siu:AnyResourceType" use="required"/>
 </complexType>
 <complexType name="TargetMap">
 <sequence>
 <element name="externalName" type="NCName" maxOccurs="unbounded"/>

Installable Unit Deployment Descriptor Version 1.0

 Page 185 of 219

 </sequence>
 <attribute name="IUNameRef" type="IDREF" use="required"/>
 </complexType>
 <!--##### Files ########################-->
 <complexType name="File">
 <sequence>
 <element name="pathname" type="base:RelativePath"/>
 <element name="length" type="integer"/>
 <element name="checksum" type="base:CheckSum"/>
 </sequence>
 <attribute name="id" type="ID" use="required"/>
 <attribute name="compression" type="boolean" use="optional" default="true"/>
 <attribute name="charEncoding" type="base:CharacterEncoding" use="optional"/>
 </complexType>
 <!--##### GROUPS & FEATURES ############-->
 <simpleType name="Selection">
 <restriction base="NCName">
 <enumeration value="not_selected"/>
 <enumeration value="selected"/>
 </restriction>
 </simpleType>
 <complexType name="InstallationGroup">
 <sequence>
 <element name="groupName" type="token"/>
 <element name="feature" maxOccurs="unbounded">
 <complexType>
 <attribute name="featureIDRef" type="IDREF" use="required"/>
 <attribute name="selection" type="iudd:Selection" default="selected"/>
 <attribute name="selectionChangeable" type="boolean" default="true"/>
 </complexType>
 </element>
 <element name="description" type="base:DisplayElement" minOccurs="0"/>
 </sequence>
 </complexType>
 <complexType name="Feature">
 <sequence>
 <group ref="iudd:FeatureDefinition"/>
 <element name="feature" type="iudd:Feature" minOccurs="0" maxOccurs="unbounded"/>
 <element name="IUNameRef" type="IDREF" minOccurs="0" maxOccurs="unbounded"/>
 <element name="referencedFeature" type="iudd:ReferencedFeature" minOccurs="0" maxOccurs="unbounded"/>
 <element name="selectionRules" minOccurs="0">
 <complexType>
 <sequence>
 <element name="selectIfSelected" type="IDREF" minOccurs="0" maxOccurs="unbounded"/>

Installable Unit Deployment Descriptor Version 1.0

 Page 186 of 219

 <element name="deselectIfSelected" type="IDREF" minOccurs="0" maxOccurs="unbounded"/>
 <element name="selectIfDeselected" type="IDREF" minOccurs="0" maxOccurs="unbounded"/>
 <element name="deselectIfDeselected" type="IDREF" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 <attribute name="featureID" type="ID" use="required"/>
 <attribute name="required" type="boolean" default="false"/>
 <attribute name="type" type="iudd:FeatureType"/>
 </complexType>
 <group name="FeatureDefinition">
 <sequence>
 <element name="identity">
 <complexType>
 <sequence>
 <element name="name" type="token"/>
 <element name="displayName" type="base:DisplayElement" minOccurs="0"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </group>
 <simpleType name="FeatureType">
 <union memberTypes="NCName iudd:StandardFeatureType"/>
 </simpleType>
 <simpleType name="StandardFeatureType">
 <restriction base="NCName">
 <enumeration value="Documentation"/>
 <enumeration value="Language"/>
 <enumeration value="Samples"/>
 </restriction>
 </simpleType>
</schema>

Installable Unit Deployment Descriptor Version 1.0

 Page 187 of 219

F. siu.xsd

<?xml version="1.0" encoding="UTF-8"?>
<schema targetNamespace="http://www.ibm.com/namespaces/autonomic/solutioninstall/SIU"
xmlns:rtype="http://www.ibm.com/namespaces/autonomic/solutioninstall/ResourceTypes" xmlns:vsn="http://www.ibm.com/namespaces/autonomic/common/version"
xmlns:siu="http://www.ibm.com/namespaces/autonomic/solutioninstall/SIU" xmlns:base="http://www.ibm.com/namespaces/autonomic/solutioninstall/BASE"
xmlns:sigt="http://www.ibm.com/namespaces/autonomic/solutioninstall/Signatures" xmlns="http://www.w3.org/2001/XMLSchema" elementFormDefault="unqualified"
attributeFormDefault="unqualified" version="1.2.1">
 <annotation>
 <documentation>ACAB.SD0402 - Installable Unit Deployment Descriptor (IUDD) - Copyright (C) 2003,2004 IBM Corporation. All rights reserved</documentation>
 </annotation>
 <import namespace="http://www.ibm.com/namespaces/autonomic/solutioninstall/Signatures" schemaLocation="signatures.xsd"/>
 <import namespace="http://www.ibm.com/namespaces/autonomic/solutioninstall/ResourceTypes" schemaLocation="resourceTypes.xsd"/>
 <import namespace="http://www.ibm.com/namespaces/autonomic/solutioninstall/BASE" schemaLocation="base.xsd"/>
 <import namespace="http://www.ibm.com/namespaces/autonomic/common/version" schemaLocation="version.xsd"/>
 <!--##### IU Definition #########################-->
 <group name="IUDefinition">
 <sequence>
 <element name="identity" type="base:IUIdentity">
 <annotation>
 <documentation>Installable Unit Identity</documentation>
 </annotation>
 </element>
 <element name="constraints" minOccurs="0">
 <annotation>
 <documentation>Sharing and multiplicity constraints</documentation>
 </annotation>
 <complexType>
 <sequence>
 <element name="maximumInstances" type="nonNegativeInteger" minOccurs="0"/>
 <element name="maximumSharing" minOccurs="0">
 <complexType>
 <simpleContent>
 <extension base="nonNegativeInteger">
 <attribute name="sharedBy_List" type="base:ListOfUUIDs" use="optional"/>
 </extension>
 </simpleContent>
 </complexType>

Installable Unit Deployment Descriptor Version 1.0

 Page 188 of 219

 </element>
 </sequence>
 </complexType>
 </element>
 <element name="obsoletedIUs" minOccurs="0">
 <complexType>
 <sequence>
 <element name="obsoletedIU" maxOccurs="unbounded">
 <complexType>
 <choice>
 <element name="name" type="token"/>
 <element name="UUID" type="base:UUID"/>
 </choice>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </group>
 <group name="FixDefinition">
 <sequence>
 <element name="fixIdentity" type="base:FixIdentity"/>
 </sequence>
 </group>
 <group name="IUorFixDefinition">
 <sequence>
 <choice>
 <sequence>
 <group ref="siu:IUDefinition"/>
 </sequence>
 <sequence>
 <group ref="siu:FixDefinition"/>
 </sequence>
 </choice>
 <element name="supersededFixes" type="base:ListOfIdentifiers" minOccurs="0">
 <annotation>
 <documentation>These are fix names for this UUID</documentation>
 </annotation>
 </element>
 </sequence>
 </group>
 <group name="CUDefinition">
 <sequence>

Installable Unit Deployment Descriptor Version 1.0

 Page 189 of 219

 <element name="displayName" type="base:DisplayElement" minOccurs="0"/>
 <element name="manufacturer" type="base:DisplayElement" minOccurs="0"/>
 <element name="checks" type="siu:CheckSequence" minOccurs="0"/>
 <element name="requirements" minOccurs="0">
 <complexType>
 <sequence>
 <element name="requirement" type="siu:Requirement" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </group>
 <!--##### Smallest Installable Unit ################-->
 <complexType name="InstallableUnit">
 <sequence>
 <group ref="siu:IUorFixDefinition"/>
 <group ref="base:Variables"/>
 </sequence>
 <attribute name="IUName" type="ID" use="required"/>
 </complexType>
 <group name="SingleTargetIUDefinition">
 <sequence>
 <element name="signatures" minOccurs="0">
 <complexType>
 <sequence>
 <element name="signature" type="sigt:Signature" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 <element name="checks" type="siu:CheckSequence" minOccurs="0"/>
 <element name="requirements" minOccurs="0">
 <complexType>
 <sequence>
 <element name="requirement" type="siu:Requirement" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </group>
 <complexType name="SmallestInstallableUnit">
 <complexContent>
 <extension base="siu:InstallableUnit">
 <sequence>
 <group ref="siu:SingleTargetIUDefinition"/>

Installable Unit Deployment Descriptor Version 1.0

 Page 190 of 219

 <element name="unit" type="siu:InstallArtifactSet" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="hostingEnvType" type="siu:AnyResourceType"/>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="ConfigurationUnit">
 <sequence>
 <group ref="siu:CUDefinition"/>
 <group ref="base:Variables"/>
 <element name="unit" type="siu:ConfigurationArtifactSet" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="CUName" type="ID" use="required"/>
 <attribute name="resourceType" type="siu:AnyResourceType"/>
 </complexType>
 <!--##### CHECKS ###########################-->
 <complexType name="CustomCheck">
 <complexContent>
 <extension base="base:Check">
 <sequence>
 <element name="parameter" minOccurs="0" maxOccurs="unbounded">
 <complexType>
 <annotation>
 <documentation>Setting a parameter of a custom check</documentation>
 </annotation>
 <simpleContent>
 <extension base="base:VariableExpression">
 <attribute name="variableNameRef" type="IDREF" use="required"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 </sequence>
 <attribute name="artifactIdRef" type="IDREF" use="required"/>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="CustomCheckArtifact">
 <complexContent>
 <extension base="siu:Artifact">
 <attribute name="artifactId" type="ID" use="required"/>
 </extension>
 </complexContent>
 </complexType>

Installable Unit Deployment Descriptor Version 1.0

 Page 191 of 219

 <group name="CheckChoice">
 <choice>
 <element name="capacity" type="base:CapacityCheck"/>
 <element name="consumption" type="base:ConsumptionCheck"/>
 <element name="property" type="base:PropertyCheck"/>
 <element name="version" type="base:VersionCheck"/>
 <element name="software" type="base:SoftwareCheck"/>
 <element name="iu" type="base:IUCheck"/>
 <element name="relationship" type="base:RelationshipCheck"/>
 <element name="custom" type="siu:CustomCheck"/>
 </choice>
 </group>
 <complexType name="CheckSequence">
 <sequence minOccurs="0" maxOccurs="unbounded">
 <group ref="siu:CheckChoice"/>
 </sequence>
 </complexType>
 <!--##### REQUIREMENTS #####################-->
 <complexType name="Requirement">
 <sequence>
 <element name="description" type="base:DisplayElement" minOccurs="0"/>
 <element name="alternative" maxOccurs="unbounded">
 <annotation>
 <documentation>conditions in .OR.</documentation>
 </annotation>
 <complexType>
 <annotation>
 <documentation>conditions in .AND.</documentation>
 </annotation>
 <sequence>
 <element name="description" type="base:DisplayElement" minOccurs="0"/>
 <choice maxOccurs="unbounded">
 <element name="checkItem">
 <complexType>
 <attribute name="checkIdRef" type="IDREF" use="required"/>
 <attribute name="testValue" type="boolean" use="optional" default="true"/>
 </complexType>
 </element>
 <element name="inlineCheck">
 <complexType>
 <group ref="siu:CheckChoice"/>
 <attribute name="testValue" type="boolean" use="optional" default="true"/>
 </complexType>
 </element>

Installable Unit Deployment Descriptor Version 1.0

 Page 192 of 219

 </choice>
 </sequence>
 <attribute name="name" type="ID" use="required"/>
 <attribute name="priority" type="nonNegativeInteger" use="optional"/>
 </complexType>
 </element>
 </sequence>
 <attribute name="name" type="ID" use="required"/>
 <attribute name="operations" type="base:ListOfOperations" default="Create"/>
 </complexType>
 <!--##### ARTIFACTS #####################-->
 <complexType name="InstallArtifactSet">
 <sequence>
 <element name="installArtifacts">
 <complexType>
 <sequence>
 <element name="installArtifact" type="siu:UndoableArtifact" minOccurs="0"/>
 <element name="initialConfigArtifact" type="siu:UndoableArtifact" minOccurs="0"/>
 <element name="migrateArtifact" type="siu:UndoableArtifact" minOccurs="0"/>
 <element name="verifyInstallArtifact" type="siu:Artifact" minOccurs="0"/>
 <element name="uninstallArtifact" type="siu:Artifact" minOccurs="0"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 <attribute name="condition" type="base:VariableExpression" use="optional" default="true"/>
 </complexType>
 <complexType name="ConfigurationArtifactSet">
 <sequence>
 <element name="configArtifacts">
 <complexType>
 <sequence>
 <element name="configArtifact" type="siu:Artifact" minOccurs="0"/>
 <element name="verifyConfigArtifact" type="siu:Artifact" minOccurs="0"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 <attribute name="condition" type="base:VariableExpression" use="optional" default="true"/>
 </complexType>
 <complexType name="Artifact">
 <sequence>
 <element name="fileIdRef" type="IDREF"/>
 <element name="type" type="siu:ArtifactFormat" default="ActionDefinition" minOccurs="0">

Installable Unit Deployment Descriptor Version 1.0

 Page 193 of 219

 <annotation>
 <documentation>ActionDefinition, ResourcePropertiesDefinition, ...</documentation>
 </annotation>
 </element>
 <element name="parameterMaps" type="base:Maps" minOccurs="0">
 <annotation>
 <documentation>Provide/Override value of artifact parameter variables</documentation>
 </annotation>
 </element>
 </sequence>
 <attribute name="HE_restart_required" type="boolean" use="optional" default="false">
 <annotation>
 <documentation>If enabled, this attribute indicates that a hosting environment restart (e.g. OS reboot)is needed after processing actions in this
artifact.</documentation>
 </annotation>
 </attribute>
 </complexType>
 <complexType name="UndoableArtifact">
 <complexContent>
 <extension base="siu:Artifact">
 <attribute name="undoable" type="boolean" use="optional" default="false"/>
 </extension>
 </complexContent>
 </complexType>
 <simpleType name="ArtifactFormat">
 <union memberTypes="NCName siu:StandardArtifactFormat"/>
 </simpleType>
 <simpleType name="StandardArtifactFormat">
 <restriction base="NCName">
 <enumeration value="ActionDefinition"/>
 <enumeration value="ResourcePropertiesDefinition"/>
 </restriction>
 </simpleType>
 <!--##### HE Types #####################-->
 <simpleType name="AnyResourceType">
 <union memberTypes="rtype:RType QName"/>
 </simpleType>
</schema>

Installable Unit Deployment Descriptor Version 1.0

 Page 194 of 219

G. base.xsd

<?xml version="1.0" encoding="UTF-8"?>
<schema targetNamespace="http://www.ibm.com/namespaces/autonomic/solutioninstall/BASE"
xmlns:base="http://www.ibm.com/namespaces/autonomic/solutioninstall/BASE" xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:vsn="http://www.ibm.com/namespaces/autonomic/common/version" xmlns:rel="http://www.ibm.com/namespaces/autonomic/solutioninstall/Relationships"
elementFormDefault="unqualified" attributeFormDefault="unqualified" version="1.2.1">
 <import namespace="http://www.ibm.com/namespaces/autonomic/solutioninstall/Relationships" schemaLocation="relationships.xsd"/>
 <import namespace="http://www.ibm.com/namespaces/autonomic/common/version" schemaLocation="version.xsd"/>
 <annotation>
 <documentation>ACAB.SD0402 - Installable Unit Deployment Descriptor (IUDD) - Copyright (C) 2003,2004 IBM Corporation. All rights reserved</documentation>
 </annotation>
 <!--##### DISPLAY ELEMENTS ########################-->
 <simpleType name="LineOfText">
 <restriction base="string">
 <maxLength value="200"/>
 </restriction>
 </simpleType>
 <simpleType name="TooltipText">
 <restriction base="string">
 <maxLength value="60"/>
 </restriction>
 </simpleType>
 <complexType name="DisplayElement">
 <sequence>
 <element name="defaultLineText">
 <complexType>
 <simpleContent>
 <extension base="base:LineOfText">
 <attribute name="key" type="NCName" use="required"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="defaultText" minOccurs="0">
 <complexType>
 <simpleContent>
 <extension base="string">

Installable Unit Deployment Descriptor Version 1.0

 Page 195 of 219

 <attribute name="key" type="NCName" use="required"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="defaultTooltip" minOccurs="0">
 <complexType>
 <simpleContent>
 <extension base="base:TooltipText">
 <attribute name="key" type="NCName" use="required"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 </sequence>
 </complexType>
 <!--##### IDENTIFIERS AND EXPRESSIONS ###############-->
 <simpleType name="ListOfIdentifiers">
 <list itemType="NCName"/>
 </simpleType>
 <simpleType name="ListOfIDREFs">
 <list itemType="IDREF"/>
 </simpleType>
 <simpleType name="VariableExpression">
 <restriction base="token">
 <pattern value="([^$]*($[^(])*($\([a-zA-Z_]+[0-9a-zA-Z_]*\))*)*"/>
 </restriction>
 </simpleType>
 <simpleType name="UUID">
 <restriction base="hexBinary">
 <length value="16"/>
 </restriction>
 </simpleType>
 <simpleType name="ListOfUUIDs">
 <list itemType="base:UUID"/>
 </simpleType>
 <!--##### Generic PropertyName ###################-->
 <simpleType name="PropertyName">
 <restriction base="string"/>
 </simpleType>
 <!--##### VARIABLES ##############################-->
 <complexType name="Variable">
 <sequence>
 <choice>

Installable Unit Deployment Descriptor Version 1.0

 Page 196 of 219

 <element name="parameter">
 <complexType>
 <attribute name="defaultValue" type="base:VariableExpression" use="optional"/>
 <attribute name="transient" type="boolean" use="optional" default="false"/>
 </complexType>
 </element>
 <element name="derivedVariable">
 <complexType>
 <sequence>
 <element name="expression" maxOccurs="unbounded">
 <complexType>
 <simpleContent>
 <extension base="base:VariableExpression">
 <attribute name="condition" type="base:VariableExpression" use="optional"/>
 <attribute name="priority" type="nonNegativeInteger" use="optional"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 <element name="queryProperty">
 <complexType>
 <attribute name="property" type="base:PropertyName" use="required"/>
 <attribute name="targetRef" type="IDREF" use="optional"/>
 </complexType>
 </element>
 <element name="queryIUDiscriminant">
 <complexType>
 <attribute name="iuCheckRef" type="IDREF" use="required"/>
 </complexType>
 </element>
 <element name="resolvedTargetList">
 <complexType>
 <attribute name="targetRef" type="IDREF"/>
 </complexType>
 </element>
 <element name="inheritedVariable"/>
 </choice>
 <element name="description" type="base:DisplayElement" minOccurs="0"/>
 </sequence>
 <attribute name="name" type="ID" use="required"/>
 </complexType>

Installable Unit Deployment Descriptor Version 1.0

 Page 197 of 219

 <group name="Variables">
 <sequence>
 <element name="variables" minOccurs="0">
 <complexType>
 <sequence>
 <element name="variable" type="base:Variable" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </group>
 <!--##### IDENTITY##################################-->
 <complexType name="BaseIUIdentity">
 <sequence>
 <element name="name" type="token"/>
 <element name="UUID" type="base:UUID"/>
 <element name="displayName" type="base:DisplayElement" minOccurs="0"/>
 <element name="manufacturer" type="base:DisplayElement" minOccurs="0"/>
 <element name="buildID" type="token" minOccurs="0"/>
 <element name="buildDate" type="dateTime" minOccurs="0"/>
 </sequence>
 </complexType>
 <complexType name="RequiredBase">
 <sequence>
 <element name="minVersion" type="vsn:VersionString" minOccurs="0"/>
 <element name="maxVersion" type="vsn:VersionString" minOccurs="0"/>
 </sequence>
 </complexType>
 <complexType name="IUIdentity">
 <complexContent>
 <extension base="base:BaseIUIdentity">
 <sequence>
 <choice minOccurs="0">
 <element name="full">
 <complexType>
 <sequence>
 <element name="upgradeBase" type="base:RequiredBase" minOccurs="0"/>
 <element name="type" minOccurs="0">
 <simpleType>
 <restriction base="NCName">
 <enumeration value="BaseInstall"/>
 <enumeration value="ManufacturingRefresh"/>
 <enumeration value="RecommendedServiceUpgrade"/>
 </restriction>

Installable Unit Deployment Descriptor Version 1.0

 Page 198 of 219

 </simpleType>
 </element>
 </sequence>
 </complexType>
 </element>
 <element name="incremental">
 <complexType>
 <sequence>
 <element name="requiredBase" type="base:RequiredBase"/>
 <element name="type" minOccurs="0">
 <simpleType>
 <restriction base="NCName">
 <enumeration value="FixPack"/>
 <enumeration value="RefreshPack"/>
 <enumeration value="DeltaFixPack"/>
 <enumeration value="CriticalDeltaFixPack"/>
 <enumeration value="CriticalFixPack"/>
 </restriction>
 </simpleType>
 </element>
 </sequence>
 </complexType>
 </element>
 </choice>
 <element name="version" type="vsn:VersionString"/>
 <element name="backward_compatibility" minOccurs="0">
 <complexType>
 <sequence>
 <element name="version" type="vsn:VersionString" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="FixIdentity">
 <complexContent>
 <extension base="base:BaseIUIdentity">
 <sequence>
 <element name="incremental">
 <complexType>
 <sequence>
 <element name="requiredBase" type="base:RequiredBase"/>

Installable Unit Deployment Descriptor Version 1.0

 Page 199 of 219

 </sequence>
 </complexType>
 </element>
 <element name="fixName" type="NCName"/>
 <element name="fixType" minOccurs="0">
 <simpleType>
 <restriction base="NCName">
 <enumeration value="InterimFix"/>
 <enumeration value="TestFix"/>
 <enumeration value="ProgramTemporaryFix"/>
 </restriction>
 </simpleType>
 </element>
 <element name="fixDependencies" minOccurs="0">
 <complexType>
 <sequence>
 <element name="pre-requisite_fixes" type="base:ListOfIdentifiers" minOccurs="0"/>
 <element name="co-requisite_fixes" type="base:ListOfIdentifiers" minOccurs="0"/>
 <element name="ex-requisite_fixes" type="base:ListOfIdentifiers" minOccurs="0"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <!--##### CHECKS ###############################-->
 <complexType name="Check">
 <sequence>
 <element name="description" type="base:DisplayElement" minOccurs="0"/>
 </sequence>
 <attribute name="checkId" type="ID" use="required"/>
 <attribute name="targetRef" type="IDREF" use="optional"/>
 </complexType>
 <complexType name="CapacityCheck">
 <complexContent>
 <extension base="base:Check">
 <sequence>
 <element name="propertyName" type="base:PropertyName"/>
 <element name="value" type="base:VariableExpression"/>
 </sequence>
 <attribute name="type" use="optional" default="minimum">
 <simpleType>
 <restriction base="NCName">

Installable Unit Deployment Descriptor Version 1.0

 Page 200 of 219

 <enumeration value="maximum"/>
 <enumeration value="minimum"/>
 </restriction>
 </simpleType>
 </attribute>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="ConsumptionCheck">
 <complexContent>
 <extension base="base:Check">
 <sequence>
 <element name="propertyName" type="base:PropertyName"/>
 <element name="value" type="base:VariableExpression"/>
 </sequence>
 <attribute name="temporary" type="boolean" use="optional" default="false"/>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="PropertyCheck">
 <complexContent>
 <extension base="base:Check">
 <sequence>
 <element name="propertyName" type="base:PropertyName"/>
 <choice>
 <element name="pattern" type="string"/>
 <element name="value" type="base:VariableExpression"/>
 <element name="rootOfPath" type="base:VariableExpression"/>
 </choice>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="VersionCheck">
 <complexContent>
 <extension base="base:Check">
 <sequence>
 <element name="propertyName" type="base:PropertyName"/>
 <element name="minVersion" type="vsn:GenericVersionString" minOccurs="0"/>
 <element name="maxVersion" type="vsn:GenericVersionString" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

Installable Unit Deployment Descriptor Version 1.0

 Page 201 of 219

 <simpleType name="RequisiteType">
 <restriction base="NCName">
 <enumeration value="requisite"/>
 <enumeration value="pre_requisite"/>
 </restriction>
 </simpleType>
 <complexType name="PatternOrValue">
 <simpleContent>
 <extension base="string">
 <attribute name="pattern" type="boolean" use="optional" default="false"/>
 </extension>
 </simpleContent>
 </complexType>
 <complexType name="SoftwareCheck">
 <complexContent>
 <extension base="base:Check">
 <sequence>
 <element name="UUID" type="base:UUID" minOccurs="0"/>
 <element name="name" type="base:PatternOrValue" minOccurs="0"/>
 <element name="minVersion" type="vsn:GenericVersionString" minOccurs="0"/>
 <element name="maxVersion" type="vsn:GenericVersionString" minOccurs="0"/>
 <element name="canBeSatisfiedBy" type="IDREF" minOccurs="0"/>
 </sequence>
 <attribute name="type" type="base:RequisiteType" use="optional" default="pre_requisite"/>
 <attribute name="exact_range" type="boolean" use="optional" default="false"/>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="IUCheck">
 <complexContent>
 <extension base="base:Check">
 <sequence>
 <choice>
 <sequence>
 <element name="UUID" type="base:UUID" minOccurs="0"/>
 <element name="name" type="token" minOccurs="0"/>
 <element name="minVersion" type="vsn:VersionString" minOccurs="0"/>
 <element name="maxVersion" type="vsn:VersionString" minOccurs="0"/>
 <element name="temporaryFixes" type="base:ListOfIdentifiers" minOccurs="0"/>
 <element name="features" minOccurs="0">
 <complexType>
 <choice maxOccurs="unbounded">
 <element name="name" type="token"/>
 </choice>

Installable Unit Deployment Descriptor Version 1.0

 Page 202 of 219

 </complexType>
 </element>
 <element name="canBeSatisfiedBy" type="IDREF" minOccurs="0"/>
 </sequence>
 <element name="IUNameRef" type="IDREF"/>
 <element name="featureIDRef" type="IDREF"/>
 </choice>
 </sequence>
 <attribute name="type" type="base:RequisiteType" use="optional" default="pre_requisite"/>
 <attribute name="exact_range" type="boolean" use="optional" default="false"/>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="RelationshipCheck">
 <complexContent>
 <extension base="base:Check">
 <sequence>
 <choice>
 <element name="source" type="IDREF"/>
 <element name="sink" type="IDREF"/>
 <element name="peer" type="IDREF"/>
 </choice>
 <element name="type" type="rel:Relationship"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <!--##### IU LIFECYCLE OPERATIONS ########################-->
 <simpleType name="Operation">
 <restriction base="NCName">
 <enumeration value="Create"/>
 <enumeration value="Update"/>
 <enumeration value="Undo"/>
 <enumeration value="InitialConfig"/>
 <enumeration value="Migrate"/>
 <enumeration value="Configure"/>
 <enumeration value="VerifyConfig"/>
 <enumeration value="VerifyIU"/>
 <enumeration value="Repair"/>
 <enumeration value="Delete"/>
 </restriction>
 </simpleType>
 <simpleType name="ListOfOperations">
 <list itemType="base:Operation"/>

Installable Unit Deployment Descriptor Version 1.0

 Page 203 of 219

 </simpleType>
 <simpleType name="ArtifactType">
 <restriction base="NCName">
 <enumeration value="Install"/>
 <enumeration value="InitialConfig"/>
 <enumeration value="Migrate"/>
 <enumeration value="VerifyInstall"/>
 <enumeration value="Uninstall"/>
 <enumeration value="Configure"/>
 <enumeration value="VerifyConfig"/>
 <enumeration value="CustomCheck"/>
 </restriction>
 </simpleType>
 <!--##### IDENTITY CONSTRAINTS ##################-->
 <complexType name="IdentityConstraint">
 <simpleContent>
 <extension base="base:ListOfIDREFs">
 <attribute name="constraintName" type="ID"/>
 </extension>
 </simpleContent>
 </complexType>
 <!--##### UTILITY ################################-->
 <simpleType name="nonNegativeDecimal">
 <restriction base="decimal">
 <minInclusive value="0"/>
 </restriction>
 </simpleType>
 <simpleType name="CharacterEncoding">
 <restriction base="string">
 <maxLength value="40"/>
 </restriction>
 </simpleType>
 <complexType name="CheckSum">
 <simpleContent>
 <extension base="string">
 <attribute name="type" use="optional" default="CRC32">
 <simpleType>
 <restriction base="NCName">
 <enumeration value="CRC32"/>
 <enumeration value="MD2"/>
 <enumeration value="MD5"/>
 <enumeration value="SHA_1"/>
 <enumeration value="SHA_256"/>
 <enumeration value="SHA_384"/>

Installable Unit Deployment Descriptor Version 1.0

 Page 204 of 219

 <enumeration value="SHA_512"/>
 </restriction>
 </simpleType>
 </attribute>
 </extension>
 </simpleContent>
 </complexType>
 <complexType name="Maps">
 <sequence>
 <element name="map" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="internalName" type="IDREF"/>
 <element name="externalName" type="NCName"/>
 </sequence>
 <attribute name="direction" default="in">
 <simpleType>
 <restriction base="string">
 <enumeration value="in"/>
 <enumeration value="out"/>
 </restriction>
 </simpleType>
 </attribute>
 </complexType>
 </element>
 </sequence>
 </complexType>
 <simpleType name="RelativePath">
 <restriction base="string">
 <pattern value="([^\s/]+([\s]+[^\s/]+)*)(/([^\s/]+([\s]+[^\s/]+)*))*"/>
 </restriction>
 </simpleType>
</schema>

Installable Unit Deployment Descriptor Version 1.0

 Page 205 of 219

H. version.xsd

<?xml version="1.0" encoding="UTF-8"?>
<schema targetNamespace="http://www.ibm.com/namespaces/autonomic/common/version" xmlns:vsn="http://www.ibm.com/namespaces/autonomic/common/version"
xmlns="http://www.w3.org/2001/XMLSchema" elementFormDefault="unqualified" attributeFormDefault="unqualified" version="1.0.0.0">
 <annotation>
 <documentation>ACAB.DS0316 - Copyright (C) 2003 IBM Corporation. All rights reserved</documentation>
 </annotation>
 <!--##### VERSION ##################################-->
 <simpleType name="VersionString">
 <restriction base="string">
 <pattern value="([0-9]{1,9})(\.[0-9]{1,9}){1,3}"/>
 </restriction>
 </simpleType>
 <simpleType name="GenericVersionString">
 <restriction base="string">
 <maxLength value="200"/>
 <pattern value="([0-9a-zA-Z]+(([\+_ \-]*)+[0-9a-zA-Z]+)*)+(\.([0-9a-zA-Z]+(([\+_ \-]*)+[0-9a-zA-Z]+)*)){0,99}"/>
 </restriction>
 </simpleType>
</schema>

Installable Unit Deployment Descriptor Version 1.0

 Page 206 of 219

I. relationships.xsd

<?xml version="1.0" encoding="UTF-8"?>
<schema targetNamespace="http://www.ibm.com/namespaces/autonomic/solutioninstall/Relationships" xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:rel="http://www.ibm.com/namespaces/autonomic/solutioninstall/Relationships" elementFormDefault="unqualified" attributeFormDefault="unqualified" version="1.2.1">
 <annotation>
 <documentation>Standard relationships enumeration - Annex to the ACAB.SD0402 - Copyright (C) 2003, 2004 IBM Corporation. All rights
reserved</documentation>
 </annotation>
 <simpleType name="Relationship">
 <union memberTypes="Name rel:StandardRelationship"/>
 </simpleType>
 <simpleType name="StandardRelationship">
 <restriction base="NCName">
 <enumeration value="Uses"/>
 <enumeration value="Hosts"/>
 <enumeration value="HasComponent"/>
 <enumeration value="Federates"/>
 <enumeration value="HasMember"/>
 <enumeration value="ImplementedBy"/>
 <enumeration value="Deploys"/>
 <enumeration value="Virtualizes"/>
 <enumeration value="Supersedes"/>
 <enumeration value="Fixes"/>
 </restriction>
 </simpleType>
</schema>

Installable Unit Deployment Descriptor Version 1.0

 Page 207 of 219

J. resourceTypes.xsd

<?xml version="1.0" encoding="UTF-8"?>
<schema targetNamespace="http://www.ibm.com/namespaces/autonomic/solutioninstall/ResourceTypes"
xmlns:RDBRT="http://www.ibm.com/namespaces/autonomic/RDB_RT" xmlns:WSRT="http://www.ibm.com/namespaces/autonomic/WS_RT"
xmlns:J2EERT="http://www.ibm.com/namespaces/autonomic/J2EE_RT" xmlns:OSRT="http://www.ibm.com/namespaces/autonomic/OS_RT"
xmlns:rtype="http://www.ibm.com/namespaces/autonomic/solutioninstall/ResourceTypes" xmlns="http://www.w3.org/2001/XMLSchema" elementFormDefault="unqualified"
attributeFormDefault="unqualified" version="1.2.1">
 <annotation>
 <documentation>Annex to the ACAB.CT0302 "Autonomic Computing Resource Type - Content Specification" - Copyright (C) 2003, 2004 IBM Corporation. All rights
reserved</documentation>
 </annotation>
 <!--##### All Resource Types ##############-->
 <simpleType name="RType">
 <union memberTypes="rtype:OS_RT rtype:J2EE_RT rtype:WS_RT rtype:RDB_RT"/>
 </simpleType>
 <!--##### Operating System Resource Types ######################-->
 <simpleType name="OS_RT">
 <restriction base="QName">
 <enumeration value="OSRT:RedHatLinux"/>
 <enumeration value="OSRT:SuSELinux"/>
 <enumeration value="OSRT:TurboLinux"/>
 <enumeration value="OSRT:UnitedLinux"/>
 <enumeration value="OSRT:MandrakeLinux"/>
 <enumeration value="OSRT:SlackwareLinux"/>
 <enumeration value="OSRT:SunSolaris"/>
 <enumeration value="OSRT:IBMAIX"/>
 <enumeration value="OSRT:HPUX"/>
 <enumeration value="OSRT:NovellNetware"/>
 <enumeration value="OSRT:IBMzOS"/>
 <enumeration value="OSRT:IBMMVS"/>
 <enumeration value="OSRT:IBMOS400"/>
 <enumeration value="OSRT:MicrosoftWindows_98"/>
 <enumeration value="OSRT:MicrosoftWindows_ME"/>
 <enumeration value="OSRT:MicrosoftWindows_NT_Workstation"/>
 <enumeration value="OSRT:MicrosoftWindows_NT_Server"/>
 <enumeration value="OSRT:MicrosoftWindows_2000_Workstation"/>
 <enumeration value="OSRT:MicrosoftWindows_2000_Server"/>

Installable Unit Deployment Descriptor Version 1.0

 Page 208 of 219

 <enumeration value="OSRT:MicrosoftWindows_2000_AdvancedServer"/>
 <enumeration value="OSRT:MicrosoftWindows_XP_Home"/>
 <enumeration value="OSRT:MicrosoftWindows_XP_Professional"/>
 <enumeration value="OSRT:MicrosoftWindows_2003_Server"/>
 <enumeration value="OSRT:MicrosoftWindows_2003_AdvancedServer"/>
 <enumeration value="OSRT:MACOS"/>
 <enumeration value="OSRT:FreeBSD"/>
 <enumeration value="OSRT:UnixWare"/>
 <enumeration value="OSRT:OpenServer"/>
 <enumeration value="OSRT:Tru64UNIX"/>
 <enumeration value="OSRT:ReliantUNIX"/>
 <enumeration value="OSRT:MicrosoftWinCE"/>
 <enumeration value="OSRT:MicrosoftXPE"/>
 <enumeration value="OSRT:PalmOS"/>
 <enumeration value="OSRT:Symbian"/>
 <enumeration value="OSRT:Windows"/>
 <enumeration value="OSRT:Windows-Win32"/>
 <enumeration value="OSRT:UNIX"/>
 <enumeration value="OSRT:POSIX"/>
 <enumeration value="OSRT:Linux"/>
 <enumeration value="OSRT:Operating_System"/>
 <enumeration value="OSRT:Windows_NT"/>
 <enumeration value="OSRT:Windows_2000"/>
 <enumeration value="OSRT:Windows_XP"/>
 <enumeration value="OSRT:Windows_2003"/>
 <enumeration value="OSRT:OS_Language_Runtime"/>
 <enumeration value="OSRT:OS_Device_Driver"/>
 <enumeration value="OSRT:OS_Software"/>
 <enumeration value="OSRT:OS_Process"/>
 <enumeration value="OSRT:OS_Thread"/>
 <enumeration value="OSRT:OS_TCPIP_port"/>
 </restriction>
 </simpleType>
 <!--##### J2EE Domain Component Types ##########################-->
 <simpleType name="J2EE_RT">
 <restriction base="QName">
 <enumeration value="J2EERT:IBMWebSphereApplicationServer"/>
 <enumeration value="J2EERT:BEAWebLogicApplicationServer"/>
 <enumeration value="J2EERT:OracleApplicationServer"/>
 <enumeration value="J2EERT:SunONEApplicationServer"/>
 <enumeration value="J2EERT:ApacheTomCatApplicationServer"/>
 <enumeration value="J2EERT:JBossApplicationServer"/>
 <enumeration value="J2EERT:WebModule"/>
 <enumeration value="J2EERT:EJBModule"/>

Installable Unit Deployment Descriptor Version 1.0

 Page 209 of 219

 <enumeration value="J2EERT:Application"/>
 <enumeration value="J2EERT:MailProvider"/>
 <enumeration value="J2EERT:MailSession"/>
 <enumeration value="J2EERT:URLProvider"/>
 <enumeration value="J2EERT:URL"/>
 <enumeration value="J2EERT:JDBCProvider"/>
 <enumeration value="J2EERT:DataSource"/>
 <enumeration value="J2EERT:J2CConnectionFactory"/>
 <enumeration value="J2EERT:JMSProvider"/>
 <enumeration value="J2EERT:JMSConnectionFactory"/>
 <enumeration value="J2EERT:Server"/>
 <enumeration value="J2EERT:ResourceFactory"/>
 <enumeration value="J2EERT:J2EE_Domain"/>
 </restriction>
 </simpleType>
 <!--##### WebSphere Application Server Resource Types ##########################-->
 <simpleType name="WS_RT">
 <restriction base="QName">
 <enumeration value="WSRT:WS_Domain"/>
 <enumeration value="WSRT:DeploymentTarget"/>
 <enumeration value="WSRT:DeployableObject"/>
 <enumeration value="WSRT:ServerCluster"/>
 </restriction>
 </simpleType>
 <!--##### RDB Resource Types ################################-->
 <simpleType name="RDB_RT">
 <restriction base="QName">
 <enumeration value="RDBRT:IBMDB2UDB"/>
 <enumeration value="RDBRT:Informix"/>
 <enumeration value="RDBRT:Sybase"/>
 <enumeration value="RDBRT:Oracle"/>
 <enumeration value="RDBRT:MicrosoftSQL"/>
 <enumeration value="RDBRT:RDB_NodeGroup"/>
 <enumeration value="RDBRT:RDB"/>
 <enumeration value="RDBRT:RDB_Application"/>
 <enumeration value="RDBRT:RDB_Connection"/>
 <enumeration value="RDBRT:RDB_Instance"/>
 <enumeration value="RDBRT:RDB_Table"/>
 <enumeration value="RDBRT:RDB_Tablespace"/>
 <enumeration value="RDBRT:RDB_Tablespace_Container"/>
 <enumeration value="RDBRT:RDB_Database"/>
 <enumeration value="RDBRT:RDB_Node"/>
 <enumeration value="RDBRT:RDB_APPC_Node"/>
 <enumeration value="RDBRT:RDB_APPCLU_Node"/>

Installable Unit Deployment Descriptor Version 1.0

 Page 210 of 219

 <enumeration value="RDBRT:RDB_APPN_Node"/>
 <enumeration value="RDBRT:RDB_NETBIOS_Node"/>
 <enumeration value="RDBRT:RDB_TCPIP_Node"/>
 <enumeration value="RDBRT:RDB_LDAP_Node"/>
 <enumeration value="RDBRT:RDB_Local_Node"/>
 </restriction>
 </simpleType>
</schema>

Installable Unit Deployment Descriptor Version 1.0

 Page 211 of 219

K. signatures.xsd

<?xml version="1.0" encoding="UTF-8"?>
<schema targetNamespace="http://www.ibm.com/namespaces/autonomic/solutioninstall/Signatures" xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:sigt="http://www.ibm.com/namespaces/autonomic/solutioninstall/Signatures" xmlns:base="http://www.ibm.com/namespaces/autonomic/solutioninstall/BASE"
xmlns:rtype="http://www.ibm.com/namespaces/autonomic/solutioninstall/ResourceTypes" elementFormDefault="unqualified" attributeFormDefault="unqualified"
version="1.2.1">
 <import namespace="http://www.ibm.com/namespaces/autonomic/solutioninstall/BASE" schemaLocation="base.xsd"/>
 <import namespace="http://www.ibm.com/namespaces/autonomic/solutioninstall/ResourceTypes" schemaLocation="resourceTypes.xsd"/>
 <annotation>
 <documentation>ACAB.SD0402 - Installable Unit Deployment Descriptor (IUDD) - Copyright (C) 2003,2004 IBM Corporation. All rights reserved</documentation>
 </annotation>
 <!--##### Abstract Signature ##########################-->
 <complexType name="Signature" abstract="true">
 <attribute name="keySignature" type="boolean" use="optional" default="true"/>
 </complexType>
 <!--##### OS Signatures #############################-->
 <simpleType name="PlatformType">
 <union memberTypes="rtype:OS_RT QName"/>
 </simpleType>
 <complexType name="FileSignature">
 <complexContent>
 <extension base="sigt:Signature">
 <sequence>
 <element name="fileName" type="string"/>
 <element name="fileSize" type="nonNegativeInteger" minOccurs="0"/>
 <element name="relativePath" type="base:RelativePath" minOccurs="0"/>
 <element name="checksum" type="base:CheckSum" minOccurs="0"/>
 </sequence>
 <attribute name="platform" type="sigt:PlatformType" use="optional"/>
 <attribute name="keyExecutable" type="boolean" use="optional" default="false"/>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="OsRegistrySignature">
 <complexContent>
 <extension base="sigt:Signature">
 <sequence>

Installable Unit Deployment Descriptor Version 1.0

 Page 212 of 219

 <element name="key" type="string"/>
 <element name="data" type="string"/>
 </sequence>
 <attribute name="platform" type="sigt:PlatformType" use="optional"/>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="WindowsRegistrySignature">
 <complexContent>
 <extension base="sigt:Signature">
 <sequence>
 <element name="hive" type="sigt:WinRegHive"/>
 <element name="parentKey" type="string"/>
 <element name="key" type="string">
 <annotation>
 <documentation>Check existence of key</documentation>
 </annotation>
 </element>
 <element name="valueName" type="string" minOccurs="0">
 <annotation>
 <documentation>Check existence of value</documentation>
 </annotation>
 </element>
 <element name="data" minOccurs="0">
 <annotation>
 <documentation>Check value data if specified</documentation>
 </annotation>
 <complexType>
 <choice>
 <element name="regDword" type="int"/>
 <element name="regString" type="string"/>
 <element name="regMultiString">
 <complexType>
 <sequence>
 <element name="regString" type="string" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 <element name="regBinary" type="hexBinary"/>
 <element name="regExpandString" type="string"/>
 </choice>
 </complexType>
 </element>
 </sequence>

Installable Unit Deployment Descriptor Version 1.0

 Page 213 of 219

 </extension>
 </complexContent>
 </complexType>
 <simpleType name="WinRegHive">
 <restriction base="NCName">
 <enumeration value="HKEY_CLASSES_ROOT"/>
 <enumeration value="HKEY_CURRENT_USER"/>
 <enumeration value="HKEY_LOCAL_MACHINE"/>
 <enumeration value="HKEY_USERS"/>
 <enumeration value="HKEY_CURRENT_CONFIG"/>
 </restriction>
 </simpleType>
</schema>

Installable Unit Deployment Descriptor Version 1.0

 Page 214 of 219

L. action.xsd

<?xml version="1.0" encoding="UTF-8"?>
<schema targetNamespace="http://www.ibm.com/namespaces/autonomic/solutioninstall/action" xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:base="http://www.ibm.com/namespaces/autonomic/solutioninstall/BASE" xmlns:siu="http://www.ibm.com/namespaces/autonomic/solutioninstall/SIU"
xmlns:action="http://www.ibm.com/namespaces/autonomic/solutioninstall/action" xmlns:vsn="http://www.ibm.com/namespaces/autonomic/common/version"
xmlns:rtype="http://www.ibm.com/namespaces/autonomic/solutioninstall/ResourceTypes" elementFormDefault="unqualified" attributeFormDefault="unqualified"
version="1.2.1">
 <annotation>
 <documentation>ACAB.SD0402 - Installable Unit Deployment Descriptor (IUDD) - Copyright (C) 2003,2004 IBM Corporation. All rights reserved</documentation>
 </annotation>
 <import namespace="http://www.ibm.com/namespaces/autonomic/solutioninstall/BASE" schemaLocation="base.xsd"/>
 <import namespace="http://www.ibm.com/namespaces/autonomic/solutioninstall/SIU" schemaLocation="siu.xsd"/>
 <import namespace="http://www.ibm.com/namespaces/autonomic/solutioninstall/ResourceTypes" schemaLocation="resourceTypes.xsd"/>
 <import namespace="http://www.ibm.com/namespaces/autonomic/common/version" schemaLocation="version.xsd"/>
 <element name="artifact" type="action:Artifact"/>
 <!--##### Action Groups #####################-->
 <complexType name="Artifact">
 <sequence>
 <element name="artifactType" type="base:ArtifactType" default="Install" minOccurs="0"/>
 <element name="hostingEnv" type="siu:AnyResourceType" minOccurs="0"/>
 <element name="artifactSchemaVersion">
 <simpleType>
 <restriction base="vsn:VersionString">
 <enumeration value="1.2.1"/>
 </restriction>
 </simpleType>
 </element>
 <group ref="action:Variables"/>
 <group ref="action:BuiltInVariables"/>
 <element name="requiredActionSet" type="action:RequiredActionSet" minOccurs="0" maxOccurs="unbounded"/>
 <element name="actionGroup" type="action:UnitActionGroup" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 <complexType name="UnitActionGroup" abstract="true">
 <sequence/>
 <attribute name="condition" type="base:VariableExpression" use="optional" default="true"/>
 </complexType>

Installable Unit Deployment Descriptor Version 1.0

 Page 215 of 219

 <!--##### VARIABLES #####################-->
 <complexType name="Variable">
 <sequence>
 <choice minOccurs="0">
 <element name="parameter">
 <complexType>
 <attribute name="defaultValue" type="string" use="optional"/>
 </complexType>
 </element>
 <element name="derivedVariable">
 <complexType>
 <sequence>
 <element name="expression" maxOccurs="unbounded">
 <complexType>
 <simpleContent>
 <extension base="base:VariableExpression">
 <attribute name="condition" type="base:VariableExpression" use="optional"/>
 <attribute name="priority" type="nonNegativeInteger" use="optional"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 </choice>
 <element name="description" type="base:DisplayElement" minOccurs="0"/>
 </sequence>
 <attribute name="name" type="ID" use="required"/>
 </complexType>
 <group name="Variables">
 <sequence>
 <element name="variables" minOccurs="0">
 <complexType>
 <sequence>
 <element name="variable" type="action:Variable" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </group>
 <complexType name="BuiltInVariable" abstract="true">
 <attribute name="name" type="ID" use="required"/>
 </complexType>

Installable Unit Deployment Descriptor Version 1.0

 Page 216 of 219

 <group name="BuiltInVariables">
 <sequence>
 <element name="builtInVariables" minOccurs="0">
 <complexType>
 <sequence>
 <element name="variable" type="action:BuiltInVariable" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </group>
 <!--##### REQUIRED ACTION SET #####################-->
 <complexType name="RequiredActionSet">
 <sequence>
 <element name="UUID" type="base:UUID"/>
 <element name="name" type="token" minOccurs="0"/>
 </sequence>
 <attribute name="actionSetId" type="ID" use="required"/>
 </complexType>
 <!--##### BASIC ACTIONS #####################-->
 <complexType name="BaseAction">
 <sequence>
 <element name="displayName" type="base:DisplayElement" minOccurs="0"/>
 </sequence>
 <attribute name="condition" type="base:VariableExpression" use="optional"/>
 <attribute name="actionSetIdRef" type="IDREF" use="optional"/>
 </complexType>
</schema>

Installable Unit Deployment Descriptor Version 1.0

 Page 217 of 219

M. config.xsd

<?xml version="1.0" encoding="UTF-8"?>
<schema targetNamespace="http://www.ibm.com/namespaces/autonomic/solutioninstall/config"
xmlns:config="http://www.ibm.com/namespaces/autonomic/solutioninstall/config" xmlns="http://www.w3.org/2001/XMLSchema" version="1.2.1">
 <annotation>
 <documentation>ACAB.SD0402 - Installable Unit Deployment Descriptor (IUDD) - Copyright (C) 2003,2004 IBM Corporation. All rights reserved</documentation>
 </annotation>
 <element name="configArtifact" type="config:ConfigArtifact"/>
 <complexType name="ConfigArtifact">
 <sequence>
 <element name="propertyValues">
 <complexType>
 <sequence>
 <any/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
</schema>

Installable Unit Deployment Descriptor Version 1.0

 Page 218 of 219

N. multiartifact.xsd

<?xml version="1.0" encoding="UTF-8"?>
<schema targetNamespace="http://www.ibm.com/namespaces/autonomic/solutioninstall/multiartifact"
xmlns:rtype="http://www.ibm.com/namespaces/autonomic/solutioninstall/ResourceTypes" xmlns:vsn="http://www.ibm.com/namespaces/autonomic/common/version"
xmlns:config="http://www.ibm.com/namespaces/autonomic/solutioninstall/config" xmlns:action="http://www.ibm.com/namespaces/autonomic/solutioninstall/action"
xmlns:osac="http://www.ibm.com/namespaces/autonomic/solutioninstall/OsActions" xmlns:base="http://www.ibm.com/namespaces/autonomic/solutioninstall/BASE"
xmlns:ma="http://www.ibm.com/namespaces/autonomic/solutioninstall/multiartifact" xmlns="http://www.w3.org/2001/XMLSchema" elementFormDefault="unqualified"
attributeFormDefault="unqualified" version="1.2.1">
 <annotation>
 <documentation>ACAB.SD0402 - Installable Unit Deployment Descriptor (IUDD) - Copyright (C) 2003,2004 IBM Corporation. All rights reserved</documentation>
 </annotation>
 <import namespace="http://www.ibm.com/namespaces/autonomic/solutioninstall/BASE" schemaLocation="base.xsd"/>
 <import namespace="http://www.ibm.com/namespaces/autonomic/solutioninstall/action" schemaLocation="action.xsd"/>
 <import namespace="http://www.ibm.com/namespaces/autonomic/solutioninstall/config" schemaLocation="config.xsd"/>
 <import namespace="http://www.ibm.com/namespaces/autonomic/common/version" schemaLocation="version.xsd"/>
 <element name="multiartifact" type="ma:MultiArtifact"/>
 <!--##### Action Groups #####################-->
 <complexType name="MultiArtifact">
 <sequence>
 <element name="artifactSchemaVersion" type="vsn:VersionString" fixed="1.2.0"/>
 <element name="iu" minOccurs="0" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="UUID" type="base:UUID"/>
 <element name="version" type="vsn:VersionString"/>
 <element name="installArtifact" type="ma:ArtifactDefinition" minOccurs="0"/>
 <element name="initialConfigArtifact" type="ma:ArtifactDefinition" minOccurs="0"/>
 <element name="migrateArtifact" type="ma:ArtifactDefinition" minOccurs="0"/>
 <element name="verifyInstallArtifact" type="ma:ArtifactDefinition" minOccurs="0"/>
 <element name="uninstallArtifact" type="ma:ArtifactDefinition" minOccurs="0"/>
 </sequence>
 </complexType>
 </element>
 <element name="fix" minOccurs="0" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="UUID" type="base:UUID"/>

Installable Unit Deployment Descriptor Version 1.0

 Page 219 of 219

 <element name="fixName" type="NCName"/>
 <element name="installArtifact" type="ma:ArtifactDefinition" minOccurs="0"/>
 <element name="initialConfigArtifact" type="ma:ArtifactDefinition" minOccurs="0"/>
 <element name="migrateArtifact" type="ma:ArtifactDefinition" minOccurs="0"/>
 <element name="verifyInstallArtifact" type="ma:ArtifactDefinition" minOccurs="0"/>
 <element name="uninstallArtifact" type="ma:ArtifactDefinition" minOccurs="0"/>
 </sequence>
 </complexType>
 </element>
 <element name="cu" minOccurs="0" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="CUNameRef" type="NCName"/>
 <element name="configArtifact" type="ma:ArtifactDefinition" minOccurs="0"/>
 <element name="verifyConfigArtifact" type="ma:ArtifactDefinition" minOccurs="0"/>
 </sequence>
 </complexType>
 </element>
 <element name="check" minOccurs="0" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="artifactIdRef" type="NCName"/>
 <element name="checkArtifact" type="ma:ArtifactDefinition" minOccurs="0"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
 <complexType name="ArtifactDefinition">
 <choice>
 <element name="ActionDefinition" type="action:Artifact"/>
 <element name="ResourcePropertiesDefinition" type="config:ConfigArtifact"/>
 </choice>
 </complexType>
</schema>

