

Installable Unit Package Format
 Specification

Version 1.0
June 14, 2004

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

1

Copyright ©2004 InstallShield Software Corporation, International Business
Machines, Inc., Novell, Inc., and Zero G Software, Inc.. This document is
available under the W3C Document License. See the W3C Intellectual Rights
Notices and Disclaimers for additional information.

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

2

Table of Contents

Table of Contents... 2

1 Document Control ... 5

1.1 Contributing Authors.. 5

2 Introduction ... 6

2.1 Objective... 6
2.2 Audience ... 6
2.3 Scope .. 6
2.4 Notational Convention ... 7
2.5 Background .. 7

3 Installable Unit Package ... 9

3.1 Logical Layout.. 9
3.1.1 Manifest Files.. 9
3.1.2 Files Defined in the Deployment Descriptor .. 11
3.1.3 Required Files ... 11
3.1.4 Optional Files.. 12

3.2 Aggregation.. 13
3.2.1 In-line Aggregation... 14
3.2.2 External Aggregation .. 14

4 Media Descriptor ... 16

4.1 Overview and UML Representation... 16
4.2 Deployment Descriptor Information .. 19
4.3 File Binding Information.. 20

4.3.1 Logical Source .. 21
4.3.2 Default Logical Source ... 26

4.4 File Binding Rules.. 26

5 Package Types.. 29

5.1 Single Zip File .. 29
5.1.1 Manifest Files.. 29
5.1.2 Non-Manifest Files ... 30
5.1.3 Aggregating IU ZIP Packages .. 31

5.2 Fixed-sized Removable Media ... 31
5.2.1 Manifest Files.. 33
5.2.2 Non-Manifest Files ... 34
5.2.3 An Example .. 34

5.3 Network Location ... 34
5.3.1 Manifest Files.. 35

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

3

5.3.2 Non-Manifest Files ... 35
5.4 Single Executable ... 35

6 Security ... 37

6.1 Signing IU Packages .. 37
6.1.1 File Digest Values in the Deployment Descriptor 38
6.1.2 Digest Value of the Entire Deployment Descriptor.................................... 39
6.1.3 Requesting a Public Key Certificate ... 39
6.1.4 Issuing a Public Key Certificate ... 40
6.1.5 Creating Digital Signature .. 40

6.2 Verifying Signed IU Packages.. 40
6.2.1 Authenticating Certificate... 41
6.2.2 Retrieve Public Key .. 41
6.2.3 Authenticating Signed Media Descriptor.. 41
6.2.4 Verifying the Deployment Descriptor .. 42
6.2.5 Verifying the Files .. 42

7 Language Resource Bundles... 43

7.1 Key Design Requirement.. 43
7.2 Packaging Language Resource Bundles .. 44
7.3 Language Resource Bundle ZIP File ... 45
7.4 Security Consideration... 45
7.5 An Example .. 45

8 Relationship with Installer Technologies .. 47

9 Relationship with Existing Package Formats ... 48

9.1 Existing Formats .. 48
9.1.1 J2EE .. 48
9.1.2 Platform Package Formats .. 49
9.1.3 OSGi Bundles ... 49
9.1.4 Grid Services Deployment.. 49
9.1.5 Eclipse... 50

9.1.5.1 Packaging Construct .. 50
9.1.5.2 Installation ... 50
9.1.5.3 Relationship with Installable Unit Packages 51

10 Tooling .. 52

10.1 Packaging ... 52
10.1.1 Non-interactive Build Capabilities ... 52
10.1.2 Validate the Packages ... 52

10.2 Subset Repackaging.. 53
10.2.1 Standalone GUI... 53
10.2.2 Re-signing the New Package .. 54
10.2.3 Validation of the New Packages ... 54

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

4

10.3 Installer... 54

11 Package Examples.. 55

11.1 A Simple Product .. 55
11.2 J2EE Application Server Kernel... 56

12 Media Descriptor Samples .. 58

12.1 A Media Descriptor for a ZIP Package.. 58
12.2 A Media Descriptor for a Package on CD-ROMs.. 59
12.3 A Media Descriptor for a Package in a Network Location............................ 61
12.4 A Simple Media Descriptor Using Default Logical Source 62

13 Glossary of Terms.. 64

References.. 65

Appendix A media.xsd.. 67

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

5

1 Document Control
1.1 Contributing Authors
The owner of this document is:

Heng Chu Software Strategy hengchu@us.ibm.com

The following persons have contributed to this document:

Heng Chu IBM Software Strategy hengchu@us.ibm.com
Christine Draper IBM Autonomic

Computing
Architecture

cdraper@uk.ibm.com

Marcello Vitaletti IBM Autonomic
Computing
Architecture

marcello.vitaletti@it.ibm.com

Randy George IBM Tivoli
Architecture

randyg@us.ibm.com

Julia McCarthy IBM SWG
Componentization
Architecture

julia@us.ibm.com

Devin Poolman Zero G Software devin.poolman@zerog.com
Tim Miller Zero G Software tim.miller@ZeroG.com
Art Middlekauff InstallShield Software

Corp.
artm@installshield.com

Carlos Montero-Luque Novell carlos@novell.com

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

6

2 Introduction
2.1 Objective

An installable unit is a logical component that can be selected for installation. An
installable unit package (or packaged installable unit) contains files to be installed, files
that implement change management operations, and a set of manifest files which include
a deployment descriptor that describes the install characteristics of the installable unit,
and a media descriptor that describes the binding (or physical locations) of the files. This
document describes installable unit package format.

The main objective of this document is to define a common installable unit package
format consistent with the solution installation architecture. Packages in this format need
to be installed in local or distributed environments. Different package types are defined
for a single Zip file, fixed-sized removable media, and network location. Other formats
may be accommodated in the future. Installable unit packages can be used with packages
in existing (de facto or de jure) packaging standards.

2.2 Audience

This document is intended as a technical specification for people who require an in-depth
understanding of the common installable unit package format. This will include
developers of application or solution installable unit packages, developers of applications
for deploying solution packages, and tooling for constructing install packages.

2.3 Scope

This document specifies the common installable unit package format and related design.
In particular, the following areas will be covered in this document.

1. Package structure

2. Physical packages

3. Security model

4. Relationship with existing install technologies and package standards

5. Tooling

Relevant designs not covered in this document can be found in other ACAB documents.

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

7

2.4 Notational Convention

The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,”
“SHOULD,” “SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” are
to be interpreted as described in [RFC2119].

2.5 Background

Figure 1 depicts an important concept in the solution installation architecture. The install
package for an installable unit (IU) consists of two major parts: a deployment descriptor
(DD) that describes the contents, and one or more artifacts that can be installed. An IU –
or specifically the artifact in the IU – will be installed on a hosting environment.
Examples of hosting environments include hardware, operating systems, J2EE
application servers, etc.

This document describes a common installable unit package format used in the solution
installation architecture. This package format is compatible with existing standard or de
facto standard formats. As shown in Figure 1, the design pattern allows the solution
installation architecture to encapsulate and use the existing install technologies for the
various hosting environments. In particular, the artifacts can be standard or de facto
standard packages on the target hosting environments. The actual install behavior is
delegated to the install technologies for the hosting environments. The differences in
various hosting environments (package format, install capabilities, etc.) are encapsulated
in the deployment descriptor which provides a common and consistent view of the
installable units and the install capabilities. This design allows deploying legacy products
or products not created specifically for the solution installation architecture.

Figure 1 Installable Unit and Hosting Environment Design Pattern

The design pattern can be used at
all levels of the resource stack.

DB2 Create TableD

WAS EJBD

Operating
System

Software ProductD

Hardware Operating System D

In general, things that gets installed or created
can fit into the “IU – HE” design pattern.

A “package” structure like
a JAR file that includes a
descriptor and some
collection of files.

A descriptor the
describes the
content of the
installable unit.

This is a hosting
environment or
container that can
accept an artifact.

An artifact
that can be
installed. A D Installable

Unit (IU)
IU

Hosting
Environment

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

8

The following sections describe the format of the installable unit packages to be
deployed, the package contents, the relationship with the hosting environment package
formats, and related tooling.

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

9

3 Installable Unit Package
An IU package can be in one of many physical formats. Although those formats are
different, they are all based on a common logical layout. In this section, the IU package
logical layout is described. Different types of files in an IU package and their
relationships will be identified. The physical package format will be described in Section
5, “Package Types.”

3.1 Logical Layout

Figure 2 illustrates the logical view of an IU package. There are three groups of files in
an IU package: the manifest files, required files, and optional files. The purposes and
relationship of those files will be described in this section. Detailed description of those
files, in particular the manifest files, will be provided in the following sections and other
specifications.

Figure 2 IU Package Layout Logical View

3.1.1 Manifest Files

The manifest files provide standard ways for providing the IU package information.
Standard manifest files enable the IU packages to be processed without human
intervention (or, silently). This is in particular important to enable IU packages for
autonomic or on-demand environments. Without the standard manifest files, each IU

Manifest
Deployment Descriptor (XML file)

Optional Media Descriptor (XML file)

Required Files

Install customization code (JAR files, Java
classes, shell scripts, etc.)

IU files (payload) to be installed

Optional files (install engine, bundled JVMs, etc.)

This layout maps to

• Single ZIP

• Fixed-sized
 removable media

• Network location Optional digital signature (certificate and signed

All manifest files
should be co-located.

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

10

package has unique install information that requires human examination and sometimes
modification before the IU package can be processed silently. This manual step may be
unnecessary if standard manifest files are used to describe the IU packages.

The following three types of manifest files are included in an IU package:

1. Deployment descriptor: This is an XML document (in the IUDD
[ACAB.SD0402] schema) that describes the install characteristics of the IU
packages. This descriptor might reference other deployment descriptors
([ACAB.SD0402]) which could also be located in the same IU package.

The name of the deployment descriptor file must be “packagedIU.xml.”
Please refer to ACAB specification ([ACAB.SD0402]) for details of the XML
schemas.

2. Media descriptor: A deployment descriptor specifies what files are in the IU
package, but not where they are. File paths are relative to logical sources. A
media descriptor is an XML document that describes, among other things, the
physical locations for logical sources of the files defined in the associated
deployment descriptor. So an IU can be packaged in different physical formats
with the same deployment descriptor, and may have unique media descriptors for
each physical format.

A media descriptor is needed when file binding information is complicated. For
example, if an IU package spans multiple fixed-sized removable media (such as
CD-ROM), a media descriptor is needed to describe the physical file locations
that involve the media identification and path within the media.

A media descriptor is optional. If it is not present, a single logical source is
assumed for every file in the IU package, and a default physical location is used
unless it is overridden by the installer.

The name of the media descriptor file must be “IUMedia.xml.” Section 4,
“Media Descriptor”, has more details about the media descriptor and the related
schema.

3. Digital signature: This is a binary file that identifies the IU package and the
vendor who created it. Digital signature files are used to verify that the IU
package has not been tampered with since it was created, and the signer (vendor)
is really who it says it is. A digital signature is optional. If present, a digital
signature should be co-located with the associated media descriptor.

Section 6, “Security”, has more details about the IU package security architecture.

The current design does not define a “main” manifest file that contains path information
for all the other manifest files such as deployment descriptor and media descriptor. Thus,
the manifest files for the IU are co-located and have fixed file names. This design allows

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

11

references for one manifest file to lead to other manifest files and thus the complete
package. A main manifest file might be introduced in future versions so the co-location
restriction can be removed.

3.1.2 Files Defined in the Deployment Descriptor

Most files in the IU packages are defined in the deployment descriptor
(packagedIU.xml) using the <file> elements. The following information, among
others, is defined for each file in the deployment descriptor (see [ACAB.SD0402] for
more details), and will be referenced in this specification.

• Identifier (the “id” attribute): This is the key used to reference the associated file
from the media descriptor (see Section 4, “Media Descriptor”) or elsewhere in the
deployment descriptor via the <fileIdRef> attribute or element (see
[ACAB.SD0402]).

• File pathname (the “pathname” child element): This is the file pathname in the
IU package, and may be overwritten in the media descriptor (see Section 4.3,
“File Binding Information”). The physical location of the file depends on the
physical package format (see Section 5, “Package Types”), and is defined based
on the file binding rules (see Section 4.4, “File Binding Rules”).

• File size (the “length” child element): This is the file size that may be used to
verify the physical file (see Section 6, “Security”).

• File digital signature (the “checksum” child element): This is the file signature
based on one of several message digest algorithms (CRC32, MD2, MD5, and
SHA). This information may be used to verify the physical file (see Section 6,
“Security”).

3.1.3 Required Files

There are two types of non-manifest files that will be required during the installation
process. These files must be specified in the deployment descriptor, and are mapped to
physical locations via the media descriptor.

1. Install customization code: Those are the files used to implement custom install
logic. They are specified in artifact descriptors (see [ACAB.SD0402]). Such
custom code can be in external files (such as native OS commands) or packaged
as part of the IU packages. In the latter case, the custom code is packaged just like
other files and the binding information is specified in the media descriptor.

In the case of the multiple fixed-sized removable media packages (such as CD-
ROMs), the custom code of the IUs (including the aggregated ones) should be put
on the first media so it does not require access to other media to execute the
custom code. Unnecessary media swapping should be avoided. In the IUDD spec

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

12

[ACAB.SD0402], files containing custom code are not specified explicitly (using
special XML elements). However, since files containing custom code are
referenced in XML elements for custom commands, those files can be identified
and moved to the first removable media by examining how they are referenced in
the deployment descriptor.

2. Files to be laid down during installation: Also called “payload,” those are the
files to be copied to the target host during installation. Examples include the Java
class files, shared libraries, executables, DLL, etc.

Binding information for those files is specified in the media descriptor (see
Section 4.3, “File Binding Information”).

Since symbolic links are not supported consistently in all physical formats and the
behaviors vary on different platforms, symbolic link support must not be assumed for IU
packages. For example, ZIP files can not contain symbolic links, UNIX system symbolic
links behave differently from the shortcuts on Windows. As a result, symbolic links can
not be maintained in IU packages. Symbolic links should be created during installation
using, for example, the <addLink> element (see [ACAB.SD0402]).

3.1.4 Optional Files

There are non-manifest files in an IU packages that are specified in neither the
deployment descriptor nor the media descriptor. These files may be used by a particular
installer technology during installation, or may provide useful information (such as
“readme” files) that helps users install the package. They are usually included in IU
packages to make the packages self-contained (for example, an executable JAR package
file for Java-based install technologies) so the packages can be installed without
additional prerequisites. This is also an important usability feature that allows vendor-
specific functions to be included in the IU packages.

The only requirement for those files is that the installation of the IU package must not
depend on the presence of those optional files. Namely, if the optional files are removed
from the IU package and the resulting IU package is still valid and can still be installed
according to the information specified in the deployment descriptor.

For example, for a Java-based install technology, the optional files could include the
install engine, bundled JVMs (to be extracted and installed first on the target in order to
execute the install engine), etc. In this case, the IU package is self-contained and the
packaged install engine can be invoked to install the IU package. Those optional files can
be safely removed from the IU package since the package without the optional files can
still be installed using an external install engine that knows how to process IU packages.

Another example is that an install vendor could provide additional files containing help
or information that provides guidance in aggregating the IU. This information may be
used by the specific vendor installation IDE to improve usability.

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

13

3.2 Aggregation

An installable unit, or IU, package (the aggregating IU) may aggregate other IU
packages (the aggregated IUs). The aggregation relationship is defined in the deployment
descriptor of the aggregating IU by specifying linkage to the deployment descriptor of the
aggregated IUs. This is defined in the IU deployment descriptor specification and related
XML schema (see [ACAB.SD0402]).

There may be multiple levels of aggregation. However, examples in this section use a
single level of aggregation.

Aggregated IUs may be included “in-line” in the aggregating IU, or referenced externally
from the aggregating IU. Based on the aggregation relationship, aggregated IU packages
may exist in the aggregating IU package or in an external package for the aggregated IU.
Thus, when an IU aggregates other IUs, there may be multiple IU packages (including the
one for the aggregating IU) required to be processed in order to deploy the aggregating
IU.

Figure 3 illustrates an example of in-line and external IU aggregation. In-line and
external aggregation relationships will be described in detail in the following sections.

Figure 3 In-line and External IU Aggregation

IU1 Deployment Descriptor

IU1 Media Descriptor

IU1

IU3 aggregates IU1 and IU2 in-line,
and IU4 externally

IU1 Files

IU1 Files

IU2 Files

IU3 Files

IU3 Media Descriptor

Refactored IU1 DD

Refactored IU2 DD

IU3 Deployment Descriptor

<containedIU>,
<containedCIU>, or

<referencedIU>

IU2 Deployment Descriptor

IU2 Media Descriptor

IU2

IU2 Files

IU4 Deployment Descriptor

IU4 Media Descriptor

IU4

IU4 Files

In-line
inclusion

External
reference

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

14

3.2.1 In-line Aggregation

When an IU is aggregated in-line, its package contents are included as part of the
aggregating IU package. Such aggregation should be conducted by a package creation
tool (see Section 10, “Tooling”).

The aggregated IU deployment descriptor contents are refactored and included in the
aggregating IU deployment descriptor. In the IUDD schema, the
<installableUnit> element defines in-line aggregation relationship using Smallest
Installable Unit (SIU), Configuration Unit (CU), Container Installable Unit (CIU), or
Solution Module (SM), each of which specifies in-line aggregated IU.

For example, in Figure 3, IU1 deployment descriptor is included as part of IU3
deployment descriptor.

The process of refactoring aggregated IU deployment descriptors for in-line aggregation
is dependent on the aggregation relationships as defined in the aggregating IU
deployment descriptor (see [ACAB.SD0402]), and is outside of the scope of this
specification.

In-line aggregation is used when the aggregated IU contents are available at the time of
creating the package of aggregating IU. The aggregated IU files are specified in the
aggregating IU (via the <file> element), and they are packaged in the aggregating IU
package. Those files can be bound or relocated, like other aggregating IU files, through
the aggregating IU media descriptor.

For example, in Figure 3, IU1 files are part of IU3 package and can be bound by the
IU3 media descriptor.

3.2.2 External Aggregation

When an IU is aggregated through external references, its package exists separately in its
entirety. The aggregation relationship is defined via the use of elements of the type
iudd:ReferencedIU that references the deployment descriptor of the aggregated
IUs. Such elements include the <containedIU>, <containedCIU>, and
<referencedIU> elements (see [ACAB.SD0402]).

The aggregated IU package is a complete IU package that has manifest and packaged
files. Since all manifest files are co-located, through the reference to the deployment
descriptor, the media descriptor and other package files of the aggregated IU can be
located.

The external reference is reference to a <file> element that can be bound or remapped
through the media descriptor of the aggregating IU. This is illustrated in Figure 4.

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

15

Figure 4 IUDD Schema: External IU Aggregation

The location and package type of the aggregated IU are flexible. Through the use of the
media descriptor (see Section 4, “Media Descriptor”), the deployment descriptor location
can be a local path, a folder in a ZIP file, a folder on a removable media, or any location
in the network. This flexibility allows the aggregated IU package to be a single ZIP file,
files on removable media, or files in local or network file systems (see Section 5,
“Package Types”).

For example, in Figure 3, IU4 is aggregated by IU3 through external reference. IU4
media descriptor and associated packaged files can be located via the location of the
deployment descriptor. The IU4 package can be a ZIP file, a set of files on fixed-sized
removable media, or a set of files in local or network file systems.

An externally aggregated IU package may be included as part of the aggregating IU
package. Through the reference to its deployment descriptor, the aggregated IU package
can be identified and manipulated (such as extraction). For example, in Figure 3, IU4
package can be a ZIP file inside the IU3 ZIP package. IU4 ZIP package can be
identified (through the reference in the deployment descriptor) and extracted if necessary.

There is no special requirement on how the pathnames (or file structure) for the
referenced IU deployment descriptors should be arranged in the referencing IU.
However, in the case of fixed-sized removable media, all (root or referenced) IU
deployment descriptors should be located in specific folders on the first media, regardless
of what is defined in the root IU deployment descriptor. This should be done through the
use of media descriptor (see Section 4, “Media Descriptor”).

Reference to <file> element that can be bound via
a media descriptor

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

16

4 Media Descriptor
The deployment descriptor specifies what files are in an IU package, but not where they
are. Information about the file physical location (the binding information) is kept in a
separate, optional media descriptor. This allows the same deployment descriptor to be
used for different physical packages. Each physical IU package may have a media
descriptor providing file binding information that describes specifically where each file is
physically located. Only the files specified in a deployment descriptor can be bound in
the associated media descriptor. If a file needs to be bound and accessed via the media
descriptor, it must be specified in the IU deployment descriptor.

A media descriptor is optional. If it is not present, all files specified in the deployment
descriptor have paths relative to the location of the deployment descriptor in the package.
An installer can choose to override this default value via, for example, an install
parameter.

There is at most one media descriptor per IU package to provide binding information for
files defined in the deployment descriptor. If an IU package is aggregated in another IU
package (see Section 3.2, “Aggregation”), the referenced deployment descriptor may
have an optional associated media descriptor for the aggregated IU.

The following information is kept in a media descriptor:

1. The corresponding deployment descriptor path name relative to the media descriptor.

2. A default logical source may be defined and apply to files that are not explicitly
bound in this media descriptor

3. Physical locations of the files in this package

4. Optionally the media descriptor can override the file path for selected files. This
feature can be used to map to common files shared by several IUs.

Note the path overridden is the location of the file within the package (see Section 5,
“Package Types”). If the file path in the deployment descriptor is used for other
purposes (for example, for intended install location), the original value in the
deployment descriptor can still be used.

4.1 Overview and UML Representation

The UML class diagram in Figure 5 identifies the media descriptor structure and the
relationship to the IU deployment descriptor.

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

17

Figure 5 Media Descriptor Structure

The media descriptor XML schema overview is shown in

Figure 6.

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

18

Figure 6 Media Descriptor Schema Overview

The root element in a media descriptor is <binding> of type BindingInfo which
consists of the following information:

1. Element deploymentDescriptor
The associated IU deployment descriptor. See Section 4.2.

2. Element fileSource
The physical location, or the binding information, of the files specified in the IU
deployment descriptor. A file defined in the IU deployment descriptor has at most
one fileSource element in the associated media descriptor. See Section 4.3.

3. Element defaultLogicalSource
This is the default physical location for files not explicitly bound via the
fileSource element. This element is optional. See Section 4.4.

The relationship between the deployment descriptor and the media descriptor is
illustrated in Figure 7. Details will be given in the remainder of this section to show how
a media descriptor provides binding information for the associated deployment
descriptor.

Note that the file size and digest information are specified in the deployment descriptor
and cannot be overridden in the associated media descriptor. This ensures the file
contents remain the same as they were when the deployment descriptor was created.
These two pieces of information are used in signing and verifying IU packages (see

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

19

Section 6, “Security”). Again, the media descriptor can only specify where the files are,
not what they are.

Through the use of media descriptors, different files – as defined in the same or different
deployment descriptors – can be mapped to the same physical file. This provides
flexibility for reducing the IU package size by sharing files.

Figure 7 Deployment Descriptor and Media Descriptor

4.2 Deployment Descriptor Information

A media descriptor specifies the associated deployment descriptor information via the
following elements:

• Element location [type=base:RelativePath]
This is the deployment descriptor physical path. The path is relative to the media
descriptor and links the media descriptor to the associated deployment descriptor.
The current design requires deployment descriptor and media descriptor be
located in the same folder and have fixed names, thus this path name is fixed and
has ‘packagedIU.xml’ as the value.

In the future this pathname can be used to locate the deployment descriptor if
manifest files do not have fixed names or are located at different locations.

Every file may have a <fileSource> entry

Referenced by file ID

Path can be overwritten in media descriptor

Length and digest values cannot be changed
by the media descriptor

Specify file logical source in
1. a local folder
2. a ZIP file at network location or on a

removable media
3. a fixed-sized removable media

(e.g., CD-ROM)
4. a network location

IU Deployment Descriptor (IUDD) Media Descriptor

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

20

• Element digest [type=base:CheckSum]
This is the optional message digest for the entire deployment descriptor. The
optional digest value is used for security purposes (see Section 6, “Security”).

Below is the XML schema fragment for the deployment descriptor information in a
media descriptor.
 <element name="deploymentDescriptor">
 <complexType>
 <sequence>
 <!-- The IUDD (deployment descriptor) path relative to the media
 descriptor -->
 <element name="location" type="base:RelativePath"/>

 <!-- The digest value for the entire deployment descriptor -->
 <element name="digest" type="base:CheckSum" minOccurs="0">
 <annotation>
 <documentation>
 This is the digest value for the entire deployment
 descriptor.
 </documentation>
 </annotation>
 </element>
 </sequence>
 </complexType>
 </element>

4.3 File Binding Information

Files specified in a deployment descriptor have paths relative to logical sources. A
logical source, depending on the package types, can be mapped to any physical location.
This allows the files to be packaged in a way that meets the user scenarios and needs. The
mapping of logical sources is defined in the media descriptor.

If a media descriptor is not present, the default value of the logical source for all files
defined in the deployment descriptor is the folder of the deployment descriptor.

The logical source information for a file consists of the following elements:

• Element fileIdRef [type=NCName]
This is the value of the attribute ID for the corresponding file element in the IU
deployment descriptor (see Figure 5 and Figure 7). For any fileIdRef, there
must be a corresponding file element with a matching ID value in the
associated deployment descriptor. For any file in the deployment descriptor, there
should be at most one corresponding entry in the media descriptor.

Below is the XML schema fragment for the fileIdRef element.
 <element name="fileSource" minOccurs="0" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <!-- The id for the iudd:File entry -->
 <element name="fileIdRef" type="NCName">
 <annotation>
 <documentation>
 This is the 'id' attribute of the iudd:File element in
 the IUDD file associated with this media descriptor.
 </documentation>

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

21

 </annotation>
 </element>

• Element location [anonymous type]
For the specific file, this element defines the physical location of the logical
source, and optionally overrides the file path. The physical location of the specific
file is the logical source plus the file path.

A media descriptor can only specify the physical locations for the logical sources,
or override the file path. It can not modify the file sizes and digest values.

The location element consists of the following elements:

• Element physicalLocation [type=media:LogicalSource]
This is the physical location of a file logical source. The physical location for a
logical source can be a local path, a path in a separate ZIP file, a path on a fixed-
sized removable media (such as CD-ROM), or any network location.

A physical location is of the type the media:LogicalSource which is
described in Section 4.3.1.

• Element pathname [type=base:RelativePath]
This optional element defines a new file path relative to the physical logical
source. If the file path is specified in the media descriptor, the one in the
deployment descriptor will be ignored.

Below is the XML schema fragment for the pathname element.
 <!-- Optional new pathname. This value will override the
 one defined in the deployment descriptor. -->
 <element name="pathname"
 type="base:RelativePath" minOccurs="0">
 <annotation>
 <documentation>
 Optional new pathname. This allows mapping to
 different file path (including file name). If this
 is specified, the pathname in the 'file' element
 of the deployment descriptor is ignored. This path
 is relative to the physical source identified in
 the "physicalLocation" element.
 </documentation>
 </annotation>

 </element>

4.3.1 Logical Source

The LogicalSource type specifies one of the following physical location types:

• Element local [type=base:RelativePath]
This is a path relative to the media descriptor folder (which could be in a ZIP file,
file system, network location, or fixed-sized removable media). This is typically
used when the IU package is a ZIP file or located in a network location. For
example, if the media descriptor is in the /META-INF/ folder of a ZIP file, and a
file is located in the /FILES/ folder, the logical source should be a local path

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

22

‘../FILES.’

Below is the XML schema fragment for the local element.
 <choice>
 <!-- Local. Relative to the folder of the media descriptor. For example,
 in a ZIP file, this is relative to the /META-INF folder -->
 <element name="local"
 type="base:RelativePath">
 <annotation>
 This specifies a local path relative to the folder of the
 media descriptor.

 This path is a relative path and cannot begin with '/'.
 </annotation>
 </element>

• Element removableMedia [anonymous type]
This element specifies a location in a fixed-sized removable media such as a CD-
ROM. Such location is identified through the volume identifier and a path in the
volume.

Fixed-sized removable media (for example, CD-ROM and DVD) is a common
package format for installation. Files could be located on such media. Due to its
fixed-sized nature, there could be multiple volumes for large IU packages. For
files located on such media, a volume identifier is given and a path relative to the
specified volume root is specified.

The removal media information is specified by

• Element path [type=base:RelativePath]
The file location on the media. This is always a relative path and is
relative to the root of the media.

• Attribute type [type=media:RemovalMediaType]
This specifies the type of the media where the ZIP is located.
Currently the supported media types (as defined in the
“RemovableMediaType” type) are: CD-ROM, DVD, Diskette, and
others.

• Attribute volumeID [type=xs:string]
This is the volume identifier for the specific media where the ZIP file
is located. This value is used to identify the media. The installer
processing this information will know how to locate the physical
media based on the volume ID. The logic could be vendor or installer
specific, and is outside the scope of this specification.

Below is the XML schema fragment for the removableMedia element.
 <!-- Removable Media (CD, DVD, etc.) -->
 <element name="removableMedia">
 <annotation>
 <documentation>
 This support is for fixed size removable media such as CD or

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

23

 DVD. The package could span multiple such media. The number is a
 positive integer identifying the specific media. The logic of
 locating the specific media is outside of the scope of this
 schema and spec.
 </documentation>
 </annotation>
 <complexType>
 <sequence>
 <element name="path"
 type="base:RelativePath">
 <annotation>
 <documentation>
 This path is relative to the specific media root. This is
 where the filepath is relative to.

 This path cannot begin with a "/."
 </documentation>
 </annotation>
 </element>
 </sequence>
 <!-- The storage media type. Currently only common storage types
 are supported. It is up to the consumer of the media descriptor to
 access each medai type. Maybe more info about the storage type is
 needed. -->
 <attribute name="type" use="required"
 type="media:RemovableMediaType">
 </attribute>
 <!-- The removable media volume identifier. -->
 <attribute name="volumeID"
 type="string" use="required"/>
 </complexType>
 </element>

• Element ZipFile [anonymous type]
This specifies a folder in a ZIP file. ZIP [ZIP] is a commonly used compression
format but the access to ZIP file is different from the access to regular file
systems – the process requires decompression of the contents. So locations of this
type need to be specified so installers can properly access the files.

This is typically used in aggregation (see Section 3.2, “Aggregation”) when the
file is a deployment descriptor in another IU ZIP package. For example, if the file
path is ‘packagedIU.xml’ to indicate an aggregated IU deployment descriptor
(through external aggregation) and the aggregated IU package is a ZIP file, this
file should be mapped to ‘/META-INF/packagedIU.xml’ in the aggregated
IU ZIP package.

ZIP files can be located in a network location (including local, relative locations)
or in a fixed-sized removable media such as a CD-ROM. In either case, a path
within the ZIP file is specified by

• Element path [type=base:RelativePath]
The file path within the ZIP file. This is always a relative path and is
relative to the root of the ZIP file.

If the ZIP file is located in the network location, it is specified by

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

24

• Element networkSource [type=xs:anyURI]
This specifies a location on the network. This value can be absolute or
relative. A relative value can be used to specify a local ZIP file.

If the ZIP file is in a fixed-sized removable media, it is specified by

• Element ZipPath [type=base:RelativePath]
This specifies the location of the ZIP file on the media. This is always
a relative path and is relative to the root of the media.

Note the difference between this value and the above path element
which specifies the file path within the ZIP file.

• Attribute type [type=media:RemovalMediaType]
This specifies the type of the media where the ZIP is located.
Currently the supported media types (as defined in the
“RemovableMediaType” type) are: CD-ROM, DVD, Diskette, and
others.

• Attribute volumeID [type=xs:string]
This is the volume identifier for the specific media where the ZIP file
is located. This value is used to identify the media. The installer
processing this information will know how to locate the physical
media based on the volume ID. The logic could be vendor or installer
specific, and is outside the scope of this specification.

Below is the XML schema fragment for the ZipFile element.
 <element name="ZipFile">
 <annotation>
 This specifies the folder in a separate ZIP file. The folder is
 relative to the root of the Zip file. The ZIP file can be at any
 network location or on a fixed-sized removable media.
 </annotation>
 <complexType>
 <sequence>
 <choice>
 <!-- The ZIP file could be at a network location -->
 <element name="networkSource" type="anyURI"/>
 <!-- Or it could be on a CD/DVD/etc. -->
 <element name="removableMedia">
 <complexType>
 <sequence>
 <element name="ZipPath"
 type="base:RelativePath">
 <annotation>
 <documentation>
 The ZIP file path on the specific media. The path
 is relative to the root and cannot begin with a
 "/."
 </documentation>
 </annotation>
 </element>
 </sequence>

 <attribute name="type" use="required"

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

25

 type="media:RemovableMediaType"/>
 <!-- The removable media volume identifier. -->
 <attribute name="volumeID"
 type="string" use="required"/>
 </complexType>
 </element>
 </choice>
 <!-- Path in the ZIP file relative to the root of
 the ZIP file -->
 <element name="path"
 type="base:RelativePath">
 <annotation>
 <documentation>
 This path is relative to the root of the ZIP file. It is a
 relative path and should not begin with a "/."
 </documentation>
 </annotation>
 </element>
 </sequence>
 </complexType>
 </element>

• Element URL [type=anyURI]
This specifies a location on the network. This is any URI that allows the file to be
anywhere on the network. This can be used to locate, for example, a deployment
descriptor of an external aggregated IU package which exists on the network.

Below is the XML schema fragment for the URL element.
 <!-- Network Location -->
 <element name="URL" type="anyURI">
 <annotation>
 <documentation>
 This points to any network location.
 </documentation>
 </annotation>
 </element>

• Element unknown [anonymous type]
This specifies that the file is not bound and does not exist at any physical location.
Such files might be bound later either via a modified media descriptor or directly
by install parameters. For those files, their logical source physical locations are
simply unknown and must be specifically marked as unknown.

The following is the XML schema fragment for the unknown element.
 <!-- Unknown Location -->
 <element name="unknown">
 <annotation>
 <documentation>
 This indicates that the file is still not bound. Not all the
 files need to be bound in an media descriptor. For example, an
 IU ZIP package could reference files located on the network. The
 network locations might not be known when the media descriptor
 in the ZIP file was created.

 Media descriptors can have unbound files. However, each file
 needs to be bound for the IU package to be processed.
 </documentation>
 </annotation>
 <complexType/>
 </element>
 </choice>
 </complexType>

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

26

4.3.2 Default Logical Source

A default logical source may be explicitly defined in a media descriptor using the
<defaultLogicalSource> element.
 <!-- Optional default logical source that is used for all files that
 do not have corresponding entries in the next section. This value
 overwrites the pre-defined default logical source (which is the
 deployment descriptor location). -->
 <element name="defaultLogicalSource"
 type="media:LogicalSource"
 minOccurs="0">
 <annotation>
 <documentation>
 This optional default logical source that is used for all files
 that do not have corresponding entries in the next section. This
 value overwrites the pre-defined default logical source (which
 is the deployment descriptor location).
 </documentation>
 </annotation>
 </element>

This is particularly useful when most of the files are relative to the same logical source.

The following example shows that, in the simplest case, all files defined in the
deployment descriptor are relative to a sibling folder ‘FILES’ of the manifest folder.
<?xml version="1.0" encoding="UTF-8"?>
<media:binding
xmlns:media="http://www.ibm.com/namespaces/autonomic/solutioninstall/MEDIA"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ibm.com/namespaces/autonomic/solutioninstall/MEDIA
media.xsd">
 <deploymentDescriptor>
 <location>packagedIU.xml</location>
 <digest type="MD5">6CE903B30B410F8A9E6BCF1F05A74864</digest>
 </deploymentDescriptor>
 <defaultLogicalSource>
 <local>../FILES</local>
 </defaultLogicalSource>
</media:binding>

4.4 File Binding Rules

For any file specified in the deployment descriptor, it must be either

• Bound explicitly or implicitly using the default logical source, or

• Unbound explicitly in the media descriptor using the <unknown> child element
of the <physicalLocation> element (see Section 4.3, “File Binding
Information”).

Unbound files in an IU package must be bound before the IU package is deployed. The
program deploying the IU package should provide the binding information for all
unbound files. This should be done by updating the media descriptor and replacing the
<unknown> elements with proper binding information.

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

27

The following is the file binding algorithm for files specified in the deployment
descriptor:

1. If the media descriptor file is not present, all files are located relative to the
deployment descriptor location

2. If the media descriptor file is present

a. If a file physical location is specified using <unknown> element, the file
is not bound.

b. If a file physical location is specified (see Section 4.3, “File Binding
Information”), the file is located relative to the physical location as
defined.

c. If a file physical location is not specified

i. If the default logical source is specified in the media descriptor
(see Section 4.3, “File Binding Information”), the file is located
relative to the default logical source as defined.

ii. Otherwise, the file is located relative to the deployment descriptor
location.

Applications deploying IU packages must follow the above file binding rules to locate
files on physical media.

Note that a file being bound does not necessarily guarantee that the file is in the physical
package. If any one of those files is missing in the installable unit package, the package is
not valid (see Section 13, “Glossary of Terms”). Proper tooling should be used to validate
an installable unit package (see Section 10, “Tooling”).

It is not easy to maintain both the IU deployment descriptor and the media descriptor and
keep the binding information synchronized. The binding rules described above suggest a
best practice for providing binding information that requires minimum synchronization:

1. First, one should identify the most common physical layout for the installable unit
package, and then assign the file paths in the IU deployment descriptor as relative
to the folder of the deployment descriptor. Such arrangement allows the common
physical format to be used without the need for a media descriptor (see the file
binding rule #1 above) when possible.

For example, if the package is most likely offered a ZIP file (see Section 5.1,
“Single Zip File”), all file paths should be relative to the /META-INF/ folder
where the IU deployment descriptor resides. This allows the media descriptor to
be optional in the ZIP package. And if the same layout is used for the package on
a network location, media descriptor is not needed either.

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

28

2. If the IU package is offered in a different format that has a layout different from
the one specified in the IU deployment descriptor, one should provide a media
descriptor and map files to correct physical locations.

This recommended approach minimizes the need for a media descriptor for the common
physical layout for the IU package, and uses the media descriptor to remap files to
different physical layouts when necessary.

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

29

5 Package Types
This specification covers four physical IU package types that are commonly used by
install technologies. This section defines standard package formats that can be processed
by any installer technologies such as a software provisioning manager in an on-demand
environment. However, the design also intends to allow enough implementation
flexibilities and value-add extensions by installer vendors.

The four IU package types are: single Zip file, fixed-sized removable media, network
location, and single executable.

5.1 Single Zip File

The first package type is in the ZIP file format ([ZIP]). In this format, all the installable
unit files are packaged in a single ZIP file. Operations that can be applied to a ZIP file
include lossless data compression ([ZLIB]), archiving, decompression, and archive
unpacking. There are tools (for example, the JAR toolset in the JDK) and APIs (for
example, the Java java.util.zip interfaces) available for ZIP operations. The
detailed description of the ZIP file format and related operations is out of the scope of
this specification.

The specific structure of an IU package ZIP file is defined as follows.

5.1.1 Manifest Files

All the manifest files (as defined in section 3.1.1, “Manifest Files”) must be located in the
/META-INF folder. And the installer processing IU package ZIP files should always
look for the manifest files in the /META-INF folder.

Other files in the package can be in any folder. But it is recommended that files be
created outside the /META-INF folder.

• Deployment descriptor: the top level deployment descriptor for the IU must be
named packagedIU.xml. Deployment descriptors for the child (referenced)
IUs must also be named packagedIU.xml and located in folders outside the
folder of the top level deployment descriptor.

All file entries in the deployment descriptor have pathnames relative to the logical
sources defined in the media descriptor (see Section 4, “Media Descriptor”).

• Media descriptor: the media descriptor must be named IUMedia.xml. The
media descriptor specifies physical locations of files defined in the deployment
descriptor.

The file binding is straightforward (see Section 4, “Media Descriptor”). Files

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

30

defined in the deployment descriptor can reside anywhere inside or outside the
ZIP file. However, it is recommended that an IU ZIP package should have all the
files in the ZIP file.

• Digital signature IUMeida.DSA or IUMedia.RSA. See Section 6, “Security”.

Figure 8 shows an example of how the binding information works for the files in the IU
ZIP package. Local locations are used for referencing files in the ZIP file. Since local
locations are relative to the folder of the media descriptor (/META-INF), “../FILES”
is used to refer to folder /FILES.

Figure 8 File binding information in the IU ZIP package

5.1.2 Non-Manifest Files

All the required files must have file entries in the deployment descriptor. The binding
information should exist in the media descriptor. All files can reside anywhere inside or
outside the ZIP file.

It is recommended that the custom install code be located in the /FILES/CUSTOM
folder, and the payload files be located in the /FILES folder.

Optional files are not defined in the deployment descriptor, so there is no binding
information in the media descriptor.

Deployment
Descriptor (SMD)
packagedIU.xml

……
<file id=“f2345”>
 <pathname>dir/foo.java</pathname>
 <length>156734</length>
 ….
</file>
…...

….
/FILES/dir/foo.java
….

<fileIdRef>f2345</fileIdRef>
<location>
….
 <local>../FILES
 </local>
</location>
….

Media Descriptor
IUMedia.xml

ZIP file (e.g., setup.jar)

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

31

5.1.3 Aggregating IU ZIP Packages

Here is an example of an IU package referencing and including another IU ZIP package.
In particular, it is shown how to bind the referenced IU deployment descriptor to the file
in the ZIP package.

Suppose IU1 references IU2 in the IU1 deployment descriptor as a file of pathname
‘iu2/packagedIU.xml’ with file ID ‘IU2_DD.’ If the IU2 package is a ZIP
‘iu2.zip’ included in IU1 package under the ‘/pkg’ folder, IU1 media descriptor
must contain proper binding information to map the file ‘iu2/packagedIU.xml’ to
IU2 deployment descriptor file /META-INF/packagedIU.xml in ‘iu2.zip.’

As shown in Figure 9 below, the binding is achieved by mapping the IU2 deployment
descriptor (file with ID ‘IU2_DD’ in IU1 deployment descriptor) logical source to the
folder /META-INF/ in the ZIP file /pkg/iu2.zip included in IU1 package. Note
that since the ‘IU2_DD’ file pathname is ‘iu2/packagedIU.xml’ in IU1
deployment descriptor, the path has to be overwritten to ‘packagedIU.xml.’ The new
pathname plus the logical source maps to the /META-INF/packagedIU.xml file in
IU2 package.

Figure 9 Aggregating a Referenced IU ZIP Package

5.2 Fixed-sized Removable Media

Fixed-sized removable media is a commonly used storage format. Examples include CD-
ROM, DVD, Diskette, etc. The main characteristic of this package format is that the IU

IU1 references IU2 in IU1 deployment
descriptor as follows
….
<referencedIU IUName=“IU2”>
 <source>
 <fileIdRef>IU2_DD</fileIdRef>
 </source>
</referencedIU>
…
<file id=“IU2_DD”>
 <pathname>iu2/packagedIU.xml</pathname>
 <length>4867</length>
 <checksum>
 6CE903B30B410F8A9E6BCF1F05A74864
 </checksum>
</file>
….

If IU2 ZIP package ‘iu2.zip’ is included in IU1
package in the /pkg folder, IU1 media descriptor
will contain
…
<fileSource>
 <fileIdRef>IU2_DD</fileIdRef>
 <location>
 <physicalLocation>
 <ZipFile>
 <networkSource>../pkg/iu2.zip</networkSource>
 <path>META-INF/</path>
 </ZipFile>
 </physicalLocation>
 <pathname>packagedIU.xml
 </location>

/pkg/iu2.zip

/META-INF/packagedIU.xml
/META-INF/IUMedia.xml

 /META-INF/packagedIU.xml

IU1 package IU2 package

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

32

package might be too big to fit on one single media, and the whole package may be split
into one or more fixed-sized “volumes,” each of which is stored on one media. In order to
access a file identified in the deployment descriptor, specific media needs to be loaded.
Thus the binding following are needed for files on fixed-sized removable medias:

1. A media volume ID string. This information should be used by the application
processing the IU package to verify or locate the specific media volume.
Although out of the scope of this specification, for well known media formats
such as CD-ROM, DVD, or diskettes, there are standard ways to identify and
retrieve the media volume information.

2. A pathname of the file on that specific media. In the media descriptor, the
pathname for logical source is specified, which is used to construct the physical
file pathname on the specific media volume.

Figure 10 illustrates an example of how the media descriptor is used to bind to files on a
particular CD volume. In the example, a file is specified in the deployment with ID
‘f2345’ and pathname ‘dir/foo.java.’ The logical source of this file is ‘/FILES’
folder on the CD volume ‘cd4.’ This information is specified via the
<removableMedia> element in the media descriptor: the volumeID attribute is set
to ‘cd4,’ and the type attribute is set to ‘CDROM.’ The <path> element sets /FILES
as the physical location of the logical source, thus makes the physical path of the file to
be /FILES/dir/foo.java on CD volume ‘cd4.’

Figure 10 Fixed-sized Removable Media Example: IU Package on Multiple CDs

……
<file id=“f2345”>
 <pathname>dir/foo.java</pathname>
 <length>156734</length>
 ….
</file>
…...

<fileIdRef>f2345</fileIdRef>
<location>
 ….
 <removableMedia volumeID=‘cd4’
 type=‘CDROM’>
 <path>FILES</path>
 </removableMedia>
</location>

….
/FILES/dir/foo.java
….

Deployment
Descriptor (SMD)
packagedIU.xml

Media Descriptor
IUMedia.xml

CD volume ‘cd1’

CD ‘cd4’

CD ‘cd2’

CD ‘cdn’

….

….

/META-INF/

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

33

This specification does not cover how the package is split and how the volume sizes are
determined. Also, the identification of the fixed-sized removable media (through the
volume ID) and the access of the files on the media are out of the scope of this
specification.

5.2.1 Manifest Files

The manifest files for the IU and child IUs should all be located in the /META-INF/
folder in the first media. The IU manifest files should be defined as follows:

– Deployment descriptor: packagedIU.xml. File paths in the deployment descriptor
are relative to respective logical sources. If a media descriptor is present, the binding
is defined in the media descriptor. Otherwise, a default location is used for all logical
sources.

– Media descriptor: IUMedia.xml. The logical sources are mapped to the media
identifier plus the folder in the media.

– IUMedia.RSA or IUMedia.DSA: the digital signature containing the signed media
descriptor and the public key certificate. See Section 6, “Security.”

When there are referenced (child) IUs, the manifest files for the root IU and the child IUs
should be located in the following file structure on the first media:

– Referenced IU manifest files are located in the
/META-INF/IUDIR/META-INF folder where IUDIR is defined as follows

– For non-fix IUs (defined using the <IUDefinition> element; see
[ACAB.SD0402]), it is the folder UUID “-” ver “.” rel “.” mod “.” lev
(where UUID is the UUID for the IU, and ver, rel, mod, and lev are IU’s
version).

For example, a referenced IU of UUID
“a01ee8dd1dd111b2a3f20800209a5b6b” and version 3.0.2.0 should have its
manifest files in folder
/META-INF/a01ee8dd1dd111b2a3f20800209a5b6b-3.0.2.0/META-INF

– For fixes (defined using the <FixDefinition> element; see
[ACAB.SD0402]), it is in the folder UUID “-” fixName where UUID is the
UUID for the IU, and fixName is the fix name as defined in the
<fixIdentity> element (see [ACAB.SD0402]).

For example, a referenced fix of UUID
“a01ee8dd1dd111b2a3f20800209a5b6b” and fix name “PTF4589” has its
manifest files in folder
 /META-INF/a01ee8dd1dd111b2a3f20800209a5b6b-PTF4589/META-INF

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

34

Referenced IU manifest files are bound via the root IU media descriptor (since they are
specified in the root IU deployment descriptor). Referenced IU payload files are bound
via its own media descriptor (since they are specified in the referenced IU deployment
descriptors).

5.2.2 Non-Manifest Files

Non-manifest files are located on the media. Required files physical locations are
specified in the media descriptor using the volume identifier and the path on the specific
volume. Optional files are not specified in the media descriptor although they are located
on the media.

5.2.3 An Example

Suppose IU1 references IU2 and IU3. IU2 is an IU and has UUID
a01ee8dd1dd111b2a3f20800209a5b6b and version 2.1.0.0. IU3 is a fix and has UUID
8f64eabf1dd211b2a3f10800209a5b6b and fix name ‘PTF43’. Figure 11 shows that the
manifest files for IU1, IU2, and IU3 are all located on the first CD, and they follow the
file structure as described in Section 5.2.1.

Figure 11 Referenced IU Manifest Files Are All Located On the First Media

5.3 Network Location

The package structure is similar to the ZIP package. All files including manifest files are
located on the network and can be accessed using URI.

/META-INF/
 packagedIU.xml
 IUMedia.xml
 /a01ee8dd1dd111b2a3f20800209a5b6b-2.1.0.0/
 /META-INF/
 packagedIU.xml
 IUMedia.xml

 /8f64eabf1dd211b2a3f10800209a5b6b-PTF43/
 /META-INF/
 packagedIU.xml
 IUMedia.xml

CD #1

IU1 required files

IU2 required files

IU3 required files

IU2 required files

IU3 required files

CD #2

CD #3

CD #4
IU1 required files

IU2 manifest files
in a subfolder

IU3 manifest files
In a subfolder

IU1 manifest
files

IU1/IU2/IU3 files required to be on first CD

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

35

Figure 12 A IU Package Available From the Network

5.3.1 Manifest Files

• Deployment descriptor: packagedIU.xml. File paths in the deployment descriptor
are relative to the respective logical sources. If a media descriptor is present, the
binding is defined in the media descriptor. Otherwise, a default location is used for all
logical sources.

• Media descriptor: IUMedia.xml. Logical sources are mapped to network locations
via URIs.

• Digital signature: IUMedia.RSA or IUMedia.DSA. See Section 6, “Security.”

5.3.2 Non-Manifest Files

All files can reside on the network and be accessible via URIs. Required files have
binding information in the media descriptor. Optional files are not specified in the media
descriptor.

5.4 Single Executable

Single executable files are self-contained and allow installation to take place by simply
executing the files. All the files required for installation are included in the executables.
Such executables are binary files and the format is platform specific and installer specific.
Thus the format is not covered in this document.

……
<file id=“f2345”>
 <pathname>dir/foo.java</pathname>
 <length>156734</length>
 ….
</file>
…...

<fileIdRef>f2345</fileIdRef>
<location>
 ….
 <URL>
 http://depot.my.com/app/ver1
 </URL>
</location>

….
http://depot.my.com/app/ver1/dir/foo.java
….

Deployment
Descriptor (SMD)
packagedIU.xml

Media Descriptor
IUMedia.xml

Network Location http://update.my.com/app http://depot.my.com/app/ver1

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

36

Existing install technologies such as InstallShield (Windows or Multiplatform versions),
Zero G, Wise, etc. all have the option to generate a single self-contained executable that
allows “one-click” install. This is an important usability feature to most, if not all, install
technologies.

However, in order for the executable install packages to be used in autonomic
environments, there needs to be a standard way to generate the standard IU package
formats defined in this specification. The requirement for executable install packages is
that standard IU package formats or the logic to generate standard IU package formats is
available from the executables.

To generate standard IU package formats, executables need to support one or more of the
following command line options:

• -zip <file>: with this option, the executable can generate the IU package in a single
ZIP file.

• -volume <dir>: with this option, the executable can generate the IU package for
fixed-sized removable media format in possibly multiple volumes.

• -network <dir>: with this option, the executable can generate the IU package ready to
put on a network location.

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

37

6 Security
One important requirement for the IU package design is to ensure the contents (manifest
and other files) have not been tampered with before the IU package is deployed. In this
section, a security architecture is defined to ensure the IU packages have not be changed
after they are created. Installers (or any software modules) processing IU packages are
required to support this security architecture. However, it is optional to enable the
security feature for an IU package (see Section 6.1, “Signing IU Packages”).

Another objective of this security model is that the signer can be identified and the
identity can be validated by a fully trusted authority. This feature is important in
particular when IU packages can be obtained from sources on the Internet. The package
owner needs to be identified and validated before the package contents are installed and
executed.

The IU package security architecture has a design similar to the one in the JAR security
model. In essence, in this design the IU package is first signed, and a digital signature for
the package is created and can later be used to verify the package. If contents have been
changed after an IU package is signed, the verification will fail.

Since the IU package files can be located in different locations, this security architecture
allows files to be verified individually in different locations to ensure the integrity of the
IU package. The security model applies to any IU package types described in section 5,
“Package Types.”

There are a lot of related security topics surrounding the design in this section. Such
topics include public key cryptography (authentication, public and private keys, digital
signature, etc.), public key infrastructure (public key certificate, certificate authority, etc.)
and message digest algorithms (MD5, SHA, etc.). The knowledge of those topics is
assumed and will not be described in detail. [SCH] is a good reference on cryptography
topics.

6.1 Signing IU Packages

Figure 13 shows the complete flow of the signing process. The process to sign IU
packages is as follows:

1. Generate the digest values for files referenced in the deployment descriptor. The
values are stored in the deployment descriptor.

2. Generate the digest value for the entire deployment descriptor. The value is put in
the media descriptor.

3. Request a public key certificate from a certificate authority (CA). The request
should include the signer’s information and public key.

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

38

4. The CA issues a public key certificate for the signer. This certificate is signed by
the CA.

5. Use the signer’s private key to sign the media descriptor. The certificate and
signed media descriptor are put together to generate a binary digital signature file.

Figure 13 Signing an IU Package

The following sections describe the flow in more details.

6.1.1 File Digest Values in the Deployment Descriptor

Generating digital signatures is an expensive process. It will take too long to sign and
verify every file in an IU package. So instead, message digest values for the files in the
packages are computed and used for verification. The digest values are stored in the
deployment descriptor. Only the media descriptor is digitally signed to ensure the digest
values have not been tampered with.

Each file referenced in the deployment descriptor must have a digest value stored in the
<checksum> element (of the type base:CheckSum). There are several algorithms
that can be used to generate digest values. The supported algorithms are listed in the
base:CheckSum type.

The following is an XML fragment example for a file entry in a deployment descriptor.
In this example, the digest algorithm is MD5 and
‘cf03015b052f7ca1c58a3b10669854ae530f25e0’ is the digest value.

<file>
…
<checksum type=“MD5”>
TD1GZt8G11dXY2p4olSZPc5Rj64=
</checksum>
…
</file>

…

…

Digest for
the file

…
<deploymentDescriptor>
…
<digest type=“MD5”>
DREG02DFpdS93CS2=
</digest>
…
</deploymentDescriptor>
…
<fileSource>
…

Digest for
the entire
descriptor
file

Deployment Descriptor
(packagedIU.xml) Private

key

Media Descriptor
(IUMedia.xml)

Public
key

X.509 v3
Certificate

Signer
Certificate

Authority (CA)

Signing the
Media descriptor

(PKCS #7)
Digital Signature
(IUMedia.DSA)

Foo.java

CA signed
certificate

Certificate
request

1

2

3

4

5

Encrypted
Message Digest

01101001001010
0100101010010
…

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

39

…
<files>
…
 <file id="MyApp">
 <pathname>solution/myApp.jar</pathname>
 <length>4563</length>
 <checksum type="MD5">
 cf03015b052f7ca1c58a3b10669854ae530f25e0
 </checksum>
 </file>
…
</files>
…

6.1.2 Digest Value of the Entire Deployment Descriptor

A digest value is computed for the entire deployment descriptor. The supported
algorithms are listed in the base:CheckSum type. Tooling that generates the
deployment descriptors should support all of the message digest algorithms, and be able
to generate correct digest values accordingly.

This digest value is stored in the media descriptor as part of the information for the
associated deployment descriptor. This value is used later to verify the deployment
descriptor (see Section 6.2.4, “Verifying the Deployment Descriptor”).

Below is an XML fragment example for a media descriptor that contains the digest value
‘fcbb38898b63d2255b64de7799c4af3de6ce054e’ for the associated
deployment descriptor ‘packagedIU.xml.’
…
 <deploymentDescriptor>
 <location>packagedIU.xml</location>
 <digest type=”MD5”>
 fcbb38898b63d2255b64de7799c4af3de6ce054e
 </digest>
 </deploymentDescriptor>
…

6.1.3 Requesting a Public Key Certificate

A digitally signed file needs a public key to authenticate the file has not been tampered
with. The public key and related signer information (identity, etc.) are stored in a public
key certificate. It is a trust issue whether the public key certificate really comes from the
signer identified in the certificate. This is one of the issues addressed by the public key
infrastructure ([PKI]). In essence, there are certificate authorities (CAs) that are fully
trusted. CAs sign and issue other public key certificates, after the certificate owner
identities have been verified by CAs. CA certificates are required to authenticate the
public key certificated issued by the CAs. Since the user environments need to manage a
small number of the CA certificates, it is a much easier and simpler process.

At this stage of the signing process, the signer needs to request a public key certificate if
not already available. The detail of this request process is out of the scope of this
specification.

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

40

6.1.4 Issuing a Public Key Certificate

Once the CA verifies the identity of the requester for the public key certificate, CA
generates a public key certificate that contains the signer identity information and public
key.

The certificate can also be self-signed without involving a certificate authority. Since the
identity of a self-signed certificate cannot be independently verified, self-signed
certificates are typically used for testing purposes.

The certificates are in the format defined by X.509 v3 [X.509].

6.1.5 Creating Digital Signature

Now the media descriptor has the digest value of the deployment descriptor. It is only
necessary to digitally sign the media descriptor using the private key of the signer. The
digitally signed media descriptor and the public key certificate are put in a digital
signature file. The digital signature file is an primary file used to verify the authenticity
of the IU package. See Section 6.2.

The digital signature file has the PKCS #7 format ([PKCS #7]).

Two digital signing algorithms are supported: DSA and RSA ([DSA-RSA]). And the
digital signature file has the name IUMedia.DSA and IUMedia.RSA respectively.

The digital signature file is co-located with the other manifest files.

Only one signer can sign an IU package.

6.2 Verifying Signed IU Packages

The flow of verifying signed IU packages is illustrated in Figure 14. The process to verify
a signed IU packages is as follows:

1. Authenticate the certificate in the digital signature

2. Retrieve the public key from the certificate in the digital signature

3. Authenticate the signed media descriptor using the public key

4. Verify the entire deployment descriptor using the digest value stored in the media
descriptor

5. Verify the files using the digest values stored in the deployment descriptor

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

41

Figure 14 Verifying a Signed IU Package

6.2.1 Authenticating Certificate

The certificate in the digital signature contains the identity of the signer that signed the
IU package. Before the IU package is installed, the signer identity needs to be
authenticated to ensure the signer is who it says it is. If the certificate is signed by a
certificate authority, this certificate can be authenticated using the CA’s certificate which
is fully trusted.

A certificate can be self-signed without a certificate authority. However, self-signed
certificates cannot be authenticated and cannot be trusted since the package might have
been created by someone impersonating the signer identity in the certificate. Thus the
self-signed certificates typically are used for testing purposes.

It is up to the security policy of the installer or associated environment to decide whether
self-signed certificates can be trusted.

6.2.2 Retrieve Public Key

The signer’s public key is required to authenticate the signed media descriptor. The
certificate in the digital signature has the public key. Once the certificate is authenticated,
the public key can be retrieved from the certificate.

6.2.3 Authenticating Signed Media Descriptor

The signed media descriptor in the digital signature was signed using the signer’s private
key. The authentication process requires the use of the public key from the certificate.

01101001001010
0100101010010
…

X.509 v3
Certificate

Digital Signature
(IUMedia.DSA)

Public
key

…
<deploymentDescriptor>
…
<digest type=“MD5”>
DREG02DFpdS93CS2=
</digest>
…
</deploymentDescriptor>
…

Media Descriptor
(IUMedia.xml)

<file>
…
<checksum type=“MD5”>
TD1GZt8G11dXY2p4olSZPc5Rj64=
</checksum>
…
</file>

…

…

Deployment Descriptor
(packagedIU.xml)

Foo.java
Verify the

Media descriptor

Verify the
entire
descriptor
file

Verify the
files

Extract

Authenticate

Certificate
Authority

CA
certificate

1

2

3

4

5
Encrypted

Message Digest

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

42

The authentication process is based on the digital signing algorithm indicated by the
signature file extension. This version of the specification supports the DSA and RSA
signing algorithms.

If the authentication of the media descriptor failed, the whole verification process fails.
Otherwise, the verification proceeds to the next step.

6.2.4 Verifying the Deployment Descriptor

Once authenticated, the media descriptor can be used to verify the deployment descriptor
and other files in the IU package based on the digest values stored in the media
descriptor.

A digest value is computed for the deployment descriptor, and then compared with the
value stored in the media descriptor. Those two values need to match. If they do not
match, the deployment descriptor must have been changed since the media descriptor has
been authenticated and the digest value should be correct. In this case, the verification
fails.

Otherwise, the deployment descriptor is verified and the contents have not been changed.
The verification proceeds to the next step.

6.2.5 Verifying the Files

The binding information in a media descriptor provides the physical location of the files
specified in the deployment descriptor. For each of those file, a digest value is computed
and compared with the value stored in the deployment descriptor. If they do not match,
the file located in the physical media has changed or is not the same as the one used to
create the deployment descriptor. In this case, the verification fails. Otherwise, the file
referenced by this file entry is verified and the contents have not been changed. This file
can be safely used during the installation process.

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

43

7 Language Resource Bundles
Some information defined in the deployment descriptor may need to be translated into
different national languages to provide national language support (NLS) during various
software lifecycle management stages (for example, deployment or maintenance) for the
IU packages. Examples include feature name, target description, manufacturer name,
installation group, etc. Translated texts are located in one or more language resource
bundles (one for each supported national language or locale).

Such information all have the type “base:DisplayElement” which defines such
texts for that information as default text, Tooltip text, etc.

For further details about the format of the language resource bundles and how they are
used with deployment descriptors, please see [ACAB.SD0402]. This specification
addresses how language resource bundles are packaged and how references to them are
linked to physical files in the IU packages.

Note that such information is different from the national language support (NLS)
provided by the software via “language packs.” Language packs are part of the installable
units that are laid down during the installation, and are used by the software to provide
NLS after the installation.

7.1 Key Design Requirement

One primary key design requirement is the ease of adding and removing language
resource bundles in the IU packages, and dynamically updating the NLS of the packages
without the need to update the manifest files (deployment descriptor or media descriptor).

The supported scenario is the following: A product can ship an IU package that has
English support only while other national language supports – during or after the
installation – are still in development. Once additional national language supports are
available, additional language resource bundles can be simply added to the IU package,
and additional national language support can be detected automatically the next time the
IU package is deployed.

This requirement has influence on some design decisions and limitations. In particular,
some language resource bundle information (such as what languages are supported, and
what bundle files are present) is not maintained in the manifest files. The only way to
obtain such information is to inspect the IU package contents directly (see Section 7.2
and 7.3). Another limitation is that language resource bundles may not be signed and
verified (see Section 7.4).

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

44

7.2 Packaging Language Resource Bundles

Associated with an IU deployment descriptor, there is one single language resource
bundle set with as many files as the supported locales. If an IU package includes
referenced IU packages, each IU should have its own language resource bundle set.

A language resource bundle file contains the translated texts for a specific locale and the
filename is in the following format:

<base name> “_” <language code> [“_” <country code>] [“.properties”]

The base name is specified in the <language_bundle> attribute of the <rootIU>
element. The language code is a language code as defined by ISO 639 (see [ISO639]),
and the country code is a country code as defined by ISO 3166 (see [ISO3166]). A
bundle file may have “.properties” as the file extension. For example,
iu1resource_en_US.propoerties is a language resource bundle for US English,
and iu1resource_ja is for Japanese.

The contents and format of a language resource bundle are specified in [ACAB.SD0402].
Note that default strings are specified in the IU deployment descriptor, and they will be
used when there are no applicable translated strings available.

All the language resource bundles must be located in the resources subfolder in the
IU deployment descriptor location. Note that they are in a fixed location so they can be
located since the language resource bundle file information is not maintained in any of
the manifest files.

The supported locales are not explicitly specified in the manifest file. Such information is
determined dynamically based on the existing language resource bundles. This is made
possible by locating the resource bundle files in a fixed location and by parsing the
bundle filenames to obtain the locale information.

In packages of ZIP format (see Section 5.1), language resource bundles must be in the
/META-INF/resources subfolder. In packages on network location (see Section 5.3),
the languages resource bundles must be in the resources subfolder of the folder of the
IU deployment descriptor.

In packages of the fixed-sized removable media format (see Section 5.2, “Fixed-sized
Removable Media”), language resource bundles must be in the /META-
INF/resources subfolder on the first media. The child (referenced) IU language
resource bundles should all be located in the resources subfolder in their respective
META-INF folder on the first media. For the example in Section 5.2.3, IU2 language
resource bundles should be located in the following folder on the first media.

/META-INF/ a01ee8dd1dd111b2a3f20800209a5b6b-2.1.0.0/META-INF/resources

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

45

7.3 Language Resource Bundle ZIP File

A single ZIP file (see [ZIP]) may exist in a resources subfolder and contain some or
all the language resource bundles for the associated IU. The ZIP file name is fixed and
has the format

<base name> “.zip”

where the base name is specified in the <language_bundle> attribute of the
<rootIU> element. All the bundle files in this ZIP file should be located at the root
folder. The file names and format of the resource bundle files remain the same.

This ZIP file provides an alternative packaging of the bundle set, and may simplify the
management and transfer of the language resource bundle files.

If a resource bundle ZIP file exists, the process of determining the supported locales
should also inspect the ZIP contents to obtain the supported locales by the resource
bundle files in the ZIP file.

7.4 Security Consideration

As explained in Section 7.1(“Key Design Requirement”), the language resource bundle
file information is not included in the deployment descriptor. So the deployment
descriptor may not have resource bundle files size and file signature which are required
for signing and verifying the packaged files (see Section 6, “Security”).

As a result, language resource bundles may not be signed or verified like the files
specified in the deployment descriptors, unless they are specified explicitly in the
deployment descriptor using the <file> element.

This is an important security implication that needs be noted when adding or updating the
language resource bundles. If security is a major concern, language resource bundle files
(including the bundle ZIP file) should have correct entries in the deployment descriptor
so they can be signed and verified. And in this case, any changes to the resource bundle
files must require updating the deployment descriptor and media descriptor.

7.5 An Example

Here is an example demonstrating how language resource bundle files are packaged in a
CD package.

Suppose IU1 specifies ‘iu1resource’ in the language_bundle attribute of the
<rootIU> element, and IU1 references IU2 which specifies ‘iu2resource’ in the
language_bundle attribute of its <rootIU> element. IU2 is a non-fix IU that has
version 3.0.1.0 and UUID a01ee8dd1dd111b2a3f20800209a5b6b. IU2 has all

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

46

of its language resource bundle files in a single ZIP file which must be named
‘iu2resource.zip’.

Figure 15 shows the first CD of the IU1 package which includes the IU2 package. From
IU1’s META-INF/resources directory, it can be determined that IU1 supports
English, French, and German. Inspecting the ‘iu2resource.zip’ ZIP file indicates
that IU2 supports additional Japanese and Korean.

Figure 15 Language Resource Bundles in a CD Package

/META-INF/
 packagedIU.xml
 IUMedia.xml
 /resources
 iu1resource_en
 iu1resource_fr
 iu1resource_de
 /a01ee8dd1dd111b2a3f20800209a5b6b-3.0.1.0/
 /META-INF/
 packagedIU.xml
 IUMedia.xml
 /resources
 iu2resource.zip

IU1 required files

IU1/IU2 files required to be on first CD

CD #1

/iu2resource_en
/iu2resource_fr
/iu2resource_de
/iu2resource_ja
/iu2resource_ko

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

47

8 Relationship with Installer
Technologies

The IU package format defined in this document needs to be adopted by the industry so
software install packages are all in a common format that can be processed in a standard
fashion across platforms. This cannot be done without the collaboration with leading
industry installer technologies such as ISMP (InstallShield Multiplatform) by
InstallShield or InstallAnywhere by Zero G.

One design objective in this document is to ensure the IU package format can be used as
the native format by the leading installer technologies. Specifically,

• During the packaging time, those installer technologies can generate install packages
in the format defined in this document. And those IU packages can be aggregated in
other IU packages using the installer technologies.

• During the install time, those installers can process any IU package per the design in
this document.

Common install capabilities among the packages created by different installer
technologies are provided by the deployment descriptor (see [ACAB.SD0402]), media
descriptor, and the IU package format. While such IU packages could be generated by
different installer technologies, they can be processed during both packaging and install
time in a standard fashion through the common descriptors and IU package format.

Based on those standards, installer vendors can add their own proprietary value-add
extensions (as optional files) while complying with the standards. However, those
proprietary extensions are not guaranteed to be understood and processed by other
installer technologies.

For example, an installer technology can add its own graphical user interface (GUI)
modules in the packages to provide interactive installation. Such GUI modules are added
as optional files that can only be invoked by the vendor installer. For other installers,
such GUI modules will not be used and thus can be removed from the package.

Before an installer technology fully adopts the standard descriptors and package format,
an IU package can be integrated with the installer technology through “wrappers.” In this
case, an IU package is included in the vendor-specific install package and is processed by
custom install code. Through this interim integration, a standard IU package can be used
with any installer technology that provides additional install capabilities such as GUI
modules. Although such interim approach only provides minimum integration with
existing installer technologies, it allows standard IU descriptors and packages to be used
for new install packages before they are adopted by existing installer technologies.

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

48

9 Relationship with Existing
Package Formats

There are many existing industry standard or de facto standard packaging formats. These
range from native platform OS installation packages to higher level container artifact
packages. Some key formats include but are not limited to those listed in Section 9.1.

According to the design pattern described in Section 2.5, “Background,” it is an objective
of this specification to be fully compatible with existing formats. There are no
requirements or restrictions on a separately packaged artifact to be included in the
proposed package. They are simply specified in the package as a file as described in
Section 3, “Installable Unit Package.”

The mechanisms and behavior of the included package are independent of the proposed
format. During installation, the included package is exploded and processed
appropriately. Similarly, the proposed package format may be included and
independently processed by other packaging formats.

9.1 Existing Formats

9.1.1 J2EE

J2EE has well-defined application assembly and deployment requirements ([J2EE]).
J2EE applications are composed of one or more J2EE components and one J2EE
application deployment descriptor. The deployment descriptor lists the application’s
components as modules. A J2EE module represents the basic unit of composition of a
J2EE application. J2EE modules consist of one or more J2EE components and one
module level deployment descriptor. The flexibility and extensibility of the J2EE
component model facilitates the packaging and deployment of J2EE components as
individual components, component libraries, or J2EE applications.

J2EE application server is a container identified in the solution installation architecture.
To deploy a J2EE application or stand-alone J2EE module to a J2EE container, one needs
to encapsulate the J2EE file in a package per specification defined in this document. The
installable unit deployment descriptor should specify J2EE container type and points to
the J2EE file in the package.

To deploy the installable unit package, the J2EE touch point will extract the J2EE file
along with other information (for example, configuration) from the IU deployment
descriptor, then deploy the J2EE application or module per the J2EE standards.

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

49

9.1.2 Platform Package Formats

There are de facto package formats on various platforms. Examples include MSI on
Windows, rpm on Linux, and installp on AIX. Each format comes with platform
tools to manipulate the packages, but the capabilities vary by platforms. While the
strategic direction is to use the platform independent package format defined by this
document, platform packages will continue to be used by many legacy products or even
future products (in particular non-IBM products).

The IU deployment descriptor has support for those well known platform formats by
encapsulating them in the packages defined by this document. The operating system
touch points will know how to deploy those packages properly using proper platform
tools. There is, however, no mapping between platform packages and the IU packages.

9.1.3 OSGi Bundles

Overview of the Open Service Gateway Initiative (OSGi) is available at [OSGi]. OSGi
gateway defines a service framework that requires services be packaged into bundles and
download to the gateway device. A service bundle is a JAR that contains the following:

• Contains the resources implementing zero or more services. These resources may
be class files for the Java programming language, as well as any other data (such
as HTML help files, icons, and so on).

• States static dependencies on other resources, such as Java packages. If any
dependencies are stated, the framework takes the appropriate actions to make the
required resource available.

• Optionally contains classes that help the framework install, configure, activate
and update a service.

• Declares which class should be used to start or stop a service.

The service framework also maintains the relationship between services implementations,
and the dependencies between services and bundles.

Similar to the J2EE application server, the OSGi gateway service framework defines a
hosting environment that fits in the solution installation architecture. OSGi bundles to the
OSGi gateway is what the J2EE applications to the J2EE application server. Thus OSGi
bundles can be encapsulated in an installable unit package defined by this document, and
deployed through an OSGi gateway touch point.

9.1.4 Grid Services Deployment

The Open Grid Services Architecture (OGSA) includes a Grid service hosting
environment. The Globus Toolkit 3.0 ([GT]) defines a simple deployment framework for
packaging and deploying grid services to a Grid service hosting environment. The

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

50

packages are in Grid archives (GAR) files. A GAR file, like the package defined in this
document, has an XML-based deployment descriptor and Grid service files to be
deployed.

Building and deploying JAR packages are done via the ant tools (‘ant makeGar’ and
‘ant deploy’).

Deploying Grid services to the hosting environment can follow the design pattern as
described in Figure 1. GAR files can be packaged in the common installable unit
packages defined in this document, and deployment of the GAR files can be delegated to
the Grid service deployment functions.

9.1.5 Eclipse

Eclipse is a hosting environment that allows new “plug-ins” to be installed in the
environment. Eclipse has an architecture that specifies how plug-ins are packaged and
installed in the Eclipse environment.

There are two aspects of the relationship between Eclipse installable unit packages and
the common installable unit packages defined in this document. One is the similarity
between the package structures; the other is how Eclipse package can be included in the
common installable unit packages (according to the hosting environment design pattern
described in section 1).

9.1.5.1 Packaging Construct
This section will briefly summarize the packaging and installation (including update)
architecture on the Eclipse platform. For more information and documentation about the
Eclipse platform, please refer to [Eclipse].

On the Eclipse platform, the basic installation and packaging construct is a feature.
Features define the packaging structure for a group of related plug-ins, plug-in fragments,
and optionally non-plug-in files. Features are packaging and installation constructs and
do not play a role during Eclipse plug-in execution.

In Eclipse 2.0, the feature archive consists of multiple separate JAR files --- one JAR file
per plug-in and fragment, plus one JAR file for the actual feature information. The
feature information includes the manifest file which is the descriptor of the feature
archive.

Custom install handlers can be provided as part of the feature archive to perform custom
processing during the feature installation. As a general practice, install handlers should be
provided in separate JAR files that should be signed, and sealed.

9.1.5.2 Installation
For initial install, the feature packages (probably part of a product) can be installed using
the native installer or the Eclipse update manager. The Eclipse update manager is the
most comprehensive install and update mechanism that checks and tracks dependencies,

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

51

installs the features, manages shared plug-ins, and discovers available updates from
update servers. Native installers, on the other hand, can only install the features and have
no access to other install and update features provided by the Eclipse update manager.

The current Eclipse update manager only has a graphical interface and cannot be used
“silently.” Native installers typically provide a silent mode.

9.1.5.3 Relationship with Installable Unit Packages
As mentioned earlier, the Eclipse platform is a hosting environment (see Figure 1 on page
7), and Eclipse feature archives can be included in common installable unit packages.
Although the detailed architecture and design need to be defined and are out of the scope
of this document, here are some potential design points. The deployment of Eclipse
feature archives can be delegated to the Eclipse update manager, but the current update
manager implementation needs to be enhanced. In particular, the update manager needs
to expose its functions in non-interactive fashion, and the dependency and update
management need to be consistent with the dependency management functions in the
solution installation architecture.

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

52

10 Tooling
Tooling is required to create, update, and install the packages. In this section, we will
describe the requirements for such tooling set. This section does not intend to provide
normative description of the tooling, which should be covered thoroughly in separate
specifications.

10.1 Packaging

This tool allows the users to create valid installable unit packages. This tool should
support in-line and external aggregation. Ideally this tool is part of a complete install
integrated development environment (IDE) which could provide additional features such
as defining custom install logic, specifying GUI wizard sequences, and manipulating
other parts of the packages.

This tool is targeted for the install developers to generate installable unit packages for
their application or solutions.

The following sections describe the main functions of the packaging tool.

10.1.1 Non-interactive Build Capabilities

It is a common need to create installable unit packages during the build process which is
often non-interactive and driven from the command line automatically. So the non-
interactive build capabilities should be provided.

Such build capabilities should allow maximum automation, probably with build
parameters specified in a file. Typically the build automation performs packaging specific
files. The automation could also allow the update of the deployment descriptor based on
the files to be packaged. For example, the information (size, message digest, etc.) in the
<file> elements of the deployment descriptor needs to be updated based on the files to
be packaged.

A typical scenario is as follows: The nightly build process successfully generates a new
build. The build script then identifies newly generated files to be included in the package
and runs the packaging tool silently to generate the package. Other packaging
information (such as platforms and languages) remains unchanged and is specified in a
project file used during the silent packaging process.

10.1.2 Validate the Packages

The packaging process needs to generate valid installable unit packages. Validation of the
packages should be one of the main functions of the packaging tool. Such validation
should include at the minimum the followings:

1. The package is in a format defined by this specification.

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

53

2. The deployment descriptor is a valid XML document.

3. All internally referenced files in the deployment descriptor are present in the package.

4. If the IU package is signed, the validation process should also verify that the package
was properly signed and all the information was correctly stored in the package.

10.2 Subset Repackaging

This tool allows the users to create a valid subset from an existing installable unit
package. The new package has a subset of the installable units in the original package.
The repackaging process is meant for removing unneeded installable units.

The new package can have the same contents as the original package but in a different
type. For example, an admin can repackage an IU package in CDs and make it available
on the network. In this case, the contents are the same but the package formats are
different (from CDs to network locations).

During the repackaging process, the original files used for packaging are only available
through the existing installable unit package.

Some non-obvious packaging scenarios need to be supported by repackaging tools. Note
different repackaging tools might be created to address specific scenarios.

1. After a product is installed and several patches are applied, customers might want
to create a new package from the patched product base. This new package allows
customers to install or replicate the patched – and oftentimes stable – product on
other hosts.

2. A customer admin might want to create a new package from a product base
package plus multiple (non-refreshing) fix packages. This new package allows
customers to install the products with latest fixes with just one package (instead of
applying multiple packages in sequence).

3. An admin might want to “simulate” the install process without actually installing
the product. Through the process, files needed for install are identified and a new
package is created to contain those files and a properly modified deployment
descriptor that reflects the “fake” install.

This tool is targeted for the install developers or end users to generate new packages from
existing ones.

The following sections describe the main functions of the repackaging tool.

10.2.1 Standalone GUI

The repackaging tool should have a standalone, user friendly GUI. There may be
different GUI interfaces for use by install developers and end users respectively.

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

54

10.2.2 Re-signing the New Package

If the original package is signed, the new package should also be signed. However, the
private key used to sign the original package might not be available (in particular, when
an end user does the repackaging), so a different private key might be used.

10.2.3 Validation of the New Packages

The repackaging process is required to produce valid packages. And the repackaging tool
should provide validation functions to help users validate the packages.

10.3 Installer

An installer installs the installable unit package. An installer is required to understand the
IU package format, verify the package if it is signed, and conduct installation based on
package contents (in particular the deployment descriptor) and user provided input.

The detailed specification of an installer is beyond the scope of this document.

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

55

11 Package Examples
In this section, several examples will be illustrated to show how this installable unit
package can be structured.

11.1 A Simple Product

The following is a simple example to illustrate a package and the actual product structure
it represents. Assume a trivial product containing six text files with the following
structure:

--Product files
foo1.txt
foo2.txt
dir1
foo3.txt
foo4.txt

dir2
foo5.txt
foo6.txt

In addition to the files that create the product footprint there is utility code included in the
package that performs post installation configuration:

--Utility files
UpdateFoo.class

This set of files would be packaged in an installable unit package as shown in Figure 16.

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

56

Package.jar

/FILES

foo1.txt
foo2.txt
dir1/foo3.txt
dir1/foo4.txt
dir2/foo5.txt
dir2/foo6.txt
UpdateFoo.class

/META-INF

packagedIU.xml

IUMedia.RSA

IUMedia.xml

Figure 16 A Simple Product Package

11.2 J2EE Application Server Kernel

Here is an example of installable unit package for a J2EE application server kernel. In
this example, the package is a solution module that will be deployed to multiple hosting
environments. The layout of the directory structure in the IU package kernel_iu.jar
file:

• /META-INF/packagedIU.xml: the deployment descriptor for this solution
module

• /META-INF/IUMedia.xml: the media descriptor for this ZIP file. Since the
required files are located outside the /META-INF folder (the default logical
source for the files), a media descriptor is needed to specify the logical source. In
this case, it should be a local relative path “../FILES/install” for the
installable files, “../FILES/config” for configuration action related files,
and “../FILES/verify” for verification action related files.

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

57

• /FILES/install/… : this folder contains the installable files

• /FILES/config/… : this folder contains data, files, and scripts needed for
configuration. Configuration actions are defined in the deployment descriptor.

• /FILES/verify/…: this folder contains data, files, and scripts needed for
install verification. Verification actions are defined in the deployment descriptor.

The installer is not packaged in the IU package. Below is an illustration of a IU package
ZIP file.

packagedIU.xml (SMD)

kernel_iu.zip

IUMedia.xml

/
META-INF/

/FILES/
 install/…

 config/…

 verify/…

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

58

12 Media Descriptor Samples
12.1 A Media Descriptor for a ZIP Package
<?xml version="1.0" encoding="UTF-8"?>
<!-- When the IU files are packaged in a ZIP file, the (deployment and -->
<!-- media) descriptors will be in the /META-INF folder. Other files can -->
<!-- reside outside the /META-INF/ folder. The physical location inside the -->
<!-- ZIP file is specified using the 'local' element in the -->
<!-- 'physicallocation'. Note that the 'ZipFile' element should not be used -->
<!-- in this case. -->
<!-- Based on the media.xsd v1.2f -->
<media:binding
xmlns:media="http://www.ibm.com/namespaces/autonomic/solutioninstall/MEDIA"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ibm.com/namespaces/autonomic/solutioninstall/MEDIA
media.xsd">
 <!-- The deployment descriptor location. It should be in the same folder -->
 <!-- as the media descriptor (in the META-INF/ folder). -->
 <deploymentDescriptor>
 <location>packagedIU.xml</location>
 <digest type="MD5">6CE903B30B410F8A9E6BCF1F05A74864</digest>
 </deploymentDescriptor>
 <fileSource>
 <fileIdRef>file_245</fileIdRef>
 <location>
 <physicalLocation>
 <!-- Relative to the media descriptor folder (META-INF/ in the ZIP
 file). -->
 <!-- Suppose the path for 'file_245' is dir/foo.java, the path in
 the ZIP file will be /FILES/dir/foo.java -->
 <local>../FILES</local>
 </physicalLocation>
 </location>
 </fileSource>
 <fileSource>
 <fileIdRef>file_233</fileIdRef>
 <location>
 <physicalLocation>
 <!-- For files that reside in file systems outside this ZIP package,
 they can be specified using the <URL> tag -->
 <!-- Suppose the path for 'file_233' is dir/foo.java, the physical
 path for this file is file://home/dmsadmin/dir/foo.java -->
 <URL>file://home/dmsadmin/</URL>
 </physicalLocation>
 </location>
 </fileSource>
 <fileSource>
 <fileIdRef>file_356</fileIdRef>
 <location>
 <physicalLocation>
 <!-- Relative to the media descriptor folder (META-INF/ in the ZIP
 file). -->
 <local>../FILES</local>
 </physicalLocation>
 <!-- Allow mapping to a different name. And the path in the ZIP file
 is now /FILES/255c22ac34487008caab52f788958d31 -->
 <!-- If this is specified, the pathname value in the deployment
 descriptor is ignored. The file path in the ZIP file is
 /FILES/255c22ac34487008caab52f788958d31 -->
 <pathname>255c22ac34487008caab52f788958d31</pathname>
 </location>
 </fileSource>
 <fileSource>
 <!-- Reference to a 'file' entry in the deployment descriptor -->
 <fileIdRef>file_776</fileIdRef>
 <!-- Indicate that the file is located inside an external ZIP file. -->
 <location>

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

59

 <physicalLocation>
 <ZipFile>
 <networkSource>../pkg/Library.zip</networkSource>
 <!-- The folder (relative to the root) inside the Zip file. -->
 <!-- Suppose the path for 'file_776' is lib/audio.so (defined in
 the deployment descriptor) and the network location for the
 descriptors are at http://depot.my.com/applicationA, then the path
 for 'file_776' is in http://depot.my.com/pkg/Library.zip as
 /FILES/lib/audio.so -->
 <path>FILES</path>
 </ZipFile>
 </physicalLocation>
 </location>
 </fileSource>
 <fileSource>
 <!-- Reference to a 'file' entry in the deployment descriptor -->
 <fileIdRef>file_776</fileIdRef>
 <!-- Indicate that the file is located inside an external ZIP file on a
 CD. -->
 <location>
 <physicalLocation>
 <ZipFile>
 <removableMedia type="CDROM" volumeID="2">
 <!-- The folder (relative to the root) inside the Zip file. -->
 <!-- Suppose the path for 'file_776' is lib/audio.so (defined in
 the deployment descriptor). In this example, the physical file is
 /FILES/lib/audio.so in the ZIP file /IU2.zip on the CD-ROM with
 volume ID '2'. -->
 <ZipPath>IU2.zip</ZipPath>
 </removableMedia>
 <path>FILES</path>
 </ZipFile>
 </physicalLocation>
 </location>
 </fileSource>
 <fileSource>
 <!-- Reference to a 'file' entry in the deployment descriptor -->
 <fileIdRef>file_777</fileIdRef>
 <!-- Indicate that the file physical location is not known -->
 <location>
 <physicalLocation>
 <unknown/>
 </physicalLocation>
 </location>
 </fileSource>
</media:binding>

12.2 A Media Descriptor for a Package on CD-ROMs
<?xml version="1.0" encoding="UTF-8"?>
<!-- In the case of CD package, the deployment descriptor and media -->
<!-- descriptor are both located in the first CD (under the /META-INF/ -->
<!-- directory). The files could span multiple CDs. The physical locations -->
<!-- are specified using the 'removableMedia' element. -->
<!-- Based on the media.xsd v1.2f -->
<media:binding
xmlns:media="http://www.ibm.com/namespaces/autonomic/solutioninstall/MEDIA"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ibm.com/namespaces/autonomic/solutioninstall/MEDIA
media.xsd">
 <!-- The deployment descriptor location. It is in the same directory as -->
 <!-- the media descriptor. -->
 <deploymentDescriptor>
 <location>packagedIU.xml</location>
 <digest type="MD5">6CE903B30B410F8A9E6BCF1F05A74864</digest>
 </deploymentDescriptor>
 <fileSource>
 <!-- Reference to a 'file' entry in the deployment descriptor -->
 <fileIdRef>file_67</fileIdRef>
 <location>

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

60

 <physicalLocation>
 <!-- The CD number. -->
 <removableMedia volumeID="4" type="CDROM">
 <!-- Relative to the root folder of the CD -->
 <!-- Suppose the path for 'file_67' is lib/sound.so (defined in
 the deployment descriptor), the physical path is
 /FILES/lib/sound.so on CD #4 -->
 <path>FILES</path>
 </removableMedia>
 </physicalLocation>
 </location>
 </fileSource>
 <fileSource>
 <!-- Reference to a 'file' entry in the deployment descriptor -->
 <fileIdRef>file_356</fileIdRef>
 <location>
 <physicalLocation>
 <removableMedia volumeID='1' type="CDROM">
 <path>FILES</path>
 </removableMedia>
 </physicalLocation>
 <!-- Allow mapping to a different path name. -->
 <!-- If this is specified, the pathname value in the deployment
 descriptor is ignored. The real file path is
 /FILES/255c22ac34487008caab52f788958d31 on CD #1. -->
 <pathname>255c22ac34487008caab52f788958d31</pathname>
 </location>
 </fileSource>
 <fileSource>
 <!-- Reference to a 'file' entry in the deployment descriptor -->
 <fileIdRef>file_776</fileIdRef>
 <!-- Indicate that the file is located inside an external ZIP file. -->
 <location>
 <physicalLocation>
 <ZipFile>
 <networkSource>../pkg/Library.zip</networkSource>
 <!-- The folder (relative to the root) inside the Zip file. -->
 <!-- Suppose the path for 'file_776' is lib/audio.so (defined in
 the deployment descriptor) and the network location for the
 descriptors are at http://depot.my.com/applicationA, then the path
 for 'file_776' is in http://depot.my.com/pkg/Library.zip as
 /FILES/lib/audio.so -->
 <path>FILES</path>
 </ZipFile>
 </physicalLocation>
 </location>
 </fileSource>
 <fileSource>
 <!-- Reference to a 'file' entry in the deployment descriptor -->
 <fileIdRef>file_776</fileIdRef>
 <!-- Indicate that the file is located inside an external ZIP file on a
 CD. -->
 <location>
 <physicalLocation>
 <ZipFile>
 <removableMedia type="CDROM" volumeID="2">
 <!-- The folder (relative to the root) inside the Zip file. -->
 <!-- Suppose the path for 'file_776' is lib/audio.so (defined in
 the deployment descriptor). In this example, the physical file is
 /FILES/lib/audio.so in the ZIP file /IU2.zip on the CD-ROM with
 volume ID '2'. -->
 <ZipPath>IU2.zip</ZipPath>
 </removableMedia>
 <path>FILES</path>
 </ZipFile>
 </physicalLocation>
 </location>
 </fileSource>
 <fileSource>
 <!-- Reference to a 'file' entry in the deployment descriptor -->
 <fileIdRef>file_777</fileIdRef>

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

61

 <!-- Indicate that the file physical location is not known -->
 <location>
 <physicalLocation>
 <unknown/>
 </physicalLocation>
 </location>
 </fileSource>
</media:binding>

12.3 A Media Descriptor for a Package in a Network
Location

<?xml version="1.0" encoding="UTF-8"?>
<!-- In the case of network download package, the deployment descriptor and -->
<!-- media descriptor should reside at the same location. Other files can -->
<!-- reside anywhere on the network that can be identified using URI. -->
<!-- Based on the media.xsd v1.2f -->
<media:binding
xmlns:media="http://www.ibm.com/namespaces/autonomic/solutioninstall/MEDIA"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ibm.com/namespaces/autonomic/solutioninstall/MEDIA
media.xsd">
 <!-- The deployment descriptor location. It is in the same location as -->
 <!-- the media descriptor. -->
 <deploymentDescriptor>
 <location>packagedIU.xml</location>
 <digest type="MD5">6CE903B30B410F8A9E6BCF1F05A74864</digest>
 </deploymentDescriptor>
 <fileSource>
 <!-- Reference to a 'file' entry in the deployment descriptor -->
 <fileIdRef>file_67</fileIdRef>
 <location>
 <physicalLocation>
 <!-- A network location URI. -->
 <!-- Suppose the path for 'file_67' is lib/sound.so (defined in
 the deployment descriptor) and the network location for the
 descriptors are at http://depot.my.com/applicationA, the location
 for 'file_67' is
 http://depot.my.com/applicationA/FILES/lib/sound.so. -->
 <URL>FILES</URL>
 </physicalLocation>
 </location>
 </fileSource>
 <fileSource>
 <!-- Reference to a 'file' entry in the deployment descriptor -->
 <fileIdRef>file_356</fileIdRef>
 <location>
 <physicalLocation>
 <URL>FILES</URL>
 </physicalLocation>
 <!-- Allow mapping to a different path name. -->
 <!-- If this is specified, the pathname value in the deployment
 descriptor is ignored. -->
 <!-- Suppose the path for 'file_67' is lib/sound.so (defined in the
 deployment descriptor) and the network location for the descriptors
 are at http://depot.my.com/applicationA, the location for 'file_67' is
 http://depot.my.com/applicationA/FILES/255c22ac34487008caab52f788958d31
 -->
 <pathname>255c22ac34487008caab52f788958d31</pathname>
 </location>
 </fileSource>
 <fileSource>
 <!-- Reference to a 'file' entry in the deployment descriptor -->
 <fileIdRef>file_776</fileIdRef>
 <!-- Indicate that the file is located inside an external ZIP file. -->
 <location>
 <physicalLocation>
 <ZipFile>
 <networkSource>../pkg/Library.zip</networkSource>

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

62

 <!-- The folder (relative to the root) inside the Zip file. -->
 <!-- Suppose the path for 'file_776' is lib/audio.so (defined in
 the deployment descriptor) and the network location for the
 descriptors are at http://depot.my.com/applicationA, then the path
 for 'file_776' is in http://depot.my.com/pkg/Library.zip as
 /FILES/lib/audio.so -->
 <path>FILES</path>
 </ZipFile>
 </physicalLocation>
 </location>
 </fileSource>
 <fileSource>
 <!-- Reference to a 'file' entry in the deployment descriptor -->
 <fileIdRef>file_776</fileIdRef>
 <!-- Indicate that the file is located inside an external ZIP file on a
 CD. -->
 <location>
 <physicalLocation>
 <ZipFile>
 <removableMedia type="CDROM" volumeID="2">
 <!-- The folder (relative to the root) inside the Zip file. -->
 <!-- Suppose the path for 'file_776' is lib/audio.so (defined in
 the deployment descriptor). In this example, the physical file is
 /FILES/lib/audio.so in the ZIP file /IU2.zip on the CD-ROM with
 volume ID '2'. -->
 <ZipPath>IU2.zip</ZipPath>
 </removableMedia>
 <path>FILES</path>
 </ZipFile>
 </physicalLocation>
 </location>
 </fileSource>
 <fileSource>
 <!-- Reference to a 'file' entry in the deployment descriptor -->
 <fileIdRef>file_777</fileIdRef>
 <!-- Indicate that the file physical location is not known -->
 <location>
 <physicalLocation>
 <unknown/>
 </physicalLocation>
 </location>
 </fileSource>
</media:binding>

12.4 A Simple Media Descriptor Using Default Logical
Source

<?xml version="1.0" encoding="UTF-8"?>
<!-- This sample shows that all files are relative to a single logical -->
<!-- source "../FILES" using the 'local' element. This sample demonstrates -->
<!-- that a media descriptor can be fairly simple. -->
<!-- Based on the media.xsd v1.2f -->
<media:binding
xmlns:media="http://www.ibm.com/namespaces/autonomic/solutioninstall/MEDIA"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ibm.com/namespaces/autonomic/solutioninstall/MEDIA
media.xsd">
 <!-- The deployment descriptor location. It should be in the same folder -->
 <!-- as the media descriptor. -->
 <deploymentDescriptor>
 <location>packagedIU.xml</location>
 <digest type="MD5">6CE903B30B410F8A9E6BCF1F05A74864</digest>
 </deploymentDescriptor>
 <!-- All files in this packages are relative the logical source
 "../FILES". If this is a ZIP file package, all the files are in the /FILES
 folder. -->
 <defaultLogicalSource>
 <local>../FILES</local>
 </defaultLogicalSource>

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

63

</media:binding>

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

64

13 Glossary of Terms
Also see [ACGlossary] for common Autonomic Computing terms not defined here.

End user – An end user deploys the installable unit packages. An end user might
repackage the install packages before deploying them. For example, for efficient
distribution to large number of client machines, an administrator can repackage an
installable unit package by removing contents that are not needed.

Install developer – An install developer is the developer creating the installable unit
packages for a product or solution.

Installable unit (IU) – An installable unit is a logical component that can be selected for
installation. Installable units can be aggregated together, so for example a product
contains features, which contain components. An artifact is the physical component that
contains a smallest installable unit, or that contains an aggregated installable unit whose
components were manufactured as a single entity (e.g. a product). A solution module is
an aggregated installable unit whose components were manufactured separately.

Installable unit package or packaged installable unit – A package that contains files to
be installed, custom install code, and a deployment descriptor for an installable unit.
Throughout this document, those two terms will be used interchangeably.

Installable unit package type – Installable unit packages can have different physical
layouts. Each physical layout is a package type. The major differences among the various
package types are the locations of the files and how the file bindings are expressed. This
document covers four physical package layouts: single Zip, fixed-sized removable media,
network location, and single executable.

Payload files – Those are the files that will be laid down on the target host during the
installation. Those files do not include the custom install code invoked during the
installation.

Valid installable unit package – An installable unit package is valid if the package
contents meet the following criteria: the package is in a format defined by this
specification; the deployment descriptor is a valid XML document; all internally
referenced files in the deployment descriptor are present in the package; and, if the
package is signed, all files have not been modified.

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

65

References
[ACAB.SD0402] Installable Unit Deployment Descriptor Specification

[ACGlossary] Miller et al, AC Architecture Board, Autonomic Computing
Terminology

[CRM] OGSA Common Resource Management Specification

[DSA-RSA] DSA and RSA Key and Signature Encoding for the KeyNote Trust
 Management System
 http://www.faqs.org/rfcs/rfc2792.html

[Eclipse] Eclipse project is at http://www.eclipse.org.
 The documentation is at
 http://www.eclipse.org/documentation/main.html

[GT] Globus Toolkit
 http://www.globus.org/toolkit/

[ISO3166] Code for the representation of names of countries
http://www.iso.org/iso/en/prods-services/iso3166ma/index.html

[ISO639] Code for the representation of names of languages
 http://www.w3.org/WAI/ER/IG/ert/iso639.htm

[J2EE] Java 2 Platform Enterprise Edition Specification, v1.3.

[MD5] Information about MD5 Message-Digest algorithm is available at
 http://www.faqs.org/rfcs/rfc1321.html

[OSGi] Open Services Gateway Initiative. http://www.osgi.org/
 OSGi Specification Overview
 http://www.osgi.org/resources/docs/specoverview.pdf
 Specification can be downloaded at
 http://www.osgi.org/resources/spec_download.asp

[PKCS #7] PKCS #7: Cryptographic Message Syntax, Version 1.5
 http://www.ietf.org/rfc/rfc2315.txt

[PKI] Public-Key Infrastructure (X.509)
 http://www.ietf.org/html.charters/pkix-charter.html

[RFC2119] Key words for use in RFCs to Indicate Requirement Levels
http://www.ietf.org/rfc/rfc2119.txt

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

66

[SCH] “Applied Cryptography 2nd Edition” by Bruce Schneier
 John Wiley & Sons, New York, 1996

[X.509] Internet X.509 Public Key Infrastructure Certificate and CRL
 Profile
 http://www.ietf.org/rfc/rfc2459.txt

[ZIP] ZIP File Format Specification
 http://www.pkware.com/products/enterprise/white_papers/appnote.html

[ZLIB] ZLIB Compressed Data Format Specification version 3.3
 http://www.faqs.org/rfcs/rfc1950.html

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

67

Appendix A media.xsd
Below is the XML schema (media.xsd) for the media descriptor IUMedia.xml.

<?xml version="1.0" encoding="UTF-8"?>
<!-- iudd:File is the common element referencing files in an IU package. -->
<!-- The <files> element has a seq of iudd:File -->
<!-- File references in iudd in general can be <fileIdRef> which -->
<!-- points to an iudd:File element (the 'id' attribute value) in the -->
<!-- package, or a path that points to files outside the packages. -->
<!-- The 'pathname' attribute of iudd:File type is relative to a physical -->
<!-- location such as a JAR file root folder, CD, and network location. -->
<!-- The media descriptor (1) defines the physical location of the -->
<!-- <files> element in IUDD,(2) optionally override the relative path info -->
<!-- of the <files> elements. -->
<!-- If the logical source is not used in the iudd:File element, the -->
<!-- media descriptor needs to have an entry for every <file> element -->
<!-- defined in the IUDD to specify the physical location. To override the -->
<!-- path, the media descriptor only needs to list the files to be -->
<!-- overridden. -->
<!-- The iudd:File elements are keyed off the 'id' attribute. -->
<!-- -->
<!-- The media descriptor also contains the signature/digest info for the -->
<!-- entire deployment descriptor. -->
<!-- -->
<!-- If the corresponding deployment descriptor has aggregated other IU -->
<!-- packages, the referenced path is for the deployment descriptors. There -->
<!-- should be media descritpror for the referenced deployment -->
<!-- descriptors. -->
<schema
 xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.ibm.com/namespaces/autonomic/solutioninstall/MEDIA"
 xmlns:media="http://www.ibm.com/namespaces/autonomic/solutioninstall/MEDIA"
 xmlns:iudd="http://www.ibm.com/namespaces/autonomic/solutioninstall/IUDD"
 xmlns:base="http://www.ibm.com/namespaces/autonomic/solutioninstall/BASE"
 elementFormDefault="unqualified" attributeFormDefault="unqualified"
 version="1.2h">
 <annotation>
 <documentation>
 Media descriptor schema as defined in the ACAB.BO0307 for "IU Package
 Format" - Copyright (C) 2003 IBM Corporation. All rights reserved
 </documentation>
 </annotation>
 <import
 namespace="http://www.ibm.com/namespaces/autonomic/solutioninstall/BASE"
 schemaLocation="base.xsd"/> <import
 namespace="http://www.ibm.com/namespaces/autonomic/solutioninstall/IUDD"
 schemaLocation="iudd.xsd"/> <import
 namespace="http://www.ibm.com/namespaces/autonomic/solutioninstall/SIU"
 schemaLocation="siu.xsd"/>

 <element name="binding" type="media:BindingInfo"/>
 <complexType name="BindingInfo">
 <sequence>
 <!-- deployment descriptor that this media descriptor is associated
 with. Both are co-located. -->
 <element name="deploymentDescriptor">
 <complexType>
 <sequence>
 <!-- The IUDD (deployment descriptor) path relative to the media
 descriptor -->
 <element name="location" type="base:RelativePath"/>

 <!-- The digest value for the entire deployment descriptor -->
 <element name="digest" type="base:CheckSum" minOccurs="0">
 <annotation>
 <documentation>

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

68

 This is the digest value for the entire deployment
 descriptor.
 </documentation>
 </annotation>
 </element>
 </sequence>
 </complexType>
 </element>

 <!-- Optional default logical source that is used for all files that
 do not have corresponding entries in the next section. This value
 overwrites the pre-defined default logical source (which is the
 deployment descriptor location). -->
 <element name="defaultLogicalSource"
 type="media:LogicalSource"
 minOccurs="0">
 <annotation>
 <documentation>
 This optional default logical source that is used for all files
 that do not have corresponding entries in the next section. This
 value overwrites the pre-defined default logical source (which
 is the deployment descriptor location).
 </documentation>
 </annotation>
 </element>

 <!-- ##### The associated IUDD file info has (1) path, (2) size, (4)
 signatures (and others). ##### -->
 <sequence>
 <annotation>
 <documentation>
 If the logical source attribute is not used by the iudd:File
 type, each 'file' element should have binding info in the media
 descriptor.
 </documentation>
 </annotation>
 <element name="fileSource" minOccurs="0" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <!-- The id for the iudd:File entry -->
 <element name="fileIdRef" type="NCName">
 <annotation>
 <documentation>
 This is the 'id' attribute of the iudd:File element in
 the IUDD file associated with this media descriptor.
 </documentation>
 </annotation>
 </element>
 <!-- Binding info: physical location and pathname override -->
 <element name="location">
 <annotation>
 <documentation>
 File info in IUDD has (1) path name, (2) size, (3)
 (optional) digital signature. The media descriptor can
 override information (1). (2) and (3) will not and
 cannot be modified by the media descriptor to ensure the
 package contents have not been changed.
 </documentation>
 </annotation>
 <complexType>
 <sequence>
 <!-- The physical location -->
 <element name="physicalLocation"
 type="media:LogicalSource"/>

 <!-- Optional new pathname. This value will override the
 one defined in the deployment descriptor. -->
 <element name="pathname"
 type="base:RelativePath" minOccurs="0">
 <annotation>
 <documentation>

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

69

 Optional new pathname. This allows mapping to
 different file path (including file name). If this
 is specified, the pathname in the 'file' element
 of the deployment descriptor is ignored. This path
 is relative to the physical source identified in
 the "physicalLocation" element.
 </documentation>
 </annotation>
 </element>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </sequence>
 </complexType>

 <simpleType name="RemovableMediaType">
 <annotation>
 <documentation>
 Pre-defined types for fixed-sized removable media. All the formats
 (except the "Others" type) are well known.
 </documentation>
 </annotation>
 <restriction base="string">
 <enumeration value="CDROM"/>
 <enumeration value="DVD"/>
 <enumeration value="Diskette"/>
 <enumeration value="Others"/>
 </restriction>
 </simpleType>

 <complexType name="LogicalSource">
 <choice>
 <!-- Local. Relative to the folder of the media descriptor. For example,
 in a ZIP file, this is relative to the /META-INF folder -->
 <element name="local"
 type="base:RelativePath">
 <annotation>
 <documentation>
 This specifies a local path relative to the folder of the media
 descriptor.

 This path is a relative path and cannot begin with '/'.
 </documentation>
 </annotation>
 </element>
 <!-- Single ZIP -->
 <element name="ZipFile">
 <annotation>
 <documentation>
 This specifies the folder in a separate ZIP file. The folder is
 relative to the root of the Zip file. The ZIP file can be at any
 network location or on a fixed-sized removable media.
 </documentation>
 </annotation>
 <complexType>
 <sequence>
 <choice>
 <!-- The ZIP file could be at a network location -->
 <element name="networkSource" type="anyURI"/>
 <!-- Or it could be on a CD/DVD/etc. -->
 <element name="removableMedia">
 <complexType>
 <sequence>
 <element name="ZipPath"
 type="base:RelativePath">
 <annotation>
 <documentation>

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

70

 The ZIP file path on the specific media. The path
 is relative to the root and cannot begin with a
 "/."
 </documentation>
 </annotation>
 </element>
 </sequence>

 <attribute name="type" use="required"
 type="media:RemovableMediaType"/>
 <!-- The removable media volume identifier. -->
 <attribute name="volumeID"
 type="string" use="required"/>
 </complexType>
 </element>
 </choice>
 <!-- Path in the ZIP file relative to the root of
 the ZIP file -->
 <element name="path"
 type="base:RelativePath">
 <annotation>
 <documentation>
 This path is relative to the root of the ZIP file. It is a
 relative path and should not begin with a "/."
 </documentation>
 </annotation>
 </element>
 </sequence>
 </complexType>
 </element>
 <!-- Removable Media (CD, DVD, etc.) -->
 <element name="removableMedia">
 <annotation>
 <documentation>
 This support is for fixed size removable media such as CD or
 DVD. The package could span multiple such media. The number is a
 positive integer identifying the specific media. The logic of
 locating the specific media is outside of the scope of this
 schema and spec.
 </documentation>
 </annotation>
 <complexType>
 <sequence>
 <element name="path"
 type="base:RelativePath">
 <annotation>
 <documentation>
 This path is relative to the specific media root. This is
 where the filepath is relative to.

 This path cannot begin with a "/."
 </documentation>
 </annotation>
 </element>
 </sequence>
 <!-- The storage media type. Currently only common storage types
 are supported. It is up to the consumer of the media descriptor to
 access each medai type. Maybe more info about the storage type is
 needed. -->
 <attribute name="type" use="required"
 type="media:RemovableMediaType">
 </attribute>
 <!-- The removable media volume identifier. -->
 <attribute name="volumeID"
 type="string" use="required"/>
 </complexType>
 </element>
 <!-- Network Location -->
 <element name="URL" type="anyURI">
 <annotation>
 <documentation>

Installable Unit Package Format V1.0a 7/13/2004

Autonomic Computing Architecture

71

 This points to any network location.
 </documentation>
 </annotation>
 </element>
 <!-- Unknown Location -->
 <element name="unknown">
 <annotation>
 <documentation>
 This indicates that the file is still not bound. Not all the
 files need to be bound in an media descriptor. For example, an
 IU ZIP package could reference files located on the network. The
 network locations might not be known when the media descriptor
 in the ZIP file was created.

 Media descriptors can have unbound files. However, each file
 needs to be bound for the IU package to be processed.
 </documentation>
 </annotation>
 <complexType/>
 </element>
 </choice>
 </complexType>
</schema>

